541
Views
1
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review on Sprouted Seeds Bioactives, the Impact of Novel Processing Techniques and Health Benefits

, , , ORCID Icon, &

References

  • WHO. 1990, Diet, Nutrition, and the Prevention of Chronic Diseases. Report of a WHO Study Group; World Health Organization: Geneva, p. 1990. (WHO Technical Report Series, No. 797).
  • Milenkovic, D.; Morand, C.; Cassidy, A.; Konic-Ristic, A.; Tomas-Barberan, F.; Ordovas, J. M.; Kroon, P.; De Caterina, R.; Rodriguez-Mateos, A. Interindividual Variability in Biomarkers of Cardiometabolic Health After Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved. Adv Nutr. 2017, 8(4), 558–570. DOI: https://doi.org/10.3945/an.116.013623.
  • De Pinho Ferreira Guine, R.; dos Reis Correia, P. M. Engineering Aspects of Cereal and Cereal-Based Products; CRC Press, 2013; pp. 53–55.
  • Dogra, V.; Ahuja, P. S.; Sreenivasulu, Y. Change in Protein Content During Seed Germination of a High Altitude Plant Podophyllum hexandrumroyle. J. Proteomics. 2013, 78, 26–38. DOI: 10.1016/j.jprot.2012.10.025.
  • Shaik, S. S.; Carciofi, M.; Martens, H. J.; Hebelstrup, K. H.; Blennow, A. Starch Bioengineering Affects Cereal Grain Germination and Seedling Establishment. J. Exp. Bot. 2014, 65(9), 2257–2270. DOI: 10.1093/jxb/eru107.
  • Wu, F.; Yang, N.; Toure, A.; Jin, Z.; Xu, X. Germinated Brown Rice and Its Role in Human Health. Crit. Rev. Food Sci. Nutr. 2013, 53(5), 451–463. DOI: https://doi.org/10.1080/10408398.2010.542259.
  • Fouad, A. A.; Rehab, A. F. M. Effect of Germination Time on Proximate Analysis, Bioactive Compounds and Antioxidant Activity of Lentil (Lens Culinaris Medik.) Sprouts. Acta Sci. Pol. Technol. Aliment. 2015, 14(3), 233–246. DOI: 10.17306/J.AFS.2015.3.25.
  • Nonogaki, H.; Bassel, G. W.; Bewley, J. D. Germination—still a Mystery. Plant Sci. 2010, 179(6), 574–581. DOI: https://doi.org/10.1016/j.plantsci.2010.02.010.
  • ESSA. ESSA Hygiene Guideline for the Production of Sprouts and Seeds for Sprouting; ESSA: Brussels, Belgium, 2016.
  • Limón, R. I.; Peñas, E.; Martínez-Villaluenga, C.; Frias, J. Role of Elicitation on the Health-Promoting Properties of Kidney Bean Sprouts. LWT-Food Sci. Technol. 2014, 56(2), 328–334. DOI: 10.1016/j.lwt.2013.12.014.
  • Pajak, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic Profile and Antioxidant Activity in Selected Seeds and Sprouts. Food Chem. 2014, 143, 300–306. DOI: 10.1016/j.foodchem.2013.07.064.
  • Guajardo-Flores, D.; Serna-Saldívar, S. O.; Gutierrez-Uribe, J. A. Evaluation of the Antioxidant and Antiproliferative Activities of Extracted Saponins and Flavonols from Germinated Black Beans (Phaseolus Vulgaris L.). Food Chem. 2013, 141(2), 1497–1503. DOI: https://doi.org/10.1016/j.foodchem.2013.04.010.
  • Gan, R. Y.; Lui, W. Y.; Wu, K.; Chan, C. L.; Dai, S. H.; Sui, Z. Q.; Corke, H. H. Bioactive Compounds and Bioactivities of Germinated Edible Seeds and Sprouts: An Updated Review. Trends Food Sci. Technol. 2017, 59, 1–14. DOI: https://doi.org/10.1016/j.tifs.2016.11.010.
  • Sangronis, E.; Machado, C. J. Influence of Germination on the Nutritional Quality of Phaseolus Vulgaris and Cajanus Cajan. LWT-Food Sci. Technol. 2007, 40(1), 116–120. DOI: 10.1016/j.lwt.2005.08.003.
  • Koger, C. H.; Reddy, K. N.; Poston, D. H. Factors Affecting Seed Germination, Seedling Emergence, and Survival of Texasweed (Caperonia palustris). Weed Sci. 2004, 52(6), 989–995. DOI: 10.1614/WS-03-139R2.
  • Zhang, G.; Xu, Z.; Gao, Y.; Huang, X. Effects of Germination on the Nutritional Properties, Phenolic Profiles, and Antioxidant Activities of Buckwheat. J. Food Sci. 2015, 80(5), H1111–1119. DOI: https://doi.org/10.1111/1750-3841.12830.
  • Sibian, M. S.; Saxena, D. C.; Riar, C. S. Effect of Germination on Chemical, Functional and Nutritional Characteristics of Wheat, Brown Rice and Triticale: A Comparative Study. J. Sci. Food Agric. 2017, 97(13), 4643–4651. DOI: 10.1002/jsfa.8336.
  • Donkor, O. N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated Grains – Sources of Bioactive Compounds. Food Chem. 2012, 135(3), 950–959. DOI: https://doi.org/10.1016/j.foodchem.2012.05.058.
  • Assenova, B.; Smolnikova, F.; Nurgazezova, A.; Kassymov, S.; Atambayeva, Z.; Kuderinova, N.; Igenbayev, A.; Mustafayeva, A. Nutritive and Biological Value of the Germinated Wheat Grain. EurAsian J. BioSci. 2019, 13, 1947–1951.
  • Enyinnaya, C. C.; Chukwuemeka, A. J.; Comfort, S. O.; Ozavize, O. R.; Nahemiah, D. Effect of Germination on the Physicochemical and Antioxidant Characteristics of Rice Flour from Three Rice Varieties from Nigeria. Food Chem. 2015, 185, 185. DOI: https://doi.org/10.1016/j.foodchem.2015.04.010.
  • Sokrab, A. M.; Ahmed, I. A. M.; Babiker, E. E. Effect of Germination on Antinutritional Factors, Total, and Extractable Minerals of High and Low Phytate Corn (Zeamays L.) Genotypes. J. Saudi Soc. Agric. Sci. 2012, 11(2), 123–128. DOI: 10.1016/j.jssas.2012.02.002.
  • Hiran, P.; Kerdchoechuen, O.; Laohakunjit, N. Combined Effects of Fermentation and Germination on Nutritional Compositions, Functional Properties and Volatiles of Maize Seeds. J. Cereal Sci. 2016, 71, 207e216. DOI: 10.1016/j.jcs.2016.09.001.
  • Farooqui, A. S.; Syed, H. M.; Talpade, N. N.; Sontakke, M. D.; Ghatge, P. U. Influence of Germination on Chemical and Nutritional Properties of Barley Flour. J. Pharmacogn. Phytochem. 2018, 7(2), 3855–3858.
  • Afify, A.E. -M.; El-Beltagi, H.; ABD El-Salam, S. M.; Omran, A. A., . Effect of Soaking, Cooking, Germination and Fermentation Processing on Proximate Analysis and Mineral Content of Three White Sorghum Varieties (Sorghum Bicolor L. Moench). Not. Bot. Horti Agrobot.Not. Bot. Horti Agrobot. Not. Bot. Horti Agrobot. 2012, 40(2), 92–98. DOI: 10.15835/nbha4027930
  • Venkateshwarlu, E.; Purnima Reddy, K.; Dilip, D. Potential of Vigna Radiata (L.) Sprouts in the Management of Inflammation and Arthritis in Rats: Possible Biochemical Alterations. Indian J. Exp. Biol. 2016, 54(1), 37–43.
  • Yeap, S. W.; Ali, N. M.; Yusof, H. M.; Alitheen, N. B.; Beh, B. K.; Ho, W. Y.; Koh, S. P.; Long, K. Antihyperglycemic Effects of Fermented and Non-Fermented Mung Bean Extracts on Alloxan-Induced Diabetic Mice. Biomed. Biotechnol. 2012, 2, 1–7. DOI: 10.1155/2012/285430.
  • El-Adawy, T. A.; Rahma, E. H.; El-Bedawey, A. A.; El-Beltagy, A. E. Nutritional Potential and Functional Properties of Germinated Mung Bean, Pea and Lentil Seeds. Plant Foods Hum. Nutr. 2003, 58(3), 1–13. DOI: https://doi.org/10.1023/B:QUAL.0000040339.48521.75.
  • Kumar, G.; Xu, B. A Critical Review on Phytochemical Profile and Health Promoting Effects of Mung Bean (Vigna radiata). Food Sci. Hum. Wellness. 2018, 7(1), 11–13. DOI: 10.1016/j.fshw.2017.11.002.
  • Liu, Y.; Xu, M.; Wu, H.; Jing, L.; Gong, B.; Gou, M.; Zhao, K.; Li, W. The Compositional, Physicochemical and Functional Properties of Germinated Mung Bean Flour and Its Addition on Quality of Wheat Flour Noodle. J. Food Sci. Technol. 2018, 55(12), 5142–5152. DOI: https://doi.org/10.1007/s13197-018-3460-z.
  • El-Adawy, T. A. Nutritional Composition and Antinutritional Factors of Chickpeas (Cicer Arietinum L.) Undergoing Different Cooking Methods and Germination. Plant Foods Hum. Nutr. 2002, 57(1), 83–97. DOI: 10.1023/a:1013189620528.
  • Devi, C. B.; Kushwaha, A.; Kumar, A. Sprouting Characteristics and Associated Changes in Nutritional Composition of Cowpea (Vigna unguiculata). J. Food Sci. Technol. 2015, 52(10), 6821–6827. DOI: 10.1007/s13197-015-1832-1.
  • Uppal, V.; Bains, K. Effect of Germination Periods and Hydrothermal Treatments on In Vitro Protein and Starch Digestibility of Germinated Legumes. J. Food Sci. Technol. 2012, 49(2), 184–191. DOI: 10.1007/s13197-011-0273-8.
  • Ehirim, F. N.; Ezeji, C. N.; Onugha, F. C.; Nwogu, O. G. Effect of Sprouting Time on the Nutrient and Anti-Nutrient Properties of Cowpea (Vigna Unguiculata). IOSR J. Environ. Sci. Toxicol. Food Technol. 2018, 12(7), 01–08.
  • Warle, B. M.; Riar, C. S.; Gaikwad, S. S.; Mane, V. A. Effect of Germination on Nutritional Quality of Soybean (Glycine max). IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 9(4), 12–15. DOI: 10.9790/2402-09421215.
  • Kaur, H.; Kaur, N. Effect of Germination on the Nutritional and Anti-Nutritional Composition of Soy Bean (Glycine max). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8(8), 582–591. DOI: 10.20546/ijcmas.2019.808.070.
  • Guajardo, D.; Pérez-Carrillo, E.; Romo-Lopez, I.; Ramirez-Valdez, L. E.; Moreno-Garcia, B. E.; Gutiérrez-Uribe, J. A. Effect of Dehulling and Germination on Physicochemical and Pasting Properties of Black Beans (Phaseolus Vulgaris L.). Cereal Chem. 2016, 94(1), 98–103. DOI: https://doi.org/10.1094/CCHEM-02-16-0017-FI.
  • Eshraq, B. K.; Mona, A. M.; Sayed, A. F.; Emam, A. A. Effect of Soaking, Cooking and Germination on Chemical Constituents and Bioactive Compounds as Well as Their Cytotoxic Activities of Black Bean Extracts. Natural Products Chem. Res. 2016, 4, 6. DOI: 10.4172/2329-6836.1000237.
  • Faltermaier, A.; Zarnkow, M.; Becker, T.; Gastl, M.; Arendt, E. K. Common Wheat (Triticum Aestivum L.): Evaluating Microstructural Changes During the Malting Process by Using Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. Eur. Food Res. Technol. 2015, 241(2), 239–252. DOI: 10.1007/s00217-015-2450-x.
  • Rodriguez, C.; Frias, J.; Vidal Valverde, C.; Hernandez, A. Correlation Between Some Nitrogen Fraction, Lysine, Histidine, Tyrosine and Ornithine Contents During the Germination of Peas, Beans and Lentils. Food Chem. 2008, 8(1), 245–252. DOI: 10.1016/j.foodchem.2007.10.073.
  • Desai, A. D.; Kulkarni, S. S.; Sahoo, A. K.; Ranveer, R. C.; Dandge, P. B. Effect of Supplementation of Malted Ragi Flour on the Nutritional and Sensorial Quality Characteristics of Cake. Adv. J. Food. Sci. Technol. 2010, 2, 67–71.
  • Adeghate, E.; Ponery, A. S. GABA in the Endocrine Pancreas: Cellular Localization and Function in Normal and Diabetic Rats. Tissue Cell. 2002, 34(1), 1–6. DOI: https://doi.org/10.1054/tice.2002.0217.
  • Gan, R. Y.; Wang, M. F.; Lui, W. Y.; Wu, K.; Corke, H. Dynamic Changes in Phytochemical Composition and Antioxidant Capacity in Green and Black Mung Bean (Vigna radiata) Sprouts. Int. J. Food Sci. Technol. 2016, 51(9), 2090–2098. DOI: 10.1111/ijfs.13185.
  • Lin, Y. T.; Pao, C. C.; Wu, S. T.; Chang, C. Y. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice. Biomed Res. Int. 2015, ID, 608761. DOI: 10.1155/2015/608761.
  • Jirapa, K.; Jarae, Y.; Phanee, R.; Jirasak, K. Changes of Bioactive Components in Germinated Paddy Rice (Oryza Sativa L.). Int. Food Res. J. 2016, 23(1), 229–236.
  • Guo, Y.; Zhu, Y.; Chen, C.; Chen, X. Effects of Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Tartary Buckwheat (Fagopyrum tataricum). J. Chem. 2016, 4576758, 9. DOI: 10.1155/2016/4576758.
  • Chu, C.; Yan, N.; Du, Y.; Liu, X.; Chu, M.; Shi, J.; Zhang, H.; Liu, Y.; Zhang, Z. iTraq-Based Proteomic Analysis Reveals the Accumulation of Bioactive Compounds in Chinese Wild Rice (Zizania latifolia) During Germination. Food Chem. 2019, 289, 635–644. DOI: 10.1016/j.foodchem.2019.03.092.
  • Chatchavanthatri, N.; Junyusen, T.; Moolkaew, P.; Arjharn, W.; Junyusen, P. (2020). Effect of Soaking and Sprouting Treatment on Germination Rate of Paddy. E3S Web of Conferences, 187, 04016. http://doi.org/10.1051/e3sconf/202018704016
  • Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J. B.; Van der Werf, W.; Duan, L. Optimizing Soaking and Germination Conditions to Improve Gamma-Aminobutyric Acid Content in Japonica and Indica Germinated Brown Rice. J. Funct. Foods. 2014, 10, 283–291. DOI: 10.1016/j.jff.2014.06.009.
  • Baranzellia, J.; Kringela, D. H.; Colussia, R.; Paivaa, F. F.; Aranhaa, B. C.; de Mirandab, M. Z.; Zavarezea, E. R.; Diasa, A. R. G. Changes in Enzymatic Activity, Technological Quality and Gamma Aminobutyric Acid (GABA) Content of Wheat Flour as Affected by Germination. LWT - Food Sci. Technol. 2018, 90, 483–490. DOI: 10.1016/j.lwt.2017.12.070.
  • Kim, M. J.; Kwak, H. S.; Kim, S. S. Effects of Germination on Protein, γ-Aminobutyric Acid, Phenolic Acids, and Antioxidant Capacity in Wheat. Molecules. 2018, 23(9), 2244. DOI: https://doi.org/10.3390/molecules23092244.
  • Paucar-Menacho, L. M.; Martinez-Villaluenga, C.; Due-Nas, M.; Frias, J.; Penas, E. Optimization of Germination Time and Temperature to Maximize the Content of Bioactive Compounds and the Antioxidant Activity of Purple Corn (Zea Mays L.) by Response Surface Methodology. LWT - Food Sc. Technol. 2017, 76, 236–244. DOI: 10.1016/j.lwt.2016.07.064.
  • Rico, D.; Penas, E.; Garcia, M. C.; Martinez-Villaluenga, C.; Rai, D. K.; Birsan, R. I.; Frias, J.; Martin-Diana, A. B. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods. 2020, 9(3), 296. DOI: 10.3390/foods9030296.
  • Wang, F.; Wang, H.; Wang, D.; Fang, F.; Lai, J.; Wu, T.; Tsao, R. Isoflavone, γ-Aminobutyric Acid Contents and Antioxidant Activities are Significantly Increased During Germination of Three Chinese Soybean Cultivars. J. Funct. Foods. 2015, 14, 596–604. DOI: 10.1016/j.jff.2015.02.016.
  • Tiansawang, K.; Luangpituksa, P.; Varanyanond, W.; Hansawasdi, C. GABA (γ-Aminobutyric Acid) Production, Antioxidant Activity in Some Germinated Dietary Seeds and the Effect of Cooking on Their Gaba Content. Food Sci. Technol. (Campinas.).). 2016, 36(2), 313–321. DOI: 10.1590/1678-457X.0080.
  • Acosta-Estrada, B. A.; Gutiérrez-Uribe, J. A.; Serna-Saldívar, S. O. Bound Phenolics in Foods, a Review. Food Chem. 2014, 152, 46–55. DOI: 10.1016/j.foodchem.2013.11.093.
  • Wong, D. W. S. Feruloyl Esterase: A Key Enzyme in Biomass Degradation. Appl. Biochem. Biotechnol. 2006, 133(2), 87–112. DOI: https://doi.org/10.1385/ABAB:133:2:87.
  • Hithamani, G.; Srinivasan, K. Bioaccessibility of Polyphenols from Wheat (Triticum aestivum), Sorghum (Sorghum bicolor), Green Gram (Vigna radiata) and Chickpea (Cicer arietinum) as Influenced by Domestic Food Processing. J. Agric. Food. Chem. 2014, 62(46), 11170–11179. DOI: 10.1021/jf503450u.
  • Ha, K. S.; Jo, S. H.; Mannam, V.; Kwon, Y. I.; Apostolidis, E. Stimulation of Phenolics, Antioxidant and α-Glucosidase Inhibitory Activities During Barley (Hordeum Vulgare L.) Seed Germination. Plant Foods Hum. Nutr. 2016, 71(2), 211–217. DOI: https://doi.org/10.1007/s11130-016-0549-2.
  • Chen, Z.; Wang, P.; Weng, Y.; Ma, Y.; Gu, Z.; Yang, R. Comparison of Phenolic Profiles, Antioxidant Capacity and Relevant Enzyme Activity of Different Chinese Wheat Varieties During Germination. Food Biosci. 2017, 20, 159–167. DOI: 10.1016/j.fbio.2017.10.004.
  • Saleh, H. M.; Hassan, A. A.; Mansour, E. H.; Fahmy, H. A.; El-Bedawey, A.E. -B.A. Melatonin, Phenolics Content and Antioxidant Activity of Germinated Selected Legumes and Their Fractions. J. Saudi Soc. Agric. Sci. 2019, 18(3), 294–301. DOI: 10.1016/j.jssas.2017.09.001.
  • Khang, D. T.; Dung, T. N.; Elzaawely, A. A.; Xuan, T. D. Phenolic Profiles and Antioxidant Activity of Germinated Legumes. Foods. 2016, 5(4), 27. DOI: https://doi.org/10.3390/foods5020027.
  • Dominguez-Arispur, D. M.; Cuevas-Rodrigue, E. O.; Milan-Carrill, J.; Leon-Lopez, L.; Gutierrez-Dorado, R.; Reyes-Moreno, C. Optimal Germination Condition Impacts on the Antioxidant Activity and Phenolic Acids Profile in Pigmented Desi Chickpea (Cicer Arietinum L.) Seeds. J. Food Sci. Technol. 2018, 55(2), 638–647. DOI: https://doi.org/10.1007/s13197-017-2973-1.
  • Guzman-Ortiz, F. A.; Martín-Martínezc, E. S.; Valverded, M. E.; Rodriguez-Azad, Y.; Berriose, J. D. J.; Mora-Escobedoa, R. Profile Analysis and Correlation Across Phenolic Compounds, Isoflavones and Antioxidant Capacity During Germination of Soybeans (Glycine Max L.). CYTA J. Food. 2017, 15(4), 516–524. DOI: 10.1080/19476337.2017.1302995.
  • Yodpitaka, S.; Mahatheeranonta, S.; Boonyawand, D.; Sookwonga, P.; Roytrakule, S.; Norkaewa, O. Cold Plasma Treatment to Improve Germination and Enhance the Bioactive Phytochemical Content of Germinated Brown Rice. Food Chem. 2019, 289, 328–339. DOI: 10.1016/j.foodchem.2019.03.061.
  • Caccaroni, D.; Alfeo, V.; Bravi, E.; Sileoni, V.; Perretti, G.; Marconi, O. Effect of the Time and Temperature of Germination on the Phenolic Compounds of Triticum aestivum, L. and Panicum miliaceum, L. LWT-Food Sci. Technol. 2020, 127, 109396. DOI: 10.1016/j.lwt.2020.109396.
  • Zilic, S.; Basic, Z.; Sukalovic, V. H.; Maksimovic, V.; Jankovic, M.; Filipovic, M. Can the Sprouting Process Applied to Wheat Improve the Contents of Vitamins and Phenolic Compounds and Antioxidant Capacity of the Flour? Int. J. Food Sci. Technol. 2014, 49(4), 1040–1047. DOI: 10.1111/ijfs.12397.
  • Ti, H.; Zhang, R.; Zhang, M.; Li, Q.; Wei, Z.; Zhang, Y.; Tang, X.; Deng, Y.; Liu, L.; Ma, Y. Dynamic Changes in the Free and Bound Phenolic Compounds and Antioxidant Activity of Brown Rice at Different Germination Stages. Food Chem. 2014, 161, 337–344. DOI: 10.1016/j.foodchem.2014.04.024.
  • Sritongtae, B.; Sangsukiam, T.; Morgan, M. R. A.; Duangmal, K. Effect of Acid Pretreatment and the Germination Period on the Composition and Antioxidant Activity of Rice Bean (Vigna umbellata). Food Chem. 2017, 227, 280–288. DOI: 10.1016/j.foodchem.2017.01.103.
  • Zilic, S.; Delic, N.; Basic, Z.; Ignjatovic-Micic, D.; Jankovic, M.; Vancetovic, J. Effects of Alkaline Cooking and Sprouting on Bioactive Compounds, Their Bioavailability and Relation to Antioxidant Capacity of Maize Flour. J. Food Nutr. Res. 2015, 54, 155–164.
  • Xiang, N.; Guo, X.; Liu, F.; Li, Q.; Hu, J.; Brennan, C. S. Effect of Light- and Dark-Germination on the Phenolic Biosynthesis, Phytochemical Profiles, and Antioxidant Activities in Sweet Corn (Zea Mays L.) Sprouts. Int. J. Mol. Sci. 2017, 18(6), 1246. DOI: 10.3390/ijms18061246.
  • Huang, X.; Cai, W.; Xu, B. Kinetic Changes of Nutrients and Antioxidant Capacities of Germinated Soybean (Glycine Max L.) and Mung Bean (Vigna Radiata L.) with Germination Time. Food Chem. 2014, 143, 268–276. DOI: 10.1016/j.foodchem.2013.07.080.
  • Ebert, A. W.; Chang, C. H.; Yan, M. R.; Yang, R. Y. Nutritional Composition of Mung Bean and Soybean Sprouts Compared to Their Adult Growth Stage. Food Chem. 2017, 237, 15–22. DOI: 10.1016/j.foodchem.2017.05.073.
  • Zlotek, U.; Swieca, M.; Regula, J.; Jakubczyk, A.; Sikora, M.; Gawlik-Dziki, U.; Kapusta, I. Effects of Probiotic L. Plantarum 299v on Consumer Quality, Accumulation of Phenolics, Antioxidant Capacity and Biochemical Changes in Legume Sprouts. Int. J. Food Sci. Technol. 2019, 54(7), 2437–2446. DOI: 10.1111/ijfs.14158.
  • Gan, R. Y.; Lui, W. Y.; Wang, M. F.; Sui, Z. Q.; Corke, H. Accumulation of Solvent-Soluble and Solvent-Insoluble Antioxidant Phenolics in Edible Bean Sprouts: Implication of Germination. Funct. Foods Health Dis. 2016, 6(8), 519–535. DOI: 10.31989/ffhd.v6i8.273.
  • Duenas, M.; Sarmento, T.; Aguilera, Y.; Benitez, V.; Molla, E.; Esteban, R. M.; Martin-Cabrejas, M. A. Impact of Cooking and Germination on Phenolic Composition and Dietary Fibre Fractions in Dark Beans (Phaseolus Vulgaris L.) and Lentils (Lens Culinaris L.). LWT - Food Sci. Technol. 2016, 66, 72–78. DOI: 10.1016/j.lwt.2015.10.025.
  • Evers, A. D.; Blakeney, A. B.; O’brien, L. Cereal Structure and Composition. Aust. J. Agric. Res. 1999, 50(5), 629–650. DOI: https://doi.org/10.1071/AR98158.
  • Teixeira, C.; Nyman, M.; Andersson, R.; Alminger, M. Effects of Variety and Steeping Conditions on Some Barley Components Associated with Colonic Health. J. Sci. Food Agric. 2016, 96(14), 4821–4827. DOI: https://doi.org/10.1002/jsfa.7923.
  • Laxmi, G.; Chaturvedi, N.; Richa, S. The Impact of Malting on Nutritional Composition of Foxtail Millet, Wheat and Chickpea. Nutr Food Sci. 2015, 5(05), 407. DOI: 10.4172/2155-9600.1000407.
  • Zeb, T.; Masood, H. U.; Shah, A. Effect of Sprouting Time on Proximate Composition and Ascorbic Acid Level of Mung Bean (Vigna Radiate L.) and Chickpea (Cicer Arietinum L.) Seeds. J. Anim. Plant Sci. 2014, 24(3), 850–859.
  • Megat, R. M. R.; Azrina, A.; Norhaizan, M. E. Effect of Germination on Total Dietary Fibre and Total Sugar in Selected Legumes. Int. Food Res. J. 2016, 23, 257–261.
  • Akubor, P. I. Effect of Processing Methods on the Chemical Composition and Functional Properties of Pigeon Pea Seed. Asian J. Adv. Agric. Res. 2017, 2(2), 1–8. DOI: 10.9734/AJAAR/2017/35640.
  • Jan, R.; Saxena, D. C.; Singh, S. Physico-Chemical, Textural, Sensory and Antioxidant Characteristics of Gluten Free Cookies Made from Raw and Germinated Chenopodium (Chenopodium album) Flour. LWT – Food. Sci. Technol. 2017, 71, 281–287. DOI: 10.1016/j.lwt.2016.04.001.
  • Maqbool, M. A.; Aslam, M.; Ali, H. Breeding for Improved Drought Tolerance in Chickpea (Cicer Arietinum L.). Plant Breed. 2017, 136(3), 300–318. DOI: https://doi.org/10.1111/pbr.12477.
  • Erba, D.; Angelino, D.; Marti, A.; Manini, F.; Faoro, F.; Morreale, F.; Pellegrini, N.; Cristina, M. Effect of Sprouting on Nutritional Quality of Pulses. Int. J. Food Sci. Nutr. 2018, 70(1), 1–11. DOI: 10.1080/09637486.2018.1478393.
  • Afify, A.E. -M.; Abbas, M. S.; El-Lattefi, B. M. A.; Ali, A. M. Chemical, Rheological and Physical Properties of Germinated Wheat and Naked Barley. Int. J. ChemTech Res. 2016, 9(9), 521–531.
  • Narsih, Y.; Harijono, H. The Study of Germination and Soaking Time to Improve Nutritional Quality of Sorghum Seed. Int. Food Res. J. 2012, 19, 1429–1432.
  • Dhillo, B.; Choudhar, G.; Sodh, N. S. A Study on Physicochemical, Antioxidant and Microbial Properties of Germinated Wheat Flour and Its Utilization in Breads. J. Food Sci. Technol. 2020, 57(8), 2800–2808. DOI: 10.1007/s13197-020-04311-x.
  • Ongol, M. P.; Nyozima, E.; Gisanura, I.; Vasanthakaalam, H. Effect of Germination and Fermentation on Nutrients in Maize Flour. Pak. J. Food Sci. 2013, 23, 183–188.
  • Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathai, M. Germinated Grains: A Superior Whole Grain Functional Food? Can. J. Physiol. Pharmacol. 2013, 91(6), 429–441. DOI: 10.1139/cjpp-2012-0351.
  • Demir, Y. Growth and Proline Content of Germinating Wheat Genotypes Under Ultraviolet Light. Turk. J. Botany. 2000, 24(1), 67–70.
  • Chung, H. J.; Jang, S. H.; Cho, H. Y.; Lim, S. T. Effects of Steeping and Anaerobic Treatment on GABA (γ-Aminobutyric Acid) Content in Germinated Waxy Hull-Less Barley. LWT-Food Sci. Technol. 2009, 42(10), 1712–1716. DOI: 10.1016/j.lwt.2009.04.007.
  • Youn, Y. S.; Park, J. K.; Jang, H. D.; Rhee, Y. W. Sequential Hydration with Anaerobic and Heat Treatment Increases GABA (γ-Aminobutyric Acid) Content in Wheat. Food Chem. 2011, 129(4), 1631–1635. DOI: 10.1016/j.foodchem.2011.06.020.
  • Ding, J.; Hou, G. G.; Nemzer, B. V.; Xiong, S.; Dubat, A.; Feng, H. Effects of Controlled Germination on Selected Physicochemical and Functional Properties of Whole-Wheat Flour and Enhanced Aminobutyric Acid Accumulation by Ultrasonication. Food Chem. 2018a, 243, 214–221. DOI: 10.1016/j.foodchem.2017.09.128.
  • Yang, H.; Gao, J.; Yang, A.; Chen, H. The Ultrasound-Treated Soybean Seeds Improve Edibility and Nutritional Quality of Soybean Sprouts. Food. Res. Int. 2015, 77, 704–710. DOI: 10.1016/j.foodres.2015.01.011.
  • Ding, J.; Johnson, J.; Chu, Y.; Feng, H. Enhancement of γ-Aminobutyric Acid, Avenanthramides, and Other Health-Promoting Metabolites in Germinating Oats (AvenasativaL.) Treated with and Without Power Ultrasound. Food Chem. 2018b, 283, 239–247. DOI: 10.1016/j.foodchem.2018.12.136.
  • Zargarchi, S.; Saremnezhad, S. Gamma-Aminobutyric Acid, Phenolics and Antioxidant Capacity of Germinated Indica Paddy Rice as Affected by Low-Pressure Plasma Treatment. LWT - Food Sci. Technol. 2019, 102, 291–294. DOI: 10.1016/j.lwt.2018.12.014.
  • Šerá, B.; Špatenka, P.; Šerý, M.; Vrchotová, N.; Hrušková, I. Influence of Plasma Treatment on Wheat and Oat Germination and Early Growth. IEEE Trans. Plasma. Sci. 2010, 38(10), 2963–2968. DOI: 10.1109/TPS.2010.2060728.
  • Ling, L.; Jiafeng, J.; Jiangang, L.; Minchong, S.; Xin, H.; Hanliang, S.; Yuanhua, D. Effects of Cold Plasma Treatment on Seed Germination and Seedling Growth of Soybean. Sci. Rep. 2014, 4(1), 5859. DOI: https://doi.org/10.1038/srep05859.
  • Chou, Y. J.; Cheng, K. C.; Hsu, F. C.; Wu, J. S.; Ting, Y. Producing High Quality Mung Bean Sprout Using Atmospheric Cold Plasma Treatment: Better Physical Appearance and Higher γ-Aminobutyric Acid (GABA) Content. J. Sci. Food Agric. 2021, 101(15), 6463–6471. DOI: https://doi.org/10.1002/jsfa.11317.
  • Kim, M. Y.; Lee, S. H.; Jang, G. Y.; Park, H. J.; Li, M.; Kim, S.; Lee, Y. R.; Noh, Y. H.; Lee, J.; Jeong, H. S. Effects of High Hydrostatic Pressure Treatment on the Enhancement of Functional Components of Germinated Rough Rice (Oryza Sativa L.). Food Chem. 2015, 166, 86–92. DOI: 10.1016/j.foodchem.2014.05.150.
  • Doblado, R.; Fri´as, J.; Vidal-Valverde, C. Changes in Vitamin C Content and Antioxidant Capacity of Raw and Germinated Cowpea (Vigna Sinensis Var. Carilla) Seeds Induced by High Pressure Treatment. Food Chem. 2007, 101(3), 918–923. DOI: 10.1016/j.foodchem.2006.02.043.
  • Xia, Q.; Wang, L.; Li, Y. Exploring High Hydrostatic Pressure-Mediated Germination to Enhance Functionality and Quality Attributes of Wholegrain Brown Rice. Food Chem. 2018, 249(800), 104–110. DOI: 10.1016/j.foodchem.2018.01.007.
  • Goyal, A.; Siddiqui, S.; Upadhyay, N.; Soni, J. Effects of Ultraviolet Irradiation, Pulsed Electric Field, Hot Water and Ethanol Vapours Treatment on Functional Properties of Mung Bean Sprouts. J. Food Sci. Technol. 2014, 51(4), 708–714. DOI: 10.1007/s13197-011-0538-2.
  • López-Ribera, I.; Vicient, C. M. Use of Ultrasonication to Increase Germination Rates of Arabidopsis Seeds. Plant Methods. 2017, 13(1), 31. DOI: 10.1186/s13007-017-0182-6.
  • Yaldagard, M.; Mortazavi, S. A.; Tabatabaie, F. Influence of Ultrasonic Stimulation on the Germination of Barley Seed and Its Alpha-Amylase Activity. Afr. J. Biotechnol. 2008, 7(14), 2465–2471. DOI: 10.1002/j.2050-0416.2008.tb00300.x.
  • Liu, J.; Wang, Q.; Karagic, Ð.; Liu, X.; Cui, J.; Gui, J.; Gu, M.; Gao, W. Effects of Ultrasonication on Increased Germination and Improved Seedling Growth of Aged Grass Seeds of Tall Fescue and Russian Wildrye. Sci. Rep. 2016, 6(1), 22403. DOI: 10.1038/srep22403.
  • Hassan, S.; Imran, M.; Ahmad, M. H.; Khan, M. I.; Changmou, X. U.; Khan, M. K.; Muhammad, N. Phytochemical Characterization of Ultrasound-Processed Sorghum Sprouts for the Use in Functional Foods. Int. J. Food. Prop. 2020, 23(1), 853–863. DOI: 10.1080/10942912.2020.1762644.
  • Moreau, M.; Orange, N.; Feuilloley, M. G. J. Non-Thermal Plasma Technologies New Tools for Bio-Decontamination. Biotechnol. Adv. 2008, 26(6), 610–617. DOI: 10.1016/j.biotechadv.2008.08.001.
  • Randeniya, L. K.; Groot, G. J. J. B. D. Non-Thermal Plasma Treatment of Agricultural Seeds for Stimulation of Germination, Removal of Surface Contamination and Other Benefits: A Review. Plasma Process. Polym. 2015, 12(7), 608–623. DOI: https://doi.org/10.1002/ppap.201500042.
  • Meng, Y.; Qu, G.; Wang, T.; Sun, Q.; Liang, D.; Hu, S. Enhancement of Germination and Seedling Growth of Wheat Seed Using Dielectric Barrier Discharge Plasma with Various Gas Sources. Plasma Chem. Plasma Process. 2017, 37(4), 1105–1119. DOI: 10.1007/s11090-017-9799-5.
  • Zhang, J. J.; Jo, J. O.; Huynh, D. L.; Mongre, R. K.; Ghosh, M.; Singh, A. K.; Lee, S. B.; Mok, Y. S.; Hyuk, P.; Jeong, D. K. Growth-Inducing Effects of Argon Plasma on Soybean Sprouts via the Regulation of Demethylation Levels of Energy Metabolism-Related Genes. Sci. Rep. 2017, 7(1), 41917. DOI: 10.1038/srep41917.
  • Chen, H. H.; Chang, H. C.; Chen, Y. K.; Hung, C. L.; Lin, S. Y.; Chen, Y. S. An Improved Process for High Nutrition of Germinated Brown Rice Production: Low-Pressure Plasma. Food Chem. 2016, 191, 120–127. DOI: 10.1016/J.FOODCHEM.2015.01.083.
  • Zhou, Z. W.; Huang, Y. F.; Yang, S. Z.; Chen, W. Introduction of a New Atmospheric Pressure Plasma Device and Application on Tomato Seeds. Agri Sciences. 2011, 2(01), 23–27. DOI: https://doi.org/10.4236/as.2011.21004.
  • Jiang, J. F.; Lu, Y. F.; Li, J. G.; Li, L.; He, X.; Shao, H. L.; Dong, Y. H. Effect of Seed Treatment by Cold Plasma on the Resistance of Tomato to Ralstonia Solanacearum (Bacterial Wilt). PLoS One. 2014, 9(5), 1–6. DOI: https://doi.org/10.1371/journal.pone.0097753.
  • Sadhu, S.; Thirumdas, R.; Deshmukh, R. R.; Annapure, U. S. Influence of Cold Plasma on the Enzymatic Activity in Germinating Mung Beans (Vigna radiate). LWT-Food Sci. Technol. 2017, 78, 97–104. DOI: 10.1016/j.lwt.2016.12.026.
  • Gould, G. W. Symposium on ‘Nutritional Effects of New Processing technologies’ New Processing Technologies: An Overview. Proc. Nutr. Soc. 2001, 60(4), 463–474. DOI: https://doi.org/10.1079/pns2001105.
  • Corrales, M.; García, A. F.; Butz, P.; Tauscher, B. Extraction of Anthocyanins from Grape Skins Assisted by High Hydrostatic Pressure. J. Food Eng. 2009, 90(4), 415–421. DOI: 10.1016/j.jfoodeng.2008.07.003.
  • Krebbers, B.; Matser, A. M.; Koets, M.; van der Berg, R. W. Quality and Storage-Stability of High Pressure Preserved Green Beans. J. Food Eng. 2002, 54(1), 27–33. DOI: https://doi.org/10.1016/S0260-8774(01)00182-0.
  • Xia, Q.; Mei, J.; Yu, W.; Li, Y. High Hydrostatic Pressure Treatments Enhance Volatile Components of Pre-Germinated Brown Rice Revealed by Aromatic Fingerprinting Based on HS-SPME/GC-MS and Chemometric Methods. Food. Res. Int. 2017, 91, 103–114. DOI: 10.1016/j.foodres.2016.12.001.
  • Poojary, M. M.; Dellarosa, N.; Roohinejad, S.; Koubaa, M.; Tylewicz, U.; Gómez-Galindo, F.; Saraiva, J. A.; Rosa, M. D.; Barba, F. J. Influence of Innovative Processing on γ-Aminobutyric Acid (GABA) Contents in Plant Food Materials. Compr. Rev. Food Sci. Food Saf. 2017, 16(5), 895–905. DOI: 10.1111/1541-4337.12285.
  • Ueno, S.; Shigematsu, T.; Watanabe, T.; Nakajima, K.; Murakami, M.; Hayashi, M.; Fujii, T. Generation of Free Amino Acids and γ-Aminobutyric Acid in Water-Soaked Soybean by High-Hydrostatic Pressure Processing. J. Agric. Food. Chem. 2010, 58(2), 1208–1213. DOI: https://doi.org/10.1021/jf903102t.
  • Peñas, E.; Gómez, R.; Frías, J.; Vidal-Valverde, C. Effects of Combined Treatments of High Pressure, Temperature and Antimicrobial Products on Germination of Mung Bean Seeds and Microbial Quality of Sprouts. Food Control. 2010, 21(1), 82–88. DOI: https://doi.org/10.1016/j.foodcont.2009.04.008.
  • Raso, J.; Heinz, V. Pulsed Electric Fields Technology for the Food Industry Fundamentals and Applications; Springer: New York, NY, 2006.
  • Rifna, E. J.; Ramanan, K. R.; Mahendran, R. Emerging Technology Applications for Improving Seed Germination. Trends Food Sci. Technol. 2019, 86, 95–108. DOI: 10.1016/j.tifs.2019.02.029.
  • Soliva-Fortuny, R.; Vendrell-Pacheco, M.; Martín-Belloso, O.; Elez-Martínez, P. Effect of Pulsed Electric Fields on the Antioxidant Potential of Apples Stored at Different Temperatures. Postharvest. Biol. Technol. 2017, 132, 195–201. DOI: 10.1016/j.postharvbio.2017.03.015.
  • Elez-Martínez, P.; Odriozola-Serrano, I.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Effects of Pulsed Electric Fields Processing Strategies on Health-Related Compounds of Plant-Based Foods. Food Eng. Rev. 2017, 9(3), 213–225. DOI: 10.1007/s12393-017-9162-x.
  • Leong, S. Y.; Burritt, D. J.; Oey, I. Electropriming of Wheatgrass Seeds Using Pulsed Electric Fields Enhances Antioxidant Metabolism and the Bioprotective Capacity of Wheatgrass Shoots. Sci. Rep. 2016, 6(1), 25306. DOI: 10.1038/srep25306.
  • Dymek, K.; Dejmek, P.; Panarese, V.; Vicente, A. A.; Wadsö, L.; Finnie, C.; Galindo, F. G. Effect of Pulsed Electric Field on the Germination of Barley Seeds. LWT - Food Sci. Technol. 2012, 47(1), 161–166. DOI: 10.1016/j.lwt.2011.12.019.
  • Abu-Elsaoud, A. M.; Qari, S. H. Influence of Microwave Irradiations on Germination, Seedling Growth and Electrolyteleakage of Barley (Hordeum Vulgare L.). Catrina. 2017, 16(1), 11–24. DOI: 10.12816/CAT.2017.14255.
  • Kretova, Y.; Tsirulnichenko, L.; Naumenko, N.; Popova, N.; Kalinina, I. The Application of Micro-Wave Treatment to Reduce Barley Contamination. Agron. Res. 2018, 16, 2079–2087.
  • Aladjadjiyan, A. Effect of Microwave Irradiation on Seeds of Lentils (Lens Culinaris, Med.). Rom. J. Biophys. 2010, 20, 213–221.
  • Abu-Elsaoud, A. M. Effect of Microwave Electromagnetic Radio Frequency on Germination and Seedling Growth Consequences of Six Wheat Triticum Aestivum L. Cultivars. Adv. Environ. Biol. 2015, 9, 270–280.
  • Amirnia, R. Effect of Microwave Radiation on Germination and Seedling Growth of Soybean (Glycine max) Seeds. Adv. Environ. Biol. 2014, 8, 311–314.
  • Luthria, A.; Singh, K.; D’souza, M. In Vitro Antioxidant Activity of Black Gram, Cowpea, Desi Chickpea and Yellow Mustard as Affected by Sprouting. J. Global Biosci. 2014, 3(1), 385–389.
  • Wongsiri, S.; Ohshima, T.; Duangmal, K. Chemical Composition, Amino Acid Profile and Antioxidant Activities of Germinated Mung Beans (Vigna radiata). J. Food Process Preserv. 2015, 39(6), 1956–1964. DOI: 10.1111/jfpp.12434.
  • Adhikari, B.; Dhungana, S. K.; Ali, M. W.; Adhikari, A.; Kim, I. D.; Shin, D. H. Resveratrol, Total Phenolic and Flavonoid Contents, and Antioxidant Potential of Seeds and Sprouts of Korean Peanuts. Food Sci. Biotechnol. 2018, 27(5), 1275–1284. DOI: 10.1007/s10068-018-0364-7.
  • Lopez-Barrios, L.; Antunes-Ricardo, M.; Gutierrez-Uribe, J. A. Changes in Antioxidant and Antiinflammatory Activity of Black Bean (Phaseolus Vulgaris L.) Protein Isolates Due to Germination and Enzymatic Digestion. Food Chem. 2016, 203, 417–424. DOI: 10.1016/j.foodchem.2016.02.048.
  • Ali, N. M.; Yusof, H. M.; Yeap, S. K.; Ho, W. Y.; Beh, B. K.; Long, K.; Koh, S. P.; Abdullah, M. P.; Alitheen, N. B. Anti-Inflammatory and Antinociceptive Activities of Untreated, Germinated, and Fermented Mung Bean Aqueous Extract. Evid-Based Comp. Alt. Med. 2014, 2014, 6. DOI: https://doi.org/10.1155/2014/350507.
  • Milan-Norisa, A. K.; Gutierrez-Uribea, J. A.; Santacruza, A.; Serna-Saldívara, S. O.; Martinez-Villaluengab, C. Peptides and Isoflavones in Gastrointestinal Digests Contribute to the Anti-Inflammatory Potential of Cooked or Germinated Desi and Kabuli Chickpea (Cicer Arietinum L.). Food Chem. 2018, 268, 66–76. DOI: 10.1016/j.foodchem.2018.06.068.
  • Winarsi, H.; Septiana, A. T.; Wulandari, S. P. Germination Improves Sensory, Phenolic, Protein Content and Anti-Inflammatory Properties of Red Kidney Bean (Phaseolus Vulgaris L.) Sprouts Milk. Food Res. 2020a, 4(6), 1921–1928. DOI: 10.26656/fr.2017.4(6).188.
  • Winarsi, H.; Yuniaty, A.; Ramadhan, G. R. Anti-Inflammatory Effects of Functional Milk Drink Enriched with Soya Bean Sprout Protein in Breastfeeding Mothers. Malays. J. Nutr. 2020b, 26(2), 289–302. DOI: 10.31246/mjn-2019-0110.
  • Hsu, G.; Lu, Y.; Chang, S.; Hsu, S. Antihypertensive Effect of Mung Bean Sprout Extract in Spontaneously Hypertensive Rats. J. Food Biochem. 2011, 35(1), 278–288. DOI: 10.1111/j.1745-4514.2010.00381.x.
  • Watanabe, M.; Ayugase, J. Effects of Buckwheat Sprouts on Plasma and Hepatic Parameters in Type 2 Diabetic Db/Dbmice. J. Food Sci. 2010, 75(9), 294–299. DOI: 10.1111/j.1750-3841.2010.01853.x.
  • Gawlik-Dziki, B.; Baraniak, U.; Swieca, M. In vitro Digestibility and Starch Content, Predicted Glycemic Index and Potential in vitro Antidiabetic Effect of Lentil Sprouts Obtained by Different Germination Techniques. Food Chem. 2013, 138(2–3), 1414–1420. DOI: https://doi.org/10.1016/j.foodchem.2012.09.122.
  • De Souza Rocha, T.; Hernandez, L. M. R.; Chang, Y. K.; deMejia, E. G. Impact of Germination and Enzymatic Hydrolysis of Cowpea Bean (Vigna unguiculata) on the Generation of Peptides Capable of Inhibiting Dipeptidyl Peptidase IV. Int. Food Res. J. 2014, 64, 799–809. DOI: 10.1016/j.foodres.2014.08.016.
  • Liyanage, R.; Kiramage, C.; Visvanathan, R.; Jayathilake, C.; Weththasinghe, P.; Bangamuwage, R.; Jayawardana, B. C.; Vidanarachchi, J. Hypolipidemic and Hypoglycemic Potential of Raw, Boiled, and Sprouted Mung Beans (Vigna Radiata L. Wilczek) in Rats. J. Food Biochem. 2017, 42(1), e12457. DOI: https://doi.org/10.1111/jfbc.12457.
  • Gong, K.; Chen, L.; Li, X.; Sun, L.; Liu, K. Effects of Germination Combined with Extrusion on the Nutritional Composition, Functional Properties and Polyphenol Profile and Related in vitro Hypoglycemic Effect of Whole Grain Corn. J. Cereal Sci. 2018, 83, 1–8. DOI: 10.1016/j.jcs.2018.07.002.
  • Esa, N. M.; Kadir, K. A.; Amom, Z.; Azlan, A. Improving the Lipid Profile in Hypercholesterolemia-Induced Rabbit by Supplementation of Germinated Brown Rice. J. Agric. Food. Chem. 2011, 59(14), 7985–7991. DOI: https://doi.org/10.1021/jf201323x.
  • Ho, J. N.; Son, M. E.; Lim, W. C.; Lim, S. T.; Cho, H. Y. Anti-Obesity Effects of Germinated Brown Rice Extract Through Down-Regulation of Lipogenic Genes in High Fat Diet-Induced Obese Mice. Biosci. Biotechnol., Biochem. 2012, 76(6), 1068–1074. DOI: 10.1271/bbb.110666.
  • Imam, M. U.; Azmi, N. H.; Bhanger, M. I.; Ismail, N.; Ismail, M. Antidiabetic Properties of Germinated Brown Rice: A Systematic Review. Evid. Based Complementary Altern. Med. 2012, 2012, 816501. DOI: 10.1155/2012/816501.
  • Imama, M. U.; Ishaka, A.; Ooi, D. –.; Md Zamri, N. D.; Sarega, N.; Ismail, M.; Esa, N. M. Germinated Brown Rice Regulates Hepatic Cholesterol Metabolism and Cardiovascular Disease Risk in Hypercholesterolaemic Rats. J. Funct. Foods. 2014, 8, 193–203. DOI: 10.1016/j.jff.2014.03.013.
  • Kanetro, B. Hypocholesterolemic Properties of Protein Isolate from Cowpeas (Vigna unguiculata) Sprout in Normal and Diabetic Rats. Procedia Food Sci. 2015, 3, 112–118. DOI: 10.1016/j.profoo.2015.01.011.
  • Asrullah, M.; Lestari, L. A.; Helmyati, S.; Farmawati, A. The Effect of Mung Bean Sprouts (Phaseolus Radiates L.) to Lipid Profile of Male Sprague-Dawley Rats Fed with High-Fat Diet. AIP Conf. Proc. 2016, 1755, 140001. DOI: 10.1063/1.4958562.
  • Lopes, L. A. R.; Martins, M. C. C.; Farias, L. M.; Brito, A. K. S.; Lima, G. M.; Carvalho, V. B. L.; Pereira, C. F. C.; Junior, A. M. C.; Saldanha, T.; Areas, J. A. G., et al. Cholesterol-Lowering and Liver-Protective Effects of Cooked and Germinated Mung Beans (Vigna Radiata L.). Nutrients. 2018, 10(7), 821. DOI: https://doi.org/10.3390/nu10070821.
  • Ebizuka, H.; Ihara, M.; Arita, M. Anti-Hypertensive Effect of Pregerminated Brown Rice in Spontaneously Hypertensive Rats. Food Sci. Technol. Res. 2009, 15(6), 625–630. DOI: https://doi.org/10.3136/fstr.15.625.
  • Peñas, E.; Limón, R. I.; Martínez-Villaluenga, C.; Restani, P.; Pihlanto, A.; Frias, J. Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts. Plant Foods Hum. Nutr. 2015, 70(4), 401–407. DOI: 10.1007/s11130-015-0508-3.
  • Swami, S.; Krishnan, A. V.; Moreno, J.; Bhattacharya, R. S.; Gardner, C.; Brooks, J. D.; Peehl, D. M.; Feldman, D. Inhibition of Prostaglandin Synthesis and Actions by Genistein in Human Prostate Cancer Cells and by Soy Isoflavones in Prostate Cancer Patients. Int, J, Cancer. 2009, 124(9), 2050–2059. DOI: https://doi.org/10.1002/ijc.24161.
  • Oh, C. H.; Oh, S. H. Germinated Brown Rice Extract Show a Nutraceutical Effect in the Recovery of Chronic Alcohol Related Symptoms. J. Med. Food. 2003, 6(2), 115–121. DOI: 10.1089/109662003322233512.
  • Schuller, H. M.; Al-Wadei, H. A. N.; Majidi, M. Gammaaminobutyric Acid, a Potential Tumor Suppressor for Small Airway-Derived Lung Adenocarcinoma. Carcinogenesis. 2008, 29(10), 1979–1985. DOI: 10.1093/carcin/bgn041.
  • Bonfili, L.; Amici, M.; Cecarini, V.; Cuccioloni, M.; Tacconi, R.; Angeletti, M.; Fioretti, E.; Keller, J. N.; Eleuteri, A. M. Wheat Sprout Extract-Induced Apoptosis in Human Cancer Cells by Proteasomes Modulation. Biochimie. 2009, 91(9), 1131–1144. DOI: 10.1016/j.biochi.2009.06.001.
  • Hafidh, R. R.; Abdulamir, A. S.; Bakar, F. A.; Jalilian, F. A.; Abas, F.; Sekawi, Z. Novel Molecular, Cytotoxical and Immunological Study on Promising and Selective Anticancer Activity of Mung Bean Sprouts. BMC Complement. Altern. Med. 2012, 12(1), 208. DOI: 10.1186/1472-6882-12-208.
  • Swieca, M.; Herok, A.; Piwowarczyk, K.; Sikora, M.; Ostanek, P.; Gawlik-Dziki, U.; Kapusta, I.; Czyz, J. Potentially Bioaccessible Phenolics from Mung Bean and Adzuki Bean Sprouts Enriched with Probiotic—antioxidant Properties and Effect on the Motility and Survival of AGS Human Gastric Carcinoma Cells. Molecules. 2020, 25(13), 2963. DOI: https://doi.org/10.3390/molecules25132963.
  • FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. Joint FAO/WHO Working Group Report, London, Ontario, Canada.
  • Lamsal, B. P.; Faubion, J. The Beneficial Use of Cereal and Cereal Components in Probiotic Foods. Food Rev. Int. 2009, 25(2), 103–114. DOI: 10.1080/87559120802682573.
  • Charalampopoulos, D.; Pandiella, S. S.; Webb, C. Evaluation of the Effect of Malt, Wheat and Barley Extracts on the Viability of Potentially Probiotic Lactic Acid Bacteria Under Acidic Conditions. Int. J. Food Microbiol. 2003, 82(2), 133–141. DOI: https://doi.org/10.1016/s0168-1605(02)00248-9.
  • Pathak, M. Germinating Seeds: Source of Probiotics. World Appl. Sci. J. 2013, 26(2), 224–231. DOI: 10.5829/idosi.wasj.2013.26.02.1120.
  • Swieca, M.; Kordowska-Wiater, M.; Pytka, M.; Seczyk, L.; Gawlik-Dziki, U. Applying Sprouts of Selected Legumes as Carriers for Lactobacillus rhamnosusgg–Screening Studies. Zywnosc. Nauka. Technologia. Jakosc. 2017, 113(4), 37–47. DOI: https://doi.org/10.15193/zntj/2017/113/209.
  • Nooria, N.; Hamedib, H.; Kargozaric, M.; Shotorbanid, P. M. Investigation of Potential Prebiotic Activity of Rye Sprout Extract. Food Biosci. 2017, 19, 121–127. DOI: 10.1016/j.fbio.2017.07.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.