510
Views
0
CrossRef citations to date
0
Altmetric
Review

Photocatalytic Degradation and Pathway from Mycotoxins in Food: A Review

ORCID Icon, , , , , , , & ORCID Icon show all

References

  • Murugesan, P.; Brunda, D. K.; Moses, J. A.; Anandharamakrishnan, C. Photolytic and Photocatalytic Detoxification of Mycotoxins in Foods. Food Control. 2020, 123, 107748. DOI: 10.1016/j.foodcont.2020.107748.
  • Akhila, P. P.; Sunooj, K. V.; Aaliya, B.; Navaf, M.; Sudheesh, C.; Sabu, S.; Sasidharan, A.; Mir, S. A.; George, J.; Mousavi Khaneghah, A. Application of Electromagnetic Radiations for Decontamination of Fungi and Mycotoxins in Food Products: A Comprehensive Review. Trends Food Sci. Tech. 2021, 114, 399–409. DOI: 10.1016/j.tifs.2021.06.013.
  • Gbashi, S.; Madala, N. E.; De Saeger, S.; De Boevre, M.; Njobeh, P. B. Numerical Optimization of Temperature-Time Degradation of Multiple Mycotoxins. Food. Chem. Toxicol. 2019, 125, 289–304. DOI: 10.1016/j.fct.2019.01.009.
  • Schwartzbord, J. R.; Brown, D. L. Aflatoxin Contamination in Haitian Peanut Products and Maize and the Safety of Oil Processed from Contaminated Peanuts. Food Control. 2015, 56, 114–118. DOI: 10.1016/j.foodcont.2015.03.014.
  • Aiko, V.; Edamana, P.; Mehta, A. Decomposition and Detoxification of Aflatoxin B1 by Lactic Acid. J. Sci. Food Agr. 2016, 96(6), 1959–1966. DOI: 10.1002/jsfa.7304.
  • Karlovsky, P.; Suman, M.; Berthiller, F.; Meester, J. D.; Eisenbrand, G.; Perrin, I.; Oswald, I. P.; Speijers, G.; Chiodini, A.; Recker, T. Impact of Food Processing and Detoxification Treatments on Mycotoxin Contamination. Mycotoxin Res. 2016, 32(4), 179–205. DOI: 10.1007/s12550-016-0257-7.
  • Miller, F. A.; Silva, C. L. M.; Brandão, T. R. S. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Eng. Rev. 2013, 5(2), 77–106. DOI: 10.1007/s12393-013-9064-5.
  • Enjie, D.; Jiasheng, W.; Xiangyang, L.; Xinfeng, W.; Huwei, S.; Dongsheng, G. Effects of Ozone Processing on Patulin, Phenolic Compounds and Organic Acids in Apple Juice. J. Food Sci. Tech. 2019, 56(2), 957–965. DOI: 10.1007/s13197-018-03561-0.
  • Wang, J.; Xie, Y. Review on Microbial Degradation of Zearalenone and Aflatoxins. Grain Oil Sci. Tech. 2020, 3(3), 117–125. DOI: 10.1016/j.gaost.2020.05.002.
  • Li, X.; Yu, J.; Jaroniec, M. Hierarchical Photocatalysts. Chem. Soc. Rev. 2016, 45(9), 2603–2636. DOI: 10.1039/C5CS00838G.
  • Carbuloni, C. F.; Savoia, J. E.; Santos, J. S. P.; Pereira, C. A. A.; Marques, R. G.; Ribeiro, V. A. S.; Ferrari, A. M. Degradation of Metformin in Water by TiO2–ZrO2 Photocatalysis. J. Environ. Manage. 2020, 262, 110347. DOI: 10.1016/j.jenvman.2020.110347.
  • Wei, H.; Mao, J.; Sun, D.; Zhang, Q.; Cheng, L.; Yang, X.; Li, P. Strategies to Control Mycotoxins and Toxigenic Fungi Contamination by Nano-Semiconductor in Food and Agro-Food: A Review. Crit. Rev. Food Sci. Nutr. 2022, 1–25. DOI: 10.1080/10408398.2022.2102579.
  • Zhou, Y.; Wu, S.; Wang, F.; Li, Q.; He, C.; Duan, N.; Wang, Z. Assessing the Toxicity In vitro of Degradation Products from Deoxynivalenol Photocatalytic Degradation by Using Upconversion nanoparticles@TiO2 Composite. Chemosphere. 2020, 238, 124648. DOI: 10.1016/j.chemosphere.2019.124648.
  • Zhou, Y.; Sq, A.; Xm, A.; Xl, A.; Nd, A.; Yin, Z. C.; Wy, D.; Sw, A.; Zw, A. Deoxynivalenol Photocatalytic Detoxification Products Alleviate Intestinal Barrier Damage and Gut Flora Disorder in BLAB/C Mice. Food. Chem. Toxicol. 2021, 156, 112510. DOI: 10.1016/j.fct.2021.112510.
  • Lu, X.; Yue, Z.; Peng, B. Preparation of TiO2-nanotube-based Photocatalysts and Degradation Kinetics of Patulin in Simulated Juice. J. Food Eng. 2022, 323, 110992. DOI: 10.1016/j.jfoodeng.2022.110992.
  • Li, L.; Xiaoxue, S.; Yuchong, Z.; Jin, W.; Zilong, L.; Yuxi, G.; Shuai, C.; Youjun, J.; Jinying, C. Application in Photocatalytic Degradation of Zearalenone Based on Graphitic Carbon Nitride. Luminescence. 2022, 37(2), 190–198. DOI: 10.1002/bio.4160.
  • Li, Q.; Wang, F.; Yu, Q.; Wu, S. Study of Photocatalytic Degradation of Ochratoxin A on NaYF4:YbTm@TiO2. Sci. Tech. Rev. 2021, 39(5), 131–140. DOI:10.3981/j.issn.1000-7857.2021.05.015. In Chinese with English abstract.
  • Mesfin, A.; Lachat, C.; Vidal, A.; Croubels, S.; Haesaert, G.; Ndemera, M.; Okoth, S.; Belachew, T.; Boevre, M.; De Saeger, S., et al. Essential Descriptors for Mycotoxin Contamination Data in Food and Feed. Food. Res. Int. 2022, 152, 110883. DOI: 10.1016/j.foodres.2021.110883.
  • Khaneghah, A. M.; Martins, L. M.; von Hertwig, A. M.; Bertoldo, R.; Sant’Ana, A. S. Deoxynivalenol and Its Masked Forms: Characteristics, Incidence, Control and Fate During Wheat and Wheat Based Products Processing - a Review. Trends Food Sci. Tech. 2018, 71, 13–24. DOI: 10.1016/j.tifs.2017.10.012.
  • Vidal, A.; Ouhibi, S.; Ghali, R.; Hedhili, A.; De Saeger, S.; De Boevre, M. The Mycotoxin Patulin: An Updated Short Review on Occurrence, Toxicity and Analytical Challenges. Food. Chem. Toxicol. 2019, 129, 249–256. DOI: 10.1016/j.fct.2019.04.048.
  • Zhang, X.; Li, G.; Wu, D.; Liu, J.; Wu, Y. Recent Advances on Emerging Nanomaterials for Controlling the Mycotoxin Contamination: From Detection to Elimination. Food Front. 2020, 1(4), 360–381. DOI: 10.1002/fft2.42.
  • Eskola, M.; Kos, G.; Elliott, C. T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. 2019, 60(16), 2773–2789. DOI: 10.1080/10408398.2019.1658570.
  • Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. C. 2012, 13(3), 169–189. DOI: 10.1016/j.jphotochemrev.2012.06.001.
  • Rueda-Marquez, J. J.; Levchuk, I.; Fernández Ibañez, P.; Sillanpää, M. A Critical Review on Application of Photocatalysis for Toxicity Reduction of Real Wastewaters. J. Clean. Prod. 2020, 258, 120694. DOI: 10.1016/j.jclepro.2020.120694.
  • Mao, J.; Zhang, L.; Wang, H.; Zhang, Q.; Zhang, W.; Li, P. Facile Fabrication of Nanosized Graphitic Carbon Nitride Sheets with Efficient Charge Separation for Mitigation of Toxic Pollutant. Chem. Eng. J. 2018, 342, 30–40. DOI: 10.1016/j.cej.2018.02.076.
  • Xu, C.; Ye, S.; Cui, X.; Song, X.; Xie, X. Modelling Photocatalytic Detoxification of Aflatoxin B1 in Peanut Oil on TiO2 Layer in a Closed-Loop Reactor. Biosyst. Eng. 2019, 180, 87–95. DOI: 10.1016/j.biosystemseng.2019.01.018.
  • Youssef, Z.; Colombeau, L.; Yesmurzayeva, N.; Baros, F.; Vanderesse, R.; Hamieh, T.; Toufaily, J.; Frochot, C.; Roques-Carmes, T.; Acherar, S. Dye-Sensitized Nanoparticles for Heterogeneous Photocatalysis: Cases Studies with TiO2, ZnO, Fullerene and Graphene for Water Purification. Dyes Pigm. 2018, 159, 49–71. DOI: 10.1016/j.dyepig.2018.06.002.
  • Murugesan, P.; Moses, J. A.; Anandharamakrishnan, C. Photocatalytic Disinfection Efficiency of 2D Structure Graphitic Carbon Nitride-Based Nanocomposites: A Review. J. Mater. Sci. 2019, 54(19), 12206–12235. DOI: 10.1007/s10853-019-03695-2.
  • Raesi, S.; Mohammadi, R.; Khammar, Z.; Paimard, G.; Abdalbeygi, S.; Sarlak, Z.; Rouhi, M. Photocatalytic Detoxification of Aflatoxin B1 in an Aqueous Solution and Soymilk Using Nano Metal Oxides Under UV Light: Kinetic and Isotherm Models. LWT. 2021, 154, 154 112638. DOI: 10.1016/j.lwt.2021.112638.
  • Mao, J.; Zhang, Q.; Li, P.; Zhang, L.; Zhang, W. Geometric Architecture Design of Ternary Composites Based on Dispersive WO3 Nanowires for Enhanced Visible-Light-Driven Activity of Refractory Pollutant Degradation. Chem. Eng. J. 2018, 334, 2568–2578. DOI: 10.1016/j.cej.2017.10.165.
  • Chen, X.; Chu, B.; Gu, Q.; Liu, H.; Wu, D. Facile Fabrication of Protonated g-C3N4/oxygen-doped g-C3N4 Homojunction with Enhanced Visible Photocatalytic Degradation Performance of Deoxynivalenol. J. Environ. Chem. Eng. 2021, 9(6), 106380. DOI: 10.1016/j.jece.2021.106380.
  • Sun, S.; Zhao, R.; Xie, Y.; Liu, Y. Photocatalytic Degradation of Aflatoxin B1 by Activated Carbon Supported TiO2 Catalyst. Food Control. 2019, 100, 183–188. DOI: 10.1016/j.foodcont.2019.01.014.
  • Huang, C.; Peng, B. Photocatalytic Degradation of Patulin in Apple Juice Based on Nitrogen-Doped chitosan-TiO2 Nanocomposite Prepared by a New Approach. LWT – Food. Sci. Technol. 2021, 140, 110726. DOI: 10.1016/j.lwt.2020.110726.
  • Magzoub, R. A. M.; Yassin, A. A. A.; Abdel-Rahim, A. M.; Gubartallah, E. A.; Miskam, M.; Saad, B.; Sabar, S. Photocatalytic Detoxification of Aflatoxins in Sudanese Peanut Oil Using Immobilized Titanium Dioxide. Food Control. 2019, 95, 206–214. DOI: 10.1016/j.foodcont.2018.08.009.
  • Sun, D.; Jin, M.; Zw, A.; Hui, L.; Lza, B.; Wen, Z.; Qi, Z.; Pla, B. Inhibition of Aspergillus Flavus Growth and Aflatoxins Production on Peanuts Over α-Fe2O3 Nanorods Under Sunlight Irradiation. Int. J. Food Microbiol. 2021, 353(2), 109296. DOI: 10.1016/j.ijfoodmicro.2021.109296.
  • Wang, H.; Mao, J.; Zhang, Z.; Zhang, Q.; Zhang, L.; Zhang, W.; Li, P. Photocatalytic Degradation of Deoxynivalenol Over Dendritic-Like α-Fe2O3 Under Visible Light Irradiation. Toxins. 2019, 11(2), 105. DOI: 10.3390/toxins11020105.
  • He, P. Z.; Zhao, Z. Y.; Tan, Y. L.; Hengchao, E.; Zuo, M. H.; Wang, J. H.; Yang, J. H.; Cui, S. X.; Yang, X. L. Photocatalytic Degradation of Deoxynivalenol Using Cerium Doped Titanium Dioxide Under Ultraviolet Light Irradiation. Toxins. 2021, 13(7), 7. DOI: 10.3390/toxins13070481.
  • Wu, S.; Wang, F.; Li, Q.; Wang, J.; Zhou, Y.; Duan, N.; Niazi, S.; Wang, Z. Photocatalysis and Degradation Products Identification of Deoxynivalenol in Wheat Using Upconversion nanoparticles@TiO2 Composite. Food Chem. 2020, 323, 126823. DOI: 10.1016/j.foodchem.2020.126823.
  • Li, Q.; Deng, Y.; Dai, S.; Wu, Y.; Li, W.; Zhuo, S.; Jiao, S.; Wang, S.; Jin, Y.; Li, J. Microfluidic Assembly Synthesis of Magnetic TiO2@SiO2 Hybrid Photonic Crystal Microspheres for Photocatalytic Degradation of Deoxynivalenol. J. Inorg. Organomet. 2020, 31(6), 2360–2367. DOI: 10.1007/s10904-020-01806-0.
  • Sun, S.; Zhao, R.; Xie, Y.; Liu, Y. Reduction of Aflatoxin B1 by Magnetic Graphene oxide/TiO2 Nanocomposite and Its Effect on Quality of Corn Oil. Food Chem. 2021, 343, 128521. DOI: 10.1016/j.foodchem.2020.128521.
  • Sun, D.; Mao, J.; Cheng, L.; Yang, X.; Li, P. Magnetic g-C3N4/NiFe2O4 Composite with Enhanced Activity on Photocatalytic Disinfection of Aspergillus Flavus. Chem. Eng. J. 2021, 418(7060), 129417. DOI: 10.1016/j.cej.2021.129417.
  • Samuel, M. S.; Mohanraj, K.; Chandrasekar, N.; Balaji, R.; Selvarajan, E. Synthesis of Recyclable GO/Cu3(BTC)2/Fe3O4 Hybrid Nanocomposites with Enhanced Photocatalytic Degradation of Aflatoxin B1. Chemosphere. 2022, 291, 132684. DOI: 10.1016/j.chemosphere.2021.132684.
  • Jamil, T. S.; Abbas, H. A.; Nasr, R. A.; El-Kady, A. A.; Ibrahim, M. Detoxification of Aflatoxin B 1 Using Nano-Sized Sc-Doped SrTi0.7Fe0.3O3 Under Visible Light. J. Photoch. Photobio. 2017, 341, 127–135. DOI: 10.1016/j.jphotochem.2017.03.023.
  • Bai, X.; Sun, C.; Liu, D.; Luo, X.; Li, D.; Wang, J.; Wang, N.; Chang, X.; Zong, R.; Zhu, Y. Photocatalytic Degradation of Deoxynivalenol Using Graphene/ZnO Hybrids in Aqueous Suspension. Appl. Catal. B. 2017, 204, 11–20. DOI: 10.1016/j.apcatb.2016.11.010.
  • Mao, J.; Li, P.; Wang, J.; Wang, H.; Zhang, Q.; Zhang, L.; Li, H.; Zhang, W.; Peng, T. Insights into Photocatalytic Inactivation Mechanism of the Hypertoxic Site in Aflatoxin B1 Over Clew-Like WO3 Decorated with CdS Nanoparticles. Appl. Catal. B. 2019, 248, 477–486. DOI: 10.1016/j.apcatb.2019.01.057.
  • Rushing, B. R.; Selim, M. I. Aflatoxin B1: A Review on Metabolism, Toxicity, Occurrence in Food, Occupational Exposure, and Detoxification Methods. Food. Chem. Toxicol. 2019, 124, 81–100. DOI: 10.1016/j.fct.2018.11.047.
  • Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as Human Carcinogens—the IARC Monographs Classification. Mycotoxin Res. 2017, 33(1), 65–73. DOI: 10.1007/s12550-016-0265-7.
  • Liu, R.; Jin, Q.; Tao, G.; Shan, L.; Huang, J.; Liu, Y.; Wang, X.; Mao, W.; Wang, S. Photodegradation Kinetics and Byproducts Identification of the Aflatoxin B1 in Aqueous Medium by Ultra-Performance Liquid Chromatography-Quadrupole Time-Of-Flight Mass Spectrometry. J. Mass Spectrom. 2010, 45(5), 553–559. DOI: 10.1002/jms.1741.
  • Liu, R.; Jin, Q.; Tao, G.; Liang, S.; Liu, Y.; Wang, X. LC–MS and UPLC–Quadrupole Time-Of-Flight MS for Identification of Photodegradation Products of Aflatoxin B1. Chromatographia. 2010, 71(1–2), 107–112. DOI: 10.1365/s10337-009-1354-y0009-5893/10/01.
  • Mao, J.; He, B.; Zhang, L.; Li, P.; Zhang, Q.; Ding, X.; Wen, Z. A Structure Identification and Toxicity Assessment of the Degradation Products of Aflatoxin B1 in Peanut Oil Under UV Irradiation. Toxins. 2016, 8(11), 332. DOI: 10.3390/toxins8110332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.