245
Views
0
CrossRef citations to date
0
Altmetric
Review

A Catalytic Infrared System as a Hot Water Replacement Strategy: A Future Approach for Blanching Fruits and Vegetables to Save Energy and Water

, , , ORCID Icon, ORCID Icon &

References

  • Bassey, E. J.; Cheng, J. -H.; Sun, D. -W. Novel Nonthermal and Thermal Pretreatments for Enhancing Drying Performance and Improving Quality of Fruits and Vegetables. Trends Food Sci. Tech. 2021, 112, 137–148. DOI: 10.1016/j.tifs.2021.03.045.
  • Xin, Y.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. Research Trends in Selected Blanching Pretreatments and Quick Freezing Technologies as Applied in Fruits and Vegetables: A Review. Int. J. Refrig. 2015, 57, 11–25. DOI: 10.1016/j.ijrefrig.2015.04.015.
  • Ranjan, S.; Dasgupta, N.; Walia, N.; Chand, C. T.; Ramalingam, C. Microwave Blanching: An Emerging Trend in Food Engineering and Its Effects on Capsicum Annuum L. J. Food Process Eng. 2017, 40(2), e12411. DOI: 10.1111/jfpe.12411.
  • Agüero, M. V.; Ansorena, M. R.; Roura, S. I.; Del Valle, C. E. Thermal Inactivation of Peroxidase During Blanching of Butternut Squash. LWT - Food Sci. Technol. 2008, 41(3), 401–407. DOI: 10.1016/j.lwt.2007.03.029.
  • An, N. -N.; Lv, W. -Q.; Li, D.; Wang, L. -J.; Wang, Y. Effects of Hot-Air Microwave Rolling Blanching Pretreatment on the Drying of Turmeric (Curcuma Longa L.): Physiochemical Properties and Microstructure Evaluation. Food Chem. 2023, 398, 133925. DOI: 10.1016/j.foodchem.2022.133925.
  • Bahçeci, K. S.; Serpen, A.; Gökmen, V.; Acar, J. Study of Lipoxygenase and Peroxidase as Indicator Enzymes in Green Beans: Change of Enzyme Activity, Ascorbic Acid and Chlorophylls During Frozen Storage. J. Food Eng. 2005, 66(2), 187–192. DOI: 10.1016/j.jfoodeng.2004.03.004.
  • Cruz, R. M. S.; Vieira, M. C.; Silva, C. L. M. Effect of Heat and Thermosonication Treatments on Peroxidase Inactivation Kinetics in Watercress (Nasturtium Officinale). J. Food Eng. 2006, 72(1), 8–15. DOI: 10.1016/j.jfoodeng.2004.11.007.
  • Sun, P.; Zhang, Y.; Zhang, Y.; Feng, Z.; Lee, S. J.; Serventi, L. Antimicrobial Activity of Tofu Whey and Steam Blanching Pea Water for Enhancement of Shelf-Life of 3D Printed Mashed Potatoes. Food Biosci. 2022, 50, 102049. DOI: 10.1016/j.fbio.2022.102049.
  • Uguru-Okorie, D. C.; Adebimpe, A. M.; Oni, T. O.; Omoyemi, P. Development of an Automated Bitter Leaf Processing Machine. Scientific. African. 2022, 17, e01311. DOI: 10.1016/j.sciaf.2022.e01311.
  • Ruiz-Ojeda, L. M.; Penas, F. J. Comparison Study of Conventional Hot-Water and Microwave Blanching on Quality of Green Beans. Innov. Food Sci. Emerg. Technol. 2013, 20, 191–197. DOI: 10.1016/j.ifset.2013.09.009.
  • Sledz, M.; Wiktor, A.; Rybak, K.; Nowacka, M.; Witrowa-Rajchert, D. The Impact of Ultrasound and Steam Blanching Pre-Treatments on the Drying Kinetics, Energy Consumption and Selected Properties of Parsley Leaves. Appl. Acoustics. 2016, 103, 148–156. DOI: 10.1016/j.apacoust.2015.05.006.
  • Xu, H.; Wu, M.; Zhang, X.; Wang, B.; Wang, S.; Zheng, Z.; Li, D.; Wang, F. Application of Blanching Pretreatment in Herbaceous Peony (Paeonia Lactiflora Pall.) Flower Processing: Improved Drying Efficiency, Enriched Volatile Profile and Increased Phytochemical Content. Ind. Crops Prod. 2022, 188, 115663. DOI: 10.1016/j.indcrop.2022.115663.
  • Deng, L. -Z.; Mujumdar, A. S.; Zhang, Q.; Yang, X. -H.; Wang, J.; Zheng, Z. -A.; Gao, Z. -J.; Xiao, H. -W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes - a Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59(9), 1408–1432. DOI: 10.1080/10408398.2017.1409192.
  • Gong, C. T.; Zhang, H. J.; Yue, J.; Miao, Y. B.; Jiao, S. S. Investigation of Hot Air-Assisted Radio Frequency Heating as a Simultaneous Dry-Blanching and Pre-Drying Method for Carrot Cubes. Innov. Food Sci. Emerg. Technol. 2019, 56, 102181. DOI: 10.1016/j.ifset.2019.102181.
  • Ikediala, J. N.; Hansen, J. D.; Tang, J.; Drake, S. R.; Wang, S. Development of a Saline Water Immersion Technique with RF Energy as a Postharvest Treatment Against Codling Moth in Cherries. Postharvest. Biol. Technol. 2002, 24(1), 25–37. DOI: 10.1016/s0925-5214(01)00112-0.
  • Wu, Y. R.; Mu, R. Y.; Li, G. H.; Li, M. G.; Lv, W. Q. Research Progress in Fluid and Semifluid Microwave Heating Technology in Food Processing. Compr. Rev. Food Sci. Food Saf. 2022, 21(4), 3436–3454. DOI: 10.1111/1541-4337.12978.
  • Mukherjee, S.; Chattopadhyay, P. K. Whirling Bed Blanching of Potato Cubes and Its Effects on Product Quality. J. Food Eng. 2007, 78(1), 52–60. DOI: 10.1016/j.jfoodeng.2005.09.001.
  • Zhang, Y.; Sun, B. -H.; Pei, Y. -P.; Vidyarthi, S. K.; Zhang, W. -P.; Zhang, W. -K.; Ju, H. -Y.; Gao, Z. -J.; Xiao, H. -W. Vacuum-Steam Pulsed Blanching (VSPB): An Emerging Blanching Technology for Beetroot. LWT. 2021, 147, 111532. DOI: 10.1016/j.lwt.2021.111532.
  • Wang, H.; Karim, M. A.; Vidyarthi, S. K.; Xie, L.; Liu, Z. -L.; Gao, L.; Zhang, J. -S.; Xiao, H. -W. Vacuum-Steam Pulsed Blanching (VSPB) Softens Texture and Enhances Drying Rate of Carrot by Altering Cellular Structure, Pectin Polysaccharides and Water State. Innov. Food Sci. Emerg. Technol. 2021, 74, 102801. DOI: 10.1016/j.ifset.2021.102801.
  • Oliveira, S. M.; Brandao, T. R. S.; Silva, C. L. M. Influence of Drying Processes and Pretreatments on Nutritional and Bioactive Characteristics of Dried Vegetables: A Review. Food Eng. Rev. 2016, 8(2), 134–163. DOI: 10.1007/s12393-015-9124-0.
  • Zhang, L.; Chen, L.; Zhou, C.; Mustapha, A. T.; Wahia, H. Advances in peeling techniques for Tomato:a comprehensive review. Food Reviews International. 2023, 1–18. DOI: 10.1080/87559129.2023.2164897.
  • Xiao, H. -W.; Pan, Z.; Deng, L. -Z.; El-Mashad, H. M.; Yang, X. -H.; Mujumdar, A. S.; Gao, Z. -J.; Zhang, Q. Recent Developments and Trends in Thermal Blanching – a Comprehensive Review. Information Process. Agric. 2017, 4(2), 101–127. DOI: 10.1016/j.inpa.2017.02.001.
  • Negi, P. S.; Roy, S. K. Effect of Blanching and Drying Methods on β -Carotene, Ascorbic Acid and Chlorophyll Retention of Leafy Vegetables. LWT - Food Sci. Technol. 2000, 33(4), 295–298. DOI: 10.1006/fstl.2000.0659.
  • Sakr, M.; Liu, S. A Comprehensive Review on Applications of Ohmic Heating (OH). Renewable Sustainable Energy Rev. 2014, 39, 262–269. DOI: 10.1016/j.rser.2014.07.061.
  • Riadh, M. H.; Ahmad, S. A. B.; Marhaban, M. H.; Soh, A. C. Infrared Heating in Food Drying: An Overview. Drying Technol. 2015, 33(3), 322–335. DOI: 10.1080/07373937.2014.951124.
  • Huang, D.; Yang, P.; Qin, Y. T.; Gong, G. L.; Tang, X. H.; Luo, W. S.; Luo, L.; Sunden, B. Infrared Drying Characteristics and Quality Variations of Lily Bulbs Under Blanching Pretreatment. J. Therm. Sci. Eng. Appl. 2022, 14(9). DOI: 10.1115/1.4053693.
  • Cortés, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring Strategies for Quality Control of Agricultural Products Using Visible and Near-Infrared Spectroscopy: A Review. Trends Food Sci. Tech. 2019, 85, 138–148. DOI: 10.1016/j.tifs.2019.01.015.
  • .Semwal, J.; Meera, M. S. Infrared Radiation: Impact on Physicochemical and Functional Characteristics of Grain Starch; Starch-Starke, 73 (3-4), 2021; DOI: 10.1002/star.202000112.
  • Manyatsi, T. S.; Al-Hilphy, A. R.; Majzoobi, M.; Farahnaky, A.; Gavahian, M. Effects of Infrared Heating as an Emerging Thermal Technology on Physicochemical Properties of Foods. Crit. Rev. Food Sci. Nutr. 2022, 1–20. DOI: 10.1080/10408398.2022.2043820.
  • Xu, W.; Pei, Y.; Zhu, G.; Han, C.; Wu, M.; Wang, T.; Cao, X.; Jiang, Y.; Li, G.; Sun, J., et al. Effect of Far Infrared and Far Infrared Combined with Hot Air Drying on the Drying Kinetics, Bioactives, Aromas, Physicochemical Qualities of Anoectochilus Roxburghii (Wall.) Lindl. LWT. 2022, 162, 113452. DOI: 10.1016/j.lwt.2022.113452.
  • Qu, W.; Liu, Y.; Feng, Y.; Ma, H. Research on Tomato Peeling Using Flame-Catalytic Infrared Radiation. LWT. 2022, 113542. 10.1016/j.lwt.2022.113542
  • Roknul, A. S. M.; Zhang, M.; Mujumdar, A. S.; Wang, Y. A Comparative Study of Four Drying Methods on Drying Time and Quality Characteristics of Stem Lettuce Slices (Lactuca Sativa L.). Drying Technol. 2014, 32(6), 657–666. DOI: 10.1080/07373937.2013.850435.
  • Sakare, P.; Prasad, N.; Thombare, N.; Singh, R.; Sharma, S. C. Infrared Drying of Food Materials: Recent Advances. Food Eng. Rev. 2020, 12(3), 381–398. DOI: 10.1007/s12393-020-09237-w.
  • Coser, E.; Moritz, V. F.; Krenzinger, A.; Ferreira, C. A. Development of Paints with Infrared Radiation Reflective Properties. Polimeros-Ciencia E Tecnologia. 2015, 25(3), 305–310. DOI: 10.1590/0104-1428.1869.
  • Pan, Z.; Atungulu, G. G. Infrared Heating for Food and Agricultural Processing; CRC Press: Boca Raton, 2010.
  • Friedrich, R.; Fischer, J. New Spectral Radiance Scale from 220 Nm to 2500 Nm. Metrologia. 2000, 37(5), 539–542. DOI: 10.1088/0026-1394/37/5/43.
  • Jenkins, R.; Aldwell, B.; Yin, S.; Meyer, M.; Robinson, A. J.; Lupoi, R. Energy Efficiency of a Quartz Tungsten Halogen Lamp: Experimental and Numerical Approach. Therm. Sci. Eng. Prog. 2019, 13, 100385. DOI: 10.1016/j.tsep.2019.100385.
  • Khampakool, A.; Soisungwan, S.; You, S.; Park, S. H. Infrared Assisted Freeze-Drying (IRAFD) to Produce Shelf-Stable Insect Food from Protaetia Brevitarsis (White-Spotted Flower Chafer) Larva. Food Sci Anim Resour. 2020, 40(5), 813–830. DOI: 10.5851/kosfa.2020.e60.
  • Cosson, B.; Schmidt, F.; Le Maoult, Y.; Bordival, M. Infrared Heating Stage Simulation of Semi-Transparent Media (PET) Using Ray Tracing Method. Int. J. Mater. Form. 2011, 4(1), 1–10. DOI: 10.1007/s12289-010-0985-8.
  • Pan, Z.; McHugh, T. H. Blanching and Dehydrating Food Products E.G. Fruits and Vegetables Involves Generating Infrared Energy, Exposing Food Product to Radiation for Defined Period, and Separating Device Generating Infrared Energy. US2006034981. 2006.
  • Laohavanich, J.; Wongpichet, S. DRYING CHARACTERISTICS and MILLING QUALITY ASPECTS of PADDY DRIED with GAS-FIRED INFRARED. J. Food Process Eng. 2009, 32(3), 442–461. DOI: 10.1111/j.1745-4530.2007.00226.x.
  • Huang, D.; Yang, P.; Tang, X.; Luo, L.; Sunden, B. Application of Infrared Radiation in the Drying of Food Products. Trends Food Sci. Tech. 2021, 110, 765–777. DOI: 10.1016/j.tifs.2021.02.039.
  • Gabel, M. M.; Pan, Z.; Amaratunga, K. S. P.; Harris, L. J.; Thompson, J. F. Catalytic Infrared Dehydration of Onions. J. Food Sci. 2006, 71(9), E351–357. DOI: 10.1111/j.1750-3841.2006.00170.x.
  • Zhuli, N. Gas Catalytic Infrared Heating Panel. China Patent No. CN213840916U, 2021.
  • Feng, Y. B.; Zhou, C. S.; Yagoub, A. A.; Sun, Y. H.; Owusu-Ansah, P.; Yu, X. J.; Wang, X. L.; Xu, X.; Zhang, J.; Ren, Z. F. Improvement of the Catalytic Infrared Drying Process and Quality Characteristics of the Dried Garlic Slices by Ultrasound-Assisted Alcohol Pretreatment. LWT Food Sci. Technol. 2019, 116, 116. DOI: 10.1016/j.lwt.2019.108577.
  • Afoakwa, E. O.; Yenyi, S. E. Application of Response Surface Influence of Soaking, Blanching a Salt Concentration on Some Methodology for Studying the Rid Sodium Hexametaphosphate Biochemical and Physical Characteristics of Cowpeas (Vigna Unguiculata) During Canning. J. Food Eng. 2006, 77(3), 713–724. DOI: 10.1016/j.jfoodeng.2005.07.032.
  • Zhao, J. -H.; Hu, R.; Xiao, H. -W.; Yang, Y.; Liu, F.; Gan, Z. -L.; Ni, Y. -Y. Osmotic Dehydration Pretreatment for Improving the Quality Attributes of Frozen Mango: Effects of Different Osmotic Solutes and Concentrations on the Samples. International Journal of Food Science & Technology. 2014, 49(4), 960–968. DOI: 10.1111/ijfs.12388.
  • Fan, X. G.; Liu, B. D.; Cao, J. K.; Jiang, W. B.; Guo, F. J.; Zhang, C. F.; Nie, X. B.; Gong, H. S. Dehydrofreezing of Peach: Blanching, D-Sodium Erythorbate Vacuum Infiltration, Vacuum Dehydration, and Nitrogen Packaging Affect the Thawed Quality of Peach. J. Food Biochem. 2019, 43(7). DOI: 10.1111/jfbc.12830.
  • Nourian, F.; Ramaswamy, H. S.; Kushalappa, A. C. Kinetics of Quality Change Associated with Potatoes Stored at Different Temperatures. LWT - Food Sci. Technol. 2003, 36(1), 49–65. DOI: 10.1016/S0023-6438(02)00174-3.
  • Xiao, H. -W.; Law, C. -L.; Sun, D. -W.; Gao, Z. -J. Color Change Kinetics of American Ginseng (Panax Quinquefolium) Slices During Air Impingement Drying. Drying Technol. 2014, 32(4), 418–427. DOI: 10.1080/07373937.2013.834928.
  • Xiao, H. -W.; Pang, C. -L.; Wang, L. -H.; Bai, J. -W.; Yang, W. -X.; Gao, Z. -J. Drying Kinetics and Quality of Monukka Seedless Grapes Dried in an Air-Impingement Jet Dryer. Biosyst. Eng. 2010, 105(2), 233–240. DOI: 10.1016/j.biosystemseng.2009.11.001.
  • Guiamba, I. R. F.; Svanberg, U.; Ahrne, L. Effect of Infrared Blanching on Enzyme Activity and Retention of -Carotene and Vitamin C in Dried Mango. J. Food Sci. 2015, 80(6), E1235–1242. DOI: 10.1111/1750-3841.12866.
  • Nalawade, S. A.; Sinha, A.; Hebbar, H. U. Infrared Based Dry Blanching and Hybrid Drying of Bitter Gourd Slices: Process Efficiency Evaluation. J. Food Process Eng. 2018, 41(4), e12672. DOI: 10.1111/jfpe.12672.
  • Okonkwo, C. E.; Moses, O. I.; Nwonuma, C.; Abiola, T.; Benjamin, B. O.; Folorunsho, J. O.; Olaniran, A. F.; Pan, Z. Infrared and Microwave as a Dry Blanching Tool for Irish Potato: Product Quality, Cell Integrity, and Artificial Neural Networks (ANNs) Modeling of Enzyme Inactivation Kinetic. Innov. Food Sci. Emerg. Technol. 2022, 78, 103010. DOI: 10.1016/j.ifset.2022.103010.
  • Zhu, Y.; Pan, Z. L. Processing and Quality Characteristics of Apple Slices Under Simultaneous Infrared Dry-Blanching and Dehydration with Continuous Heating. J. Food Eng. 2009, 90(4), 441–452. DOI: 10.1016/j.jfoodeng.2008.07.015.
  • Vidyarthi, S. K.; El- Mashad, H. M.; Khir, R.; Zhang, R.; McHugh, T. H.; Pan, Z. Tomato Peeling Performance Under Pilot Scale Catalytic Infrared Heating. J. Food Eng. 2019, 246, 224–231. DOI: 10.1016/j.jfoodeng.2018.11.002.
  • Song, X.; Yu, X.; Zhou, C.; Xu, B.; Chen, L.; ElGasim, A.; Yagoub, A.; Emeka, O. C.; Wahia, H. Conveyor Belt Catalytic Infrared as a Novel Apparatus for Blanching Processing Applied to Sweet Potatoes in the Industrial Scale. LWT. 2021, 149, 111827. DOI: 10.1016/j.lwt.2021.111827.
  • Galindo, F. G.; Toledo, R. T.; Sjoholm, I. Tissue Damage in Heated Carrot Slices. Comparing Mild Hot Water Blanching and Infrared Heating. J. Food Eng. 2005, 67(4), 381–385. DOI: 10.1016/j.jfoodeng.2004.05.004.
  • Ponne, C. T.; Baysal, T.; Yuksel, D. Blanching Leafy Vegetables with Electromagnetic Energy. J. Food Sci. 1994, 59(5), 1037–1041. DOI: 10.1111/j.1365-2621.1994.tb08184.x.
  • Bingol, G.; Zhang, A.; Pan, Z. L.; McHugh, T. H. Producing Lower-Calorie Deep Fat Fried French Fries Using Infrared Dry-Blanching as Pretreatment. Food Chem. 2012, 132(2), 686–692. DOI: 10.1016/j.foodchem.2011.10.055.
  • Wu, B.; Guo, Y.; Wang, J.; Pan, Z.; Ma, H. Effect of Thickness on Non-Fried Potato Chips Subjected to Infrared Radiation Blanching and Drying. J. Food Eng. 2018, 237, 249–255. DOI: 10.1016/j.jfoodeng.2018.05.030.
  • Kinalski, T.; Norena, C. P. Z. Effect of Blanching Treatments on Antioxidant Activity and Thiosulfinate Degradation of Garlic (Allium Sativum L.). Food Bioprocess. Technol. 2014, 7(7), 2152–2157. DOI: 10.1007/s11947-014-1282-1.
  • Sun, Q. L.; Song, X. Q.; Arun, M.; Zhang, L.; Yu, X. J.; Zhou, C. S.; Tang, Y. X.; Yagoub, A. A. Effects of Blanching Drying Methods on the Structure and Physicochemical Properties of Starch in Sweet Potato Slices. Food Hydrocoll. 2022, 127, 107543. DOI: 10.1016/j.foodhyd.2022.107543.
  • Feng, Y.; Wu, B.; Yu, X.; Yagoub, A. E. A.; Sarpong, F.; Zhou, C. Effect of Catalytic Infrared Dry-Blanching on the Processing and Quality Characteristics of Garlic Slices. Food Chem. 2018, 266, 309–316. DOI: 10.1016/j.foodchem.2018.06.012.
  • Chen, J.; Venkitasamy, C.; Shen, Q.; McHugh, T. H.; Zhang, R.; Pan, Z. Development of Healthy Crispy Carrot Snacks Using Sequential Infrared Blanching and Hot Air Drying Method. LWT. 2018, 97, 469–475. DOI: 10.1016/j.lwt.2018.07.026.
  • Wu, B. G.; Pan, Z. L.; Xu, B. G.; Bai, J. W.; El-Mashad, H. M.; Wang, B.; Zhou, C. S.; Ma, H. L. Drying Performance and Product Quality of Sliced Carrots by Infrared Blanching Followed by Different Drying Methods. Int. J. Food Eng. 2018, 14(5–6), 14(5–6. DOI: 10.1515/ijfe-2017-0384.
  • Vishwanathan, K. H.; Giwari, G. K.; Hebbar, H. U. Infrared Assisted Dry-Blanching and Hybrid Drying of Carrot. Food Bioprod. Process. 2013, 91(C2), 89–94. DOI: 10.1016/j.fbp.2012.11.004.
  • Jeevitha, G. C.; Anto, A.; Chakkaravarthi, A.; Hebbar, H. U. Application of Electromagnetic Radiations and Superheated Steam for Enzyme Inactivation in Green Bell Pepper. J. Food Process. Preserv. 2015, 39(6), 784–792. DOI: 10.1111/jfpp.12288.
  • Wang, J.; Yang, X. -H.; Mujumdar, A. S.; Wang, D.; Zhao, J. -H.; Fang, X. -M.; Zhang, Q.; Xie, L.; Gao, Z. -J.; Xiao, H. -W. Effects of Various Blanching Methods on Weight Loss, Enzymes Inactivation, Phytochemical Contents, Antioxidant Capacity, Ultrastructure and Drying Kinetics of Red Bell Pepper (Capsicum Annuum L.). LWT. 2017, 77, 337–347. DOI: 10.1016/j.lwt.2016.11.070.
  • Perez-Galvez, A.; Jaren-Galan, M.; Minguez-Mosquera, M. I. Effect of High-Temperature Degradative Processes on Ketocarotenoids Present in Paprika Oleoresins. J. Agric. Food Chem. 2000, 48(7), 2966–2971. DOI: 10.1021/jf0000979.
  • Li, Y. H.; Wu, Z. F.; Tang, X.; Yu, F.; Wang, X. C.; Yang, M. Application of Infrared-Assisted Steam Blanching to Improve Enzymatic Inactivation and Quality Retention of Chrysanthemum Indicum L. Flower. J. Food Sci. Technol. Mysore. 2019, 56(9), 4274–4281. DOI: 10.1007/s13197-019-03897-1.
  • Jang, J. H.; Moon, K. D. Inhibition of Polyphenol Oxidase and Peroxidase Activities on Fresh-Cut Apple by Simultaneous Treatment of Ultrasound and Ascorbic Acid. Food Chem. 2011, 124(2), 444–449. DOI: 10.1016/j.foodchem.2010.06.052.
  • Rodriguez-Arzuaga, M.; Rios, G.; Piagentini, A. M. Mild Heat Treatments Before Minimal Processing Reduce Browning Susceptibility and Increase Total Phenolic Content of Low-Chill Apple Cultivars. J. Food Process. Preserv. 2019, 43(11). DOI: 10.1111/jfpp.14209.
  • Rasmussen, C. B.; Enghild, J. J.; Scavenius, C. Identification of Polyphenol Oxidases in Potato Tuber (Solanum Tuberosum) and Purification and Characterization of the Major Polyphenol Oxidases. Food Chem. 2021, 365, 130454. DOI: 10.1016/j.foodchem.2021.130454.
  • Wu, B.; Pan, Z.; Qu, W.; Wang, B.; Wang, J.; Ma, H. Effect of Simultaneous Infrared Dry-Blanching and Dehydration on Quality Characteristics of Carrot Slices. LWT - Food Sci. Technol. 2014, 57(1), 90–98. DOI: 10.1016/j.lwt.2013.11.035.
  • Karlovsky, P.; Suman, M.; Berthiller, F.; De Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I. P.; Speijers, G.; Chiodini, A.; Recker, T., et al. Impact of Food Processing and Detoxification Treatments on Mycotoxin Contamination. Mycotoxin res. 2016, 32(4), 179–205. DOI: 10.1007/s12550-016-0257-7.
  • Beuchat, L. R.; Komitopoulou, E.; Beckers, H.; Betts, R. P.; Bourdichon, F.; Fanning, S.; Joosten, H. M.; Ter Kuile, B. H. Low-Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens. J. Food Prot. 2013, 76(1), 150–172. DOI: 10.4315/0362-028x.Jfp-12-211.
  • Deng, L. Z.; Sutar, P. P.; Mujumdar, A. S.; Tao, Y.; Pan, Z. L.; Liu, Y. H.; Xiao, H. W. Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods. Annual Review of Food Science and Technology. 2021, 12(1), 287–305. DOI:10.1146/annurev-food-062220-112934.
  • Jun, S.; Irudayaraj, J. A Dynamic Fungal in Activation Approach Using Selective Infrared Heating. Trans. ASAE. 2003, 46(5), 1407–1412. DOI: 10.13031/2013.15435.
  • Tanaka, F.; Verboven, P.; Scheerlinck, N.; Morita, K.; Iwasaki, K.; Nicolai, B. Investigation of Far Infrared Radiation Heating as an Alternative Technique for Surface Decontamination of Strawberry. J. Food Eng. 2007, 79(2), 445–452. DOI: 10.1016/j.jfoodeng.2006.02.010.
  • Trivittayasil, V.; Tanaka, F.; Uchino, T. Investigation of Deactivation of Mold Conidia by Infrared Heating in a Model-Based Approach. J. Food Eng. 2011, 104(4), 565–570. DOI: 10.1016/j.jfoodeng.2011.01.018.
  • Bingol, G.; Yang, J. H.; Brandl, M. T.; Pan, Z. L.; Wang, H.; McHugh, T. H. Infrared Pasteurization of Raw Almonds. J. Food Eng. 2011, 104(3), 387–393. DOI: 10.1016/j.jfoodeng.2010.12.034.
  • Umesh Hebbar, H.; Rastogi, N. K. Mass Transfer During Infrared Drying of Cashew Kernel. J. Food Eng. 2001, 47(1), 1–5. DOI: 10.1016/S0260-8774(00)00088-1.
  • Rastogi, N. K. Recent Trends and Developments in Infrared Heating in Food Processing. Crit. Rev. Food Sci. Nutr. 2012, 52(9), 737–760. DOI: 10.1080/10408398.2010.508138.
  • Bagheri, H. Application of Infrared Heating for Roasting Nuts. J. Food Qual. 2020, 2020, 1–10. DOI: 10.1155/2020/8813047.
  • Qu, W. J.; Liu, Y.; Feng, Y. H.; Ma, H. L. Research on Tomato Peeling Using Flame-Catalytic Infrared Radiation. Lwt-Food Science and Technology, 2022; p. 163. DOI: 10.1016/j.lwt.2022.113542.
  • Zhu, Y.; Pan, Z.; McHugh, T. H.; Barrett, D. M. Processing and Quality Characteristics of Apple Slices Processed Under Simultaneous Infrared Dry-Blanching and Dehydration with Intermittent Heating. J. Food Eng. 2010, 97(1), 8–16. DOI: 10.1016/j.jfoodeng.2009.07.021.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. J. Food Eng. 2019, 241, 75–87. DOI: 10.1016/j.jfoodeng.2018.08.008.
  • Gu, C.; Ma, H.; Guo, X.; Zhang, L.; Liu, N.; Ouyang, D.; Luo, Y.; Shan, X.; Tuly, J. A. Effects of Catalytic Infrared Drying in Combination with Hot Air Drying and Freeze Drying on the Drying Characteristics and Product Quality of Chives. LWT Food Sci. Technol. 2022, 161, 113363. DOI: 10.1016/j.lwt.2022.113363.
  • Antal, T.; Tarek-Tilistyak, J.; Cziaky, Z.; Sinka, L. Comparison of Drying and Quality Characteristics of Pear (Pyrus Communis L.) Using Mid-Infrared-Freeze Drying and Single Stage of Freeze Drying. Int. J. Food Eng. 2017, 13(4). DOI: 10.1515/ijfe-2016-0294.
  • Khampakool, A.; Soisungwan, S.; Park, S. H. Potential Application of Infrared Assisted Freeze Drying (IRAFD) for Banana Snacks: Drying Kinetics, Energy Consumption, and Texture. LWT. 2019, 99, 355–363. DOI: 10.1016/j.lwt.2018.09.081.
  • Liu, Y.; Qu, W. J.; Liu, Y. X.; Ma, H. L. Chemical, Structural and Functional Properties of Pectin from Tomato Pulp Under Different Peeling Methods. Food Chem. 2023, 403, 134373. DOI: 10.1016/j.foodchem.2022.134373.
  • Shen, Y.; Khir, R.; Wood, D.; McHugh, T. H.; Pan, Z. Pear Peeling Using Infrared Radiation Heating Technology. Innov. Food Sci. Emerg. Technol. 2020, 65, 65. DOI: 10.1016/j.ifset.2020.102474.
  • Kate, A. E.; Sutar, P. P. Development and Optimization of Novel Infrared Dry Peeling Method for Ginger (Zingiber Officinale Roscoe) Rhizome. Innov. Food Sci. Emerg. Technol. 2018, 48, 111–121. DOI: 10.1016/j.ifset.2018.05.021.
  • Wang, B.; Venkitasamy, C.; Zhang, F.; Zhao, L.; Khir, R.; Pan, Z. Feasibility of Jujube Peeling Using Novel Infrared Radiation Heating Technology. LWT Food Sci. Technol. 2016, 69, 458–467. DOI: 10.1016/j.lwt.2016.01.077.
  • Zhang, C.; Lyu, X.; Zhao, W.; Yan, W.; Wang, M.; Kuan Rei, N. G.; Yang, R. Effects of Combined Pulsed Electric Field and Blanching Pretreatment on the Physiochemical Properties of French Fries. Innov. Food Sci. Emerg. Technol. 2021, 67, 102561. DOI: 10.1016/j.ifset.2020.102561.
  • Wu, B. G.; Wang, J.; Guo, Y. T.; Pan, Z. L.; Ma, H. L. Effects of Infrared Blanching and Dehydrating Pretreatment on Oil Content of Fried Potato Chips. J. Food Process. Preserv. 2018, 42(3), e13531. DOI: 10.1111/jfpp.13531.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R. -X. Analysis of Temperature Distribution and SEM Images of Microwave Freeze Drying Banana Chips. Food Bioprocess. Technol. 2013, 6(5), 1144–1152. DOI: 10.1007/s11947-012-0801-1.
  • Gomez-Lopez, M.; Garcia-Quiroga, M.; Arbones-Macineira, E.; Lourdes Vazquez-Oderiz, M.; Angeles Romero-Rodriguez, M. Comparison of Different Peeling Systems for Kiwifruit (Actinidia Deliciosa, Cv Hayward). International Journal of Food Science & Technology. 2014, 49(1), 107–113. DOI: 10.1111/ijfs.12281.
  • Moyano, P. C.; Rioseco, V. K.; Gonzalez, P. A. Kinetics of Crust Color Changes During Deep-Fat Frying of Impregnated French Fries. J. Food Eng. 2002, 54(3), 249–255. DOI: 10.1016/s0260-8774(01)00211-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.