2,093
Views
1
CrossRef citations to date
0
Altmetric
Review

Australian Native Plum: A Review of the Phytochemical and Health Effects

, , , , & ORCID Icon

References

  • Aggett, P. J.; Hathcock, J.; Jukes, D.; Richardson, D. P.; Calder, P. C.; Bischoff-Ferrari, H.; Nicklas, T.; Mühlebach, S.; Kwon, O.; Lewis, J., et al. Nutrition Issues in Codex: Health Claims, Nutrient Reference Values and WTO Agreements: A Conference Report. Eur. J. Nutr. 2012, 51(Suppl 1), S1. DOI: 10.1007/s00394-012-0306-8.
  • Hooshmand, S.; Arjmandi, B. H. Viewpoint: Dried Plum, an Emerging Functional Food That May Effectively Improve Bone Health. Ageing Res. Rev. 2009, 8(2), 122. DOI: 10.1016/j.arr.2009.01.002.
  • John, O. D.; Mouatt, P.; Prasadam, I.; Xiao, Y.; Panchal, S. K.; Brown, L. The Edible Native Australian Fruit, Davidson’s Plum (Davidsonia Pruriens), Reduces Symptoms in Rats with Diet-Induced Metabolic Syndrome. J. Funct. Foods. 2019, 56, 204. DOI: 10.1016/j.jff.2019.03.018.
  • Richmond, R.; Bowyer, M.; Vuong, Q. Australian Native Fruits: Potential Uses as Functional Food Ingredients. J. Funct. Foods. 2019, 62, 103547. DOI: 10.1016/j.jff.2019.103547.
  • Hussain, S. Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T. A. Plum (Prunus Domestica): Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Hussain, S.Z., Naseer, B., Qadri, T., Fatima, T. and Bhat, T.A., Eds.; Springer International Publishing: Cham, 2021; p. 169.
  • Potter, D.; Eriksson, T.; Evans, R. C.; Oh, S.; Smedmark, J. E. E.; Morgan, D. R.; Kerr, M.; Robertson, K. R.; Arsenault, M.; Dickinson, T. A., et al. Phylogeny and Classification of Rosaceae. Plant Syst. Evol. 2007, 266(1), 5. DOI: 10.1007/s00606-007-0539-9.
  • Velasco, D.; Hough, J.; Aradhya, M.; Ross-Ibarra, J. Evolutionary Genomics of Peach and Almond Domestication. G3 Genes|genomes|genetics. 2016, 6(12), 3985. DOI: 10.1534/g3.116.032672.
  • Soundararajan, P.; Won, S. Y.; Kim, J. S. Insight on Rosaceae Family with Genome Sequencing and Functional Genomics Perspective. Biomed Res. Int. 2019, 2019, 7519687. DOI: 10.1155/2019/7519687.
  • Igwe, E. O.; Charlton, K. E. A Systematic Review on the Health Effects of Plums (Prunus Domestica and Prunus Salicina). Phytother. Res. 2016, 30(5), 701. DOI: 10.1002/ptr.5581.
  • Rishi Kumar Shukla, K. A Review on European Plum (Prunus Domestica) for Its Pharmacological Activities and Phytochemicals. Res. J. Pharm. Technol. 2021, 14(2), 1155. DOI: 10.5958/0974-360X.2021.00207.9.
  • McAlpine, J. B. Review of Australian Native Plants: Cultivation and Uses in the Health and Food Industries (Traditional Herbal Medicines for Modern Times). J. Nat. Prod. 2017, 80(2), 576. DOI: 10.1021/acs.jnatprod.7b00079.
  • Natić, M.; Zagorac, D. D.; Ćirić, I.; Meland, M.; Rabrenović, B.; Akšić, M. F. Chapter 56 - Cold Pressed Oils from Genus Prunus. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press, 2020; p. 637.
  • Low, T. Wild Food Plants of Australia; Angus & Robertson Publishers, 1988.
  • Abdallah, D.; Baraket, G.; Perez, V.; Ben Mustapha, S.; Salhi-Hannachi, A.; Hormaza, J. I. Analysis of Self-Incompatibility and Genetic Diversity in Diploid and Hexaploid Plum Genotypes. Front. Plant. Sci. 2019, 10, 896. DOI: 10.3389/fpls.2019.00896.
  • Martínez-Gómez, P.; Rahimi Devin, S.; Salazar, J. A.; López-Alcolea, J.; Rubio, M.; Martínez-García, P. J. Principles and Prospects of Prunus Cultivation in Greenhouse. Agronomy. 2021, 11(3), 474. DOI: 10.3390/agronomy11030474.
  • Sirdaarta, J.; Matthews, B.; Cock, I. E. Kakadu Plum Fruit Extracts Inhibit Growth of the Bacterial Triggers of Rheumatoid Arthritis: Identification of Stilbene and Tannin Components. J. Funct. Foods. 2015, 17, 610. DOI: 10.1016/j.jff.2015.06.019.
  • Gorman, J. T.; Griffiths, A. D.; Whitehead, P. J. An Analysis of the Use of Plant Products for Commerce in Remote Aboriginal Communities of Northern Australia. Econ. Bot. 2006, 60(4), 362. DOI: 10.1663/0013-0001(2006)60[362:AAOTUO]2.0.CO;2.
  • Chang, C. -M.; Lin, K. -H.; Huang, M. -Y.; Chen, C. -I.; Hsueh, M. -L.; Wang, C. -W.; Yeh, K. -W. Growth and Flowering Characteristics of Oncidium Gower Ramsey Varieties Under Various Fertilizer Management Treatments in Response to Light Intensities. Agronomy. 2021, 11(12), 2549. DOI: 10.3390/agronomy11122549.
  • Cherikoff, V.; Isaacs, J. The Bush Food Handbook: How to Gather, Grow, Process & Cook Australian Wild Foods; Ti Tree Press, 1989.
  • Prance, G. T. Sixty Years with the Chrysobalanaceae. The Botanical Review. 2021, 87(2), 197. DOI: 10.1007/s12229-020-09234-y.
  • Williams, D. J.; Edwards, D.; Pun, S.; Chaliha, M.; Burren, B.; Tinggi, U.; Sultanbawa, Y. Organic Acids in Kakadu Plum (Terminalia Ferdinandiana): The Good (Ellagic), the Bad (Oxalic) and the Uncertain (Ascorbic). Food Res. Int. 2016, 89, 237. DOI: 10.1016/j.foodres.2016.08.004.
  • Akter, S.; Netzel, M. E.; Tinggi, U.; Osborne, S. A.; Fletcher, M. T.; Sultanbawa, Y. Antioxidant Rich Extracts of Terminalia Ferdinandiana Inhibit the Growth of Foodborne Bacteria. Foods (Basel, Switzerland). 2019, 8(8), 281. DOI: 10.3390/foods8080281.
  • Gorman, J. T.; Wurm, P. A. S.; Vemuri, S.; Brady, C.; Sultanbawa, Y. Kakadu Plum (Terminalia Ferdinandiana) as a Sustainable Indigenous Agribusiness. Econ. Bot. 2019, 74(1), 74. DOI: 10.1007/s12231-019-09479-8.
  • Miller, J. B.; James, K. W.; Maggiore, P. M. A. Tables of Composition of Australian Aboriginal Foods; Aboriginal Studies Press, 1993.
  • Sultanbawa, Y.; Williams, D.; Chaliha, M.; Konczak, I.; Smyth, H. Changes in Quality and Bioactivity of Native Food During Storage; RIRDC, 2015.
  • Tan, A.; Hou, D. -X.; Konczak, I.; Tanigawa, S.; Ramzan, I.; Sze, D. Native Australian Fruit Polyphenols Inhibit COX-2 and iNos Expression inLps-Activated Murine Macrophages. Food Res. Int. 2011, 44(7), 2362. DOI: 10.1016/j.foodres.2010.12.031.
  • Bruneteau, J. P. Tukka: Real Australian Food; Angus & Robertson, 1996.
  • Zhebentyayeva, T.; Shankar, V.; Scorza, R.; Callahan, A.; Ravelonandro, M.; Castro, S.; DeJong, T.; Saski, C. A.; Dardick, C. Genetic Characterization of Worldwide Prunus Domestica (Plum) Germplasm Using Sequence-Based Genotyping. Hortic. Res. 2019, 6(1), 12. DOI: 10.1038/s41438-018-0090-6.
  • Williams, J. B.; Harden, G. J.; McDonald, W. J. F. Trees & Shrubs in Rainforests of New South Wales and Southern Queensland; Botany Department, University of New England, 1984.
  • Rozefelds, A.; Kane, N. Burdekin Plum jam. Australian Age of Dinosaurs. 2016, 13, 4.
  • Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Native Australian Fruits — a Novel Source of Antioxidants for Food. Innovative Food Science & Emerging Technologies. 2007, 8(3), 339. DOI: 10.1016/j.ifset.2007.03.007.
  • Thomson, D. F., The Seasonal Factor in Human Culture Illustrated from the Life of a Contemporary Nomadic Group. In Proceedings of the Prehistoric Society, Cambridge University Press: 1939; Vol. 5, pp 209.
  • Hynes, R. A.; Chase, A. K. Sites and Domiculture: Aboriginal Influence Upon Plant Communities in Cape York Peninsula. Archaeology in Oceania. 1982, 17(1), 38. DOI: 10.1002/j.1834-4453.1982.tb00037.x.
  • Cattaneo, F.; Costamagna, M. S.; Zampini, I. C.; Sayago, J.; Alberto, M. R.; Chamorro, V.; Pazos, A.; Thomas-Valdes, S.; Schmeda-Hirschmann, G.; Isla, M. I. Flour from Prosopis Alba Cotyledons: A Natural Source of Nutrient and Bioactive Phytochemicals. Food. Chem. 2016, 208, 89. DOI: 10.1016/j.foodchem.2016.03.115.
  • Lara M Valeria, Bonghi C, Famiani F, Vizzotto G, Walker R P and Drincovich M Fabiana. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. Front. Plant Sci. 2020, 11. DOI: 10.3389/fpls.2020.562252.
  • Górska-Warsewicz, H.; Rejman, K.; Kaczorowska, J.; Laskowski, W. Vegetables, Potatoes and Their Products as Sources of Energy and Nutrients to the Average Diet in Poland. Int. J. Environ. Res. Public Health. 2021, 18(6), 3217. DOI: 10.3390/ijerph18063217.
  • Isaacs, J. Bush Food: Aboriginal Food and Herbal Medicine; Weldon Publishing, 1989.
  • Brand Miller, J. Tables of Composition of Australian Aboriginal Foods/Janette Brand Miller; James, K.W. and Maggiore, I.I.A.I.U.C.; Aboriginal Studies Press: Canberra, ACT, 1993.
  • Akter, S.; Netzel, M. E.; Fletcher, M. T.; Tinggi, U.; Sultanbawa, Y. Chemical and Nutritional Composition of Terminalia Ferdinandiana (Kakadu Plum) Kernels: A Novel Nutrition Source. Foods (Basel, Switzerland). 2018, 7(4), 60. DOI: 10.3390/foods7040060.
  • Symonds, E. L.; Konczak, I.; Fenech, M. The Australian Fruit Illawarra Plum (Podocarpus Elatus Endl., Podocarpaceae) Inhibits Telomerase, Increases Histone Deacetylase Activity and Decreases Proliferation of Colon Cancer Cells. Br. J. Nutr. 2013, 109(12), 2117. DOI: 10.1017/S0007114512004333.
  • Forster, K. Eclectus Diets; 2nd Edition; Lulu.com.
  • Netzel, M.; Netzel, G.; Tian, Q.; Schwartz, S.; Konczak, I. Sources of Antioxidant Activity in Australian Native Fruits. Identification and Quantification of Anthocyanins. J. Agric. Food Chem. 2006, 54(26), 9820. DOI: 10.1021/jf0622735.
  • Yada, S.; Lapsley, K.; Huang, G. A Review of Composition Studies of Cultivated Almonds: Macronutrients and Micronutrients. J. Food Compost. Anal. 2011, 24(4), 469. DOI: 10.1016/j.jfca.2011.01.007.
  • Konczak, I.; Roulle, P. Nutritional Properties of Commercially Grown Native Australian Fruits: Lipophilic Antioxidants and Minerals. Food Res. Int. 2011, 44(7), 2339. DOI: 10.1016/j.foodres.2011.02.023.
  • Fyfe, S.; Smyth, H. E.; Schirra, H. J.; Rychlik, M.; Sultanbawa, Y. The Nutritional Potential of the Native Australian Green Plum (Buchanania Obovata) Compared to Other Anacardiaceae Fruit and Nuts. Front. Nutrit. 2020, 7. DOI: 10.3389/fnut.2020.600215.
  • Yada, S.; Lapsley, K. G.; Huang, G. A Review of Composition Studies of Cultivated Almonds: Macronutrients and Micronutrients. J. Food Compost. Anal. 2011, 24(4–5), 469. DOI: 10.1016/j.jfca.2011.01.007.
  • El Hawary, S. S.; Sokkar, N. M.; El Halawany, A. M.; Mokbel, H. A. Study of Nutritional Contents of Prunus Amygdalus Batsch Seeds. The Egyptian Journal of Hospital Medicine. 2014, 57, 437. DOI: 10.12816/0008478.
  • Fyfe, S.; Smyth, H. E.; Schirra, H. J.; Rychlik, M.; Sultanbawa, Y. The Nutritional Potential of the Native Australian Green Plum (Buchanania Obovata) Compared to Other Anacardiaceae Fruit and Nuts. Front Nutr. 2020, 7, 600215. DOI: 10.3389/fnut.2020.600215.
  • Dikeman, C. L.; Bauer, L. L.; Fahey, G. C. Carbohydrate Composition of Selected Plum/Prune Preparations. J. Agric. Food Chem. 2004, 52(4), 853. DOI: 10.1021/jf034858u.
  • Lampasona, T. P.; Rodriguez-Saona, C.; Leskey, T. C.; Nielsen, A. L.; Carley, D. A Review of the Biology, Ecology, and Management of Plum Curculio (Coleoptera: Curculionidae). Journal of Integrated Pest Management. 2020, 11(1), 1. DOI: 10.1093/jipm/pmaa018.
  • Fanning, K. J.; Topp, B.; Russell, D.; Stanley, R.; Netzel, M. Japanese Plums (Prunus Salicina Lindl.) and Phytochemicals–Breeding, Horticultural Practice, Postharvest Storage, Processing and Bioactivity. J. Sci. Food Agric. 2014, 94(11), 2137. DOI: 10.1002/jsfa.6591.
  • Milosevic, T.; Milosevic, N.; Glisic, I. Agronomic Properties and Nutritional Status of Plum Trees (Prunus Domestica L.) Influenced by Different Cultivars. J. Soil Sci. Plant Nutr. 2013, ahead. 0-0. doi:10.4067/S0718-95162013005000056.
  • BobiŞ, O.; Zagrai, I.; Bonta, V.; Zagrai, L.; MĂRghitaŞ, L. A.; Dezmirean, D. S.; Paşca, C.; Urcan, A. Comparative Studies on Chemical Composition of Two Conventional Bred and One Genetically Engineered Plum-Fruits. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies. 2017, 74(2), 2. DOI: 10.15835/buasvmcn-asb:0020.
  • Song, J.; Kim, Y. -S.; Kim, L.; Park, H. J.; Lee, D.; Kim, H. Anti-Obesity Effects of the Flower of Prunus Persica in High-Fat Diet-Induced Obese Mice. Nutrients. 2019, 11(9), 2176. DOI: 10.3390/nu11092176.
  • Botsman, P. Kakadu Plum, Aboriginal Knowledge, Sustainability, Science. ILC Project Brief Consultancy Agreement Contract. 2018, 4675.
  • Pastorello, E. A.; Farioli, L.; Pravettoni, V.; Giuffrida, M. G.; Ortolani, C.; Fortunato, D.; Trambaioli, C.; Scibola, E.; Calamari, A. M.; Robino, A. M., et al. Characterization of the Major Allergen of Plum as a Lipid Transfer Protein. J. Chromatogr. B Biomed. Sci. Appl. 2001, 756(1–2), 95. DOI: 10.1016/S0378-4347(01)00074-3.
  • García-Aguilar, L.; Rojas-Molina, A.; Ibarra-Alvarado, C.; Rojas-Molina, J. I.; Vázquez-Landaverde, P. A.; Luna-Vázquez, F. J.; Zavala-Sánchez, M. A. Nutritional Value and Volatile Compounds of Black Cherry (Prunus Serotina) Seeds. Molecules. 2015, 20(2), 3479.
  • Lim, V.; Gorji, S. G.; Daygon, V. D.; Fitzgerald, M. Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits. Metabolites. 2020, 10(3), 114.
  • Morris, S. M., Jr. Arginine Metabolism Revisited. J. Nutr. 2016, 146(12), 2579S.
  • Tardy, A. -L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients. 2020, 12(1), 228.
  • Fyfe, S.; Schirra, H. J.; Rychlik, M.; van Doorn, A.; Tinngi, U.; Sultanbawa, Y.; Smyth, H. E. Future Flavours from the Past: Sensory and Nutritional Profiles of Green Plum (Buchanania Obovata), Red Bush Apple (Syzygium Suborbiculare) and Wild Peach (Terminalia Carpentariae) from East Arnhem Land, Australia. Future Foods. 2022, 5, 100136.
  • Wallace, T. C. Dried Plums, Prunes and Bone Health: A Comprehensive Review. Nutrients. 2017, 9(4), 401.
  • Drogoudi, P. D.; Vemmos, S.; Pantelidis, G.; Petri, E.; Tzoutzoukou, C.; Karayiannis, I. Physical Characters and Antioxidant, Sugar, and Mineral Nutrient Contents in Fruit from 29 Apricot (Prunus Armeniaca L.) Cultivars and Hybrids. J. Agric. Food Chem. 2008, 56(22), 10754.
  • Pacifico, S.; Di Maro, A.; Petriccione, M.; Galasso, S.; Piccolella, S.; Di Giuseppe, A. M. A.; Scortichini, M.; Monaco, P. Chemical Composition, Nutritional Value and Antioxidant Properties of Autochthonous Prunus Avium Cultivars from Campania Region. Food Res. Int. 2014, 64, 188.
  • Savic, I. M.; Savic Gajic, I. M. Optimization Study on Extraction of Antioxidants from Plum Seeds (Prunus Domestica L.). Optimization and Engineering. 2021, 22(1), 141.
  • Sójka, M.; Kołodziejczyk, K.; Milala, J.; Abadias, M.; Viñas, I.; Guyot, S.; Baron, A. Composition and Properties of the Polyphenolic Extracts Obtained from Industrial Plum Pomaces. J. Funct. Foods. 2015, 12, 168.
  • Valderrama-Soto, D.; Salazar, J.; Sepúlveda-González, A.; Silva-Andrade, C.; Gardana, C.; Morales, H.; Battistoni, B.; Jiménez-Muñoz, P.; González, M.; Peña-Neira, Á., et al. Detection of Quantitative Trait Loci Controlling the Content of Phenolic Compounds in an Asian Plum (Prunus Salicina L.) F1 Population. Front. Plant Sci. 2021, 12.
  • Usenik, V.; Štampar, F.; Veberič, R. Anthocyanins and Fruit Colour in Plums (Prunus Domestica L.) During Ripening. Food Chem. 2009, 114(2), 529.
  • Hernández-Ruiz, K. L.; Ruiz-Cruz, S.; Cira-Chávez, L. A.; Gassos-Ortega, L. E.; Ornelas-Paz, J. D. J.; Del-Toro-Sánchez, C. L.; Márquez-Ríos, E.; López-Mata, M. A.; Rodríguez-Félix, F. Evaluation of Antioxidant Capacity, Protective Effect on Human Erythrocytes and Phenolic Compound Identification in Two Varieties of Plum Fruit (Spondias Spp.) by UPLC-MS. Molecules. 2018, 23(12), 3200.
  • Kim, D. O.; Chun, O. K.; Kim, Y. J.; Moon, H. Y.; Lee, C. Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food. Chem. 2003, 51(22), 6509.
  • Liu, W.; Nan, G.; Nisar, M. F.; Wan, C. Chemical Constituents and Health Benefits of Four Chinese Plum Species. J. Food Qual. 2020, 2020, 8842506.
  • Sommano, S.; Caffin, N.; Kerven, G. Screening for Antioxidant Activity, Phenolic Content, and Flavonoids from Australian Native Food Plants. Int. J. Food Prop. 2013, 16(6), 1394.
  • Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total Phenolic, Flavonoid Distribution and Antioxidant Capacity in Skin, Pulp and Fruit Extracts of Plum Cultivars. J. Food Biochem. 2015, 39(1), 64.
  • Mubarak, A.; Swinny, E. E.; Ching, S. Y. L.; Jacob, S. R.; Lacey, K.; Hodgson, J. M.; Croft, K. D.; Considine, M. J. Polyphenol Composition of Plum Selections in Relation to Total Antioxidant Capacity. J. Agric. Food Chem. 2012, 60(41), 10256.
  • Jaiswal, R.; Karaköse, H.; Rühmann, S.; Goldner, K.; Neumüller, M.; Treutter, D.; Kuhnert, N. Identification of Phenolic Compounds in Plum Fruits (Prunus Salicina L. and Prunus Domestica L.) by High-Performance Liquid Chromatography/Tandem Mass Spectrometry and Characterization of Varieties by Quantitative Phenolic Fingerprints. J. Agric. Food Chem. 2013, 61(49), 12020.
  • Courtney, R.; Sirdaarta, J.; Matthews, B.; Cock, I. E. Tannin Components and Inhibitory Activity of Kakadu Plum Leaf Extracts Against Microbial Triggers of Autoimmune Inflammatory Diseases. Pharmacogn. J. 2014, 7(1), 18.
  • Cháirez-Ramírez, M. H.; de la Cruz-López, K. G.; García-Carrancá, A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharmacol. 2021, 12.
  • Cooper, W.; Cooper, W. T. Fruits of the Australian Tropical Rainforest. Nokomis Editions. 2004.
  • Bhosale, P. B.; Ha, S. E.; Vetrivel, P.; Kim, H. H.; Kim, S. M.; Kim, G. S. Functions of Polyphenols and Its Anticancer Properties in Biomedical Research: A Narrative Review. Translational Cancer Research. 2020, 9(12), 7619.
  • Li, J.; Liu, H.; Mazhar, M. S.; Quddus, S.; Suleria, H. A. R. LC-ESI-QTOF-MS/MS Profiling of Phenolic Compounds in Australian Native Plums and Their Potential Antioxidant Activities. Food Biosci. 2022, 102331.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47.
  • Johnson, J. B.; Collins, T.; Mani, J. S.; Naiker, M. Nutritional Quality and Bioactive Constituents of Six Australian Plum Varieties. Int. J. Fruit Sci. 2021, 21(1), 115.
  • Dabeek, W. M.; Marra, M. V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients. 2019, 11(10), 2288.
  • Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules. 2020, 25(17), 3809.
  • Konczak, I.; Zabaras, D.; Xiao, D.; Shapira, D.; Lee, G. Screening Native Australian Fruits for Health-Promoting Properties. Anti-Proliferative and Pro-Apoptotic Activity of Illawarra Plum. J. Clin. Biochem. Nutr. 2008, 43, 543.
  • Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnology reports (Amsterdam, Netherlands). 2019, 24, e00370.
  • Hillis, T. S. W. E. J Sci Food Agric - February 1959 - Hillis - the Phenolic Constituents of Prunus Domestica II the Analysis of Tissues Of.Pdf. Science of Food and Agriculture. 1959, 10(2), 135.
  • Murathan, Z. T.; Arslan, M.; Erbil, N. Analyzing Biological Properties of Some Plum Genotypes Grown in Turkey. Int. J. Fruit Sci. 2020, 20(sup3), S1729. DOI: 10.1080/15538362.2020.1830917.
  • Barać, G.; Mastilović, J.; Kevrešan, Ž.; Milić, B.; Kovač, R.; Milović, M.; Kalajdžić, J.; Bajić, A.; Magazin, N.; Keserović, Z. Effects of Plant Growth Regulators on Plum (Prunus Domestica L.) Grown on Two Rootstocks at Harvest and at the Postharvest Period. Horticulturae. 2022, 8(7), 621.
  • Sekse, L.; Wermund, U. Fruit Flesh Firmness in Two Plum Cultivars: Comparison of Two Penetrometers, 874 ed., International Society for Horticultural Science (ISHS: Leuven, Belgium, 2010; p. 119.
  • Hadiwijaya, Y.; Putri, I.; Mubarok, S.; Hamdani, J., Rapid and Non-Destructive Prediction of Total Soluble Solids of Guava Fruits at Various Storage Periods Using Handheld Near-Infrared Instrument. In IOP Conference Series: Earth and Environmental Science, IOP Publishing: 2020; Vol. 458, p 012022.
  • Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers. 2018, 10(7), 762.
  • Paniagua, C.; Posé, S.; Morris, V. J.; Kirby, A. R.; Quesada, M. A.; Mercado, J. A. Fruit Softening and Pectin Disassembly: An Overview of Nanostructural Pectin Modifications Assessed by Atomic Force Microscopy. Ann. Bot. 2014, 114(6), 1375.
  • Ornelas-Paz, J. J.; Quintana-Gallegos, B. M.; Escalante-Minakata, P.; Reyes-Hernández, J.; Pérez-Martínez, J. D.; Rios-Velasco, C.; Ruiz-Cruz, S. Relationship Between the Firmness of Golden Delicious Apples and the Physicochemical Characteristics of the Fruits and Their Pectin During Development and Ripening. J. Food Sci. Technol. 2018, 55(1), 33.
  • Duan, X.; Cheng, G.; Yang, E.; Yi, C.; Ruenroengklin, N.; Lu, W.; Luo, Y.; Jiang, Y. Modification of Pectin Polysaccharides During Ripening of Postharvest Banana Fruit. Food Chem. 2008, 111(1), 144.
  • Praveen Kumar, G.; Shreeya Sai, R.; Deepali Venkatesh, P.; Priyadharsini, V.; Vidhya, S.; Chandrananthi, C.; Shreya, C.; Krithika, S.; Keerthana, G. An Update on Overview of Cellulose, Its Structure and Applications. Cellulose; Alejandro Rodríguez, P. and María, E.E.M.; Eds; IntechOpen: Rijeka. 2019; Ch. 4.
  • Huang, L. -Z.; Ma, M. -G.; Ji, X. -X.; Choi, S. -E.; Si, C. Recent Developments and Applications of Hemicellulose from Wheat Straw: A Review. Front. Bioeng. Biotechnol. 2021, 9.
  • Ruth, B. -A.; Kislev, N.; Frenkel, C. Ultrastructural Changes in the Cell Walls of Ripening Apple and Pear Fruit. Plant Physiol. 1979, 64(2), 197.
  • Posé, S.; Paniagua, C.; Matas, A. J.; Gunning, A. P.; Morris, V. J.; Quesada, M. A.; Mercado, J. A. A Nanostructural View of the Cell Wall Disassembly Process During Fruit Ripening and Postharvest Storage by Atomic Force Microscopy. Trends in Food Science & Technology. 2019, 87, 47.
  • Elhassan, S.; Abu-Goukh, P.A. -B. Role of Cellulase Enzyme in Fruit Softening During Muskmelon Fruit Ripening. American Journal of Scientific and Industrial Research. 2016, 7, 98.
  • Dheilly, E.; Gall, S. L.; Guillou, M. -C.; Renou, J. -P.; Bonnin, E.; Orsel, M.; Lahaye, M. Cell Wall Dynamics During Apple Development and Storage Involves Hemicellulose Modifications and Related Expressed Genes. BMC Plant Biol. 2016, 16(1), 201.
  • Chuen, T. L. K.; Vuong, Q. V.; Hirun, S.; Bowyer, M. C.; Predebon, M. J.; Goldsmith, C. D.; Sakoff, J. A.; Scarlett, C. J. Antioxidant and Anti-Proliferative Properties of Davidson’s Plum (Davidsonia Pruriens F. Muell) Phenolic-Enriched Extracts as Affected by Different Extraction Solvents. Journal of Herbal Medicine. 2016, 6(4), 187.
  • Abdel Raoof, G. F.; Said, A.; Ismail, S.; El-Anssary, A. A. A New Insight into Pleiogynium Timorense Leaves: A Focus on the Anticancer and Antimicrobial Potentials. Egyptian Journal of Chemistry. 2021, 64(3), 1541.
  • Mawire, P.; Mozirandi, W.; Heydenreich, M.; Chi, G. F.; Mukanganyama, S. Isolation and Antimicrobial Activities of Phytochemicals from Parinari Curatellifolia (Chrysobalanaceae). Advances in Pharmacological and Pharmaceutical Sciences. 2021, 2021, 8842629.
  • Silvan, J. M.; Michalska-Ciechanowska, A.; Martinez-Rodriguez, A. J. Modulation of Antibacterial, Antioxidant, and Anti-Inflammatory Properties by Drying of Prunus Domestica L. Plum Juice Extracts. Microorganisms. 2020, 8(1), 119.
  • Mohanty, S.; Cock, I. E. The Chemotherapeutic Potential of Terminalia Ferdinandiana: Phytochemistry and Bioactivity. Pharmacogn. Rev. 2012, 6(11), 29.
  • Noratto, G.; Martino, H. S. D.; Simbo, S.; Byrne, D.; Mertens-Talcott, S. U. Consumption of Polyphenol-Rich Peach and Plum Juice Prevents Risk Factors for Obesity-Related Metabolic Disorders and Cardiovascular Disease in Zucker Rats. J. Nutr. Biochem. 2015, 26(6), 633.
  • Williams, A. H. Dihydrochalcones; Their Occurrence and Use as Indicators in Chemical Plant Taxonomy. Nature. 1964, 202(4934), 824.
  • Courtney, R.; Sirdaarta, J.; Matthews, B.; Cock, I. Tannin Components and Inhibitory Activity of Kakadu Plum Leaf Extracts Against Microbial Triggers of Autoimmune Inflammatory Diseases. Pharmacogn. J. 2015, 7, 1.
  • Akter, S.; Sultanbawa, Y.; Cozzolino, D. High Throughput Screening to Determine the Antibacterial Activity of Terminalia Ferdinandiana (Kakadu Plum): A Proof of Concept. J. Microbiol. Methods. 2021, 182, 106169.
  • González-Palma, I.; Escalona-Buendía, H. B.; Ponce-Alquicira, E.; Téllez-Téllez, M.; Gupta, V. K.; Díaz-Godínez, G.; Soriano-Santos, J. Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus Ostreatus in Different Growth Stages. Front. Microbiol. 2016, 7.
  • Saeed, N.; Khan, M. R.; Shabbir, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts Torilis Leptophylla L. BMC Complementary Altern. Med. 2012, 12(1), 221.
  • Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr. 2016, 7(4), 706.
  • Lai, Y. -Z. Determination of Phenolic Hydroxyl Groups. In Methods in Lignin Chemistry; Lin, S.Y. and Dence, C.W., Eds.; Springer: Berlin Heidelberg: Berlin, Heidelberg, 1992; p. 423.
  • Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M. T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients. 2016, 8(3), 167.
  • Zhang, Y. -M.; Zhang, Z. -Y.; Wang, R. -X. Protective Mechanisms of Quercetin Against Myocardial Ischemia Reperfusion Injury. Front. Physiol. 2020, 11.
  • Saeedi-Boroujeni, A.; Mahmoudian-Sani, M. -R. Anti-Inflammatory Potential of Quercetin in COVID-19 Treatment. J. Inflammat. 2021, 18(1), 3.
  • Akter, S.; Netzel, M. E.; Tinggi, U.; Osborne, S. A.; Fletcher, M. T.; Sultanbawa, Y. Antioxidant Rich Extracts of Terminalia Ferdinandiana Inhibit the Growth of Foodborne Bacteria. Foods. 2019, 8(8), 281.
  • Akter, R.; Kwak, G. -Y.; Ahn, J. C.; Mathiyalagan, R.; Ramadhania, Z. M.; Yang, D. C.; Kang, S. C. Protective Effect and Potential Antioxidant Role of Kakadu Plum Extracts on Alcohol-Induced Oxidative Damage in HepG2 Cells. Appl. Sci. 2022, 12(1), 236.
  • Bose, M.; Kamra, M.; Mullick, R.; Bhattacharya, S.; Das, S.; Karande, A. A. Identification of a Flavonoid Isolated from Plum (Prunus Domestica) as a Potent Inhibitor of Hepatitis C Virus Entry. Sci. Rep. 2017, 7(1), 3965.
  • Casanova, E.; Salvadó, J.; Crescenti, A.; Gibert-Ramos, A. Epigallocatechin Gallate Modulates Muscle Homeostasis in Type 2 Diabetes and Obesity by Targeting Energetic and Redox Pathways: A Narrative Review. Int. J. Mol. Sci. 2019, 20(3), 532.
  • Shalom, J.; Matthews, B.; White, A.; Cock, I. GC-MS and LC-MS Analysis of Kakadu Plum Fruit Extracts Displaying Inhibitory Activity Against Microbial Triggers of Multiple Sclerosis. Pharmacognosy Communications. 2015, 5, 100.
  • Shivashankara, A. R.; Prabhu, A. N.; Dsouza, P. P.; Baliga, B. R. V.; Baliga, M. S.; Palatty, P. L. Chapter 42 - Antidiabetic and Hypoglycemic Effects of Syzygium Cumini (Black Plum). In Bioactive Food as Dietary Interventions for Diabetes; Watson, R.R. and Preedy, V.R., Eds.; Academic Press: San Diego, 2013; p. 537.
  • Delgado-Adámez, J.; Fernández-León, M. F.; Velardo-Micharet, B.; González-Gómez, D. In vitro Assays of the Antibacterial and Antioxidant Activity of Aqueous Leaf Extracts from Different Prunus Salicina Lindl. Cultivars. Food Chem. Toxicol. 2012, 50(7), 2481.
  • Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in Cancer Prevention: New Insights (Review). Int J Funct Nutr. 2020, 1(2), 9.
  • Prakash, M. D.; Stojanovska, L.; Feehan, J.; Nurgali, K.; Donald, E. L.; Plebanski, M.; Flavel, M.; Kitchen, B.; Apostolopoulos, V. Anti-Cancer Effects of Polyphenol-Rich Sugarcane Extract. PLoS One. 2021, 16(3), e0247492.
  • Cao, J.; Han, J.; Xiao, H.; Qiao, J.; Han, M. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics. Nutrients. 2016, 8(12), 762.
  • Cao, J.; Han, J.; Xiao, H.; Qiao, J.; Han, M. Effect of Tea Polyphenol Compounds on Anticancer Drugs in Terms of Anti-Tumor Activity, Toxicology, and Pharmacokinetics. Nutrients. 2016, 8, 12.
  • Bento, C.; Gonçalves, A. C.; Silva, B.; Silva, L. R. Peach (Prunus Persica): Phytochemicals and Health Benefits. Food Rev. Int. 2020, 1.
  • Yang, C. S.; Chung, J. Y.; Yang, G. -Y.; Chhabra, S. K.; Lee, M. -J. Tea and Tea Polyphenols in Cancer Prevention. J. Nutr. 2000, 130(2), 472S.
  • Arjmandi, B. H.; Johnson, S. A.; Pourafshar, S.; Navaei, N.; George, K. S.; Hooshmand, S.; Chai, S. C.; Akhavan, N. S. Bone-Protective Effects of Dried Plum in Postmenopausal Women: Efficacy and Possible Mechanisms. Nutrients. 2017, 9(5), 496.
  • Fajardo, J.; Gaffen, D.; Eisner, A.; Kern, M.; Hooshmand, S. Effects of Dried Plum (Prunes) on Bone Density and Strength in Men. Curr. Dev. Nutr. 2020, 4(Supplement_2), 21.
  • Mount, M. M. J. G.; Allen, S.; Althnaian, T.; McGonnell, I. M.; Price, J. S. Evidence That the Canonical Wnt Signalling Pathway Regulates Deer Antler Regeneration. Special Issue: Craniofacial Development Special Issue. 2006, 235(5), 1390.
  • Kondratyuk, T. P.; Pezzuto, J. M. Natural Product Polyphenols of Relevance to Human Health. Pharm. Biol. 2004, 42(sup1), 46.
  • Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant Mechanism of Tea Polyphenols and Its Impact on Health Benefits. Anim. Nutr. 2020, 6(2), 115.
  • Alotaibi, B. S.; Ijaz, M.; Buabeid, M.; Kharaba, Z. J.; Yaseen, H. S.; Murtaza, G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Des. Devel. Ther. 2021, 15, 4713.
  • Dong, H. J.; Li, J.; Zhan, H.; Li, Y.; Su, R. B. Tea Polyphenols Promote Cardiac Function and Energy Metabolism in ex vivo Rat Heart with Ischemic/Reperfusion Injury and Inhibit Calcium Inward Current in Cultured Rat Cardiac Myocytes. Nan Fang Yi Ke Da Xue Xue Bao. 2016, 36(5), 604.
  • Hirsch, N.; Konstantinov, A.; Anavi, S.; Aronis, A.; Hagay, Z.; Madar, Z.; Tirosh, O. Prolonged Feeding with Green Tea Polyphenols Exacerbates Cholesterol-Induced Fatty Liver Disease in Mice. Mol. Nutr Food Res. 2016, 60(12), 2542.
  • Welch, C. R.; Wu, Q.; Simon, J. E. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem. 2008, 4(2), 75.
  • Wright, M. H.; Shalom, J.; Matthews, B.; Greene, A. C.; Cock, I. E. Terminalia Ferdinandiana Exell: Extracts Inhibit Shewanella Spp. Growth and Prevent Fish Spoilage. Food Microbiol. 2019, 78, 114.
  • Bobasa, E. M.; Netzel, M. E.; Kubow, S.; Chaliha, M.; Phan, A.; Sultanbawa, Y. Kakadu Plum (Terminalia Ferdinandiana)—a Native Australian Fruit with Functional Properties. Proceedings. 2019, 36(1), 114.