491
Views
3
CrossRef citations to date
0
Altmetric
Review

Hydrogen Peroxide from Traditional Sanitizer to Promising Disinfection Agent in Food Industry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 658-690 | Received 28 Nov 2022, Accepted 12 Mar 2023, Published online: 01 May 2023

References

  • Bennett, S.; Sodha, S.; Ayers, T.; Lynch, M.; Gould, L.; Tauxe, R. Produce-Associated Foodborne Disease OutbreaksEpidemiology & Infection; USA: 1998–2013. 2018 Vol. 146 11 pp. 1397–1406.
  • Alexandre, E. M. C.; Brandão, T. R. S.; Silva, C. L. M. Assessment of the Impact of Hydrogen Peroxide Solutions on Microbial Loads and Quality Factors of Red Bell Peppers, Strawberries and Watercress. Food Control. 2012, 27(2), 362–368. DOI: 10.1016/j.foodcont.2012.04.012.
  • Meireles, A.; Giaouris, E.; Simões, M. Alternative Disinfection Methods to Chlorine for Use in the Fresh-Cut Industry. Food Res. Int. 2016, 82, 71–85. DOI: 10.1016/j.foodres.2016.01.021.
  • Visconti, V.; Coton, E.; Rigalma, K.; Dantigny, P. Effects of Disinfectants on Inactivation of Mold Spores Relevant to the Food Industry: A Review. Fungal Biol. Rev. 2021, 38, 44–66. DOI: 10.1016/j.fbr.2021.09.004.
  • Babić, J.; Šubarić, D.; Ačkar, D.; Jozinović, A. Disinfectants in the Food Processing Industry. Encycl. Bacteriol.Res.dev. 2021, 11, 2461–2491.
  • Wirtanen, G.; Salo, S. Disinfection in Food Processing–Efficacy Testing of Disinfectants. Rev. Environ. Sci. Biotechnol. 2003, 2(2–4), 293–306. DOI: 10.1023/B:RESB.0000040471.15700.03.
  • Bayoumi, Y. A. Improvement of Postharvest Keeping Quality of White Pepper Fruits (Capsicum Annuum, L.) by Hydrogen Peroxide Treatment Under Storage Conditions. Acta. Biol. Szegediensis. 2008, 52(1), 7–15.
  • Mills, J.; Horváth, K. M.; Brightwell, G. Antimicrobial Effect of Different Peroxyacetic Acid and Hydrogen Peroxide Formats Against Spores of Clostridium Estertheticum. Meat Sci. 2018, 143, 69–73. DOI: 10.1016/j.meatsci.2018.04.020.
  • Pan, Y.; Cheng, J. H.; Sun, D. W. Metabolomic Analyses on Microbial Primary and Secondary Oxidative Stress Responses. Compr. Rev. Food Sci. Food Saf. 2021, 20(6), 5675–5697. DOI: 10.1111/1541-4337.12835.
  • Linley, E.; Denyer, S. P.; McDonnell, G.; Simons, C.; Maillard, J. Y. Use of Hydrogen Peroxide as a Biocide: New Consideration of Its Mechanisms of Biocidal Action. J. Antimicrob. Chemother. 2012, 67(7), 1589–1596. DOI: 10.1093/jac/dks129.
  • Hall, L.; Otter, J. A.; Chewins, J.; Wengenack, N. L. Deactivation of the Dimorphic Fungi Histoplasma Capsulatum, Blastomyces Dermatitidis and Coccidioides Immitis Using Hydrogen Peroxide Vapor1. Med. Mycol. 2008, 46(2), 189–191. acccessed 3/16/2023. DOI: 10.1080/13693780701744809.
  • Rogers, J. V.; Sabourin, C. L. K.; Choi, Y. W.; Richter, W. R.; Rudnicki, D. C.; Riggs, K. B.; Taylor, M. L.; Chang, J. Decontamination Assessment of Bacillus Anthracis, Bacillus Subtilis, and Geobacillus Stearothermophilus Spores on Indoor Surfaces Using a Hydrogen Peroxide Gas Generator. J. Appl. Microbiol. 2005, 99(4), 739–748. acccessed 3/16/2023. DOI: 10.1111/j.1365-2672.2005.02686.x.
  • Perchonok, M.; French, S. Hydrogen Peroxide Treatment of Vegetable Crops. SAE Trans. 2005, 362–366.
  • Verostko, C.; Joshi, J.; Alazraki, M.; Fisher, J. Solid Waste Processing And Resource Recovery Workshop Report-volume I. 2001.
  • Fan, X.; Song, Y. Advanced Oxidation Process As A Postharvest Decontamination Technology To Improve Microbial Safety Of Fresh Produce. J. Agric. Food Chem. 2020, 68(46), 12916–12926. DOI: 10.1021/acs.jafc.0c01381.
  • Azizoglu, R. O.; Kathariou, S. Temperature-dependent Requirement For Catalase In Aerobic Growth Of Listeria Monocytogenes F2365. Applied. Envior. Microbiol. 2010, 76(21), 6998–7003. DOI: 10.1128/AEM.01223-10.
  • Ölmez, H.; Kretzschmar, U. Potential Alternative Disinfection Methods For Organic Fresh-cut Industry For Minimizing Water Consumption And Environmental Impact. LWT Food Sci. Technol. 2009, 42(3), 686–693. DOI: 10.1016/j.lwt.2008.08.001.
  • Ortiz-Solà, J.; Abadias, M.; Colás-Medà, P.; Sánchez, G.; Bobo, G.; Viñas, I. EValuation Of A Sanitizing Washing Step With Different Chemical Disinfectants For The Strawberry Processing Industry. Int. J. Food Microbiol. 2020, 334, 108810. DOI: 10.1016/j.ijfoodmicro.2020.108810.
  • Scaramuzza, N.; Cigarini, M.; Mutti, P.; Berni, E. Sanitization Of Packaging And Machineries In The Food Industry: Effect Of Hydrogen Peroxide On Ascospores And Conidia Of Filamentous Fungi. Int. J. Food Microbiol. 2020, 316, 108421. DOI: 10.1016/j.ijfoodmicro.2019.108421.
  • Lee, J.; Gupta, M.; Lopes, J.; Pascall, M. Efficacy of Two Acidic Sanitizers for Microbial Reduction on Metal Cans and Low-Density Polyethylene Film Surfaces. J. Food Sci. 2007, 72(8), M335–339. DOI: 10.1111/j.1750-3841.2007.00496.x.
  • Unger-Bimczok, B.; Kottke, V.; Hertel, C.; Rauschnabel, J. The Influence Of Humidity, Hydrogen Peroxide Concentration, And Condensation On The Inactivation Of Geobacillus Stearothermophilus Spores With Hydrogen Peroxide Vapor. J. Pharm. Innovation. 2008, 3(2), 123–133. DOI: 10.1007/s12247-008-9027-1.
  • Foong-Cunningham, S.; Verkaar, E.; Swanson, K. Microbial decontamination of fresh produce. In Microbial decontamination in the food industry, Demirci, A., Ngadi, M., Eds.; Elsevier, 2012; pp. 3–29.
  • Guillén, S.; Marcén, M.; Álvarez, I.; Mañas, P.; Cebrián, G. Stress Resistance Of Emerging Poultry-associated Salmonella Serovars. Int. J. Food Microbiol. 2020, 335, 108884. DOI: 10.1016/j.ijfoodmicro.2020.108884.
  • Hinojosa-Davalos, J.; Arias-Rios, E. V.; Varela-Hernandez, J. J.; Cardona-López, M. A.; Orozco-Muniz, R.; Cabrera-Diaz, E. Thermal and Chemical Treatments To Reduce Salmonella on Alfalfa (Medicago sativa) and Broccoli (Brassica oleracea var. italica) Seeds before and during the Sprouting Process: A Hurdle Approach. Journal of Food Protection 2020, 83(1), 82–88.
  • Cossu, A.; Dou, F.; Young, G. M.; Nitin, N. Biomarkers of oxidative damage in bacteria for the assessment of sanitation efficacy in lettuce wash water. Applied microbiology and biotechnology 2017, 101(13), 5365–5375.
  • Kim, W. J.; Jeong, K. O.; Kang, D. H. Inhibition of initial attachment of injured Salmonella Typhimurium onto abiotic surfaces. Journal of Food Protection 2018, 81(1), 37–42.
  • Huang, Y.; Ye, M.; Chen, H. Efficacy of washing with hydrogen peroxide followed by aerosolized antimicrobials as a novel sanitizing process to inactivate Escherichia coli O157: H7 on baby spinach. International journal of food microbiology 2012, 153(3), 306–313.
  • Huang, Y.; Chen, H. Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157: H7 on baby spinach. Food Control 2011, 22(8), 1178–1183.
  • Møretrø, T.; Fanebust, H.; Fagerlund, A.; Langsrud, S. Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments. International journal of food microbiology 2019, 292, 118–125.
  • Masotti, F.; Vallone, L.; Ranzini, S.; Silvetti, T.; Morandi, S.; Brasca, M. Effectiveness of air disinfection by ozonation or hydrogen peroxide aerosolization in dairy environments. Food Control 2019, 97, 32–38. DOI: 10.1016/j.foodcont.2018.10.022.
  • Omidbakhsh, N.; Sattar, S. A. Broad-spectrum microbicidal activity, toxicologic assessment, and materials compatibility of a new generation of accelerated hydrogen peroxide-based environmental surface disinfectant. American Journal of Infection Control 2006, 34(5), 251–257. DOI: 10.1016/j.ajic.2005.06.002.
  • Brauge, T.; Faille, C.; Leleu, G.; Denis, C.; Hanin, A.; Midelet, G. Treatment with disinfectants may induce an increase in viable but non culturable populations of Listeria monocytogenes in biofilms formed in smoked salmon processing environments. Food Microbiology 2020, 92, 103548. DOI: 10.1016/j.fm.2020.103548.
  • Montazeri, N.; Manuel, C.; Moorman, E.; Khatiwada, J. R.; Williams, L. L.; Jaykus, L. A. Virucidal Activity of Fogged Chlorine Dioxide- and Hydrogen Peroxide-Based Disinfectants against Human Norovirus and Its Surrogate, Feline Calicivirus, on Hard-to-Reach Surfaces. Frontiers in Microbiology 2017, 8 (1031), Original Research. DOI:10.3389/fmicb.2017.01031.
  • Lelieveld, H. L.; Holah, J.; Napper, D. Hygiene in food processing: principles and practice; Elsevier, 2014.
  • Fagerlund, A.; Møretrø, T.; Heir, E.; Briandet, R.; Langsrud, S. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Applied and environmental microbiology 2017, 83(17), e01046–01017.
  • Otter, J.; Yezli, S.; Perl, T. M.; Barbut, F.; French, G. The role of ‘no-touch’automated room disinfection systems in infection prevention and control. Journal of Hospital Infection 2013, 83(1), 1–13.
  • Sangadkit, W.; Kongtrub, J. Effective microbial disinfection in food industry with hydroxyl radical fumigation. Food Research 2020, 4, 65–72. DOI: 10.26656/fr.2017.4(S4).010.
  • Finnegan, M.; Linley, E.; Denyer, S. P.; McDonnell, G.; Simons, C.; Maillard, J. Y. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. Journal of antimicrobial Chemotherapy 2010, 65(10), 2108–2115.
  • Fichet, G.; Antloga, K.; Comoy, E.; Deslys, J.; McDonnell, G. Prion inactivation using a new gaseous hydrogen peroxide sterilisation process. Journal of Hospital Infection 2007, 67(3), 278–286.
  • Choi, N. Y.; Baek, S. Y.; Yoon, J. H.; Choi, M. R.; Kang, D. H.; Lee, S. Y. Efficacy of aerosolized hydrogen peroxide-based sanitizer on the reduction of pathogenic bacteria on a stainless steel surface. Food Control 2012, 27(1), 57–63.
  • Jiang, Y.; Sokorai, K.; Pyrgiotakis, G.; Demokritou, P.; Li, X.; Mukhopadhyay, S.; Jin, T.; Fan, X. Cold plasma-activated hydrogen peroxide aerosol inactivates Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria innocua and maintains quality of grape tomato, spinach and cantaloupe. International journal of food microbiology 2017, 249, 53–60.
  • Back, K. H.; Ha, J. W.; Kang, D. H. Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes on organic fresh lettuce. Food Control 2014, 44, 78–85.
  • Holmdahl, T.; Lanbeck, P.; Wullt, M.; Walder, M. A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems. Infection Control & Hospital Epidemiology 2011, 32(9), 831–836.
  • Doll, M.; Morgan, D. J.; Anderson, D.; Bearman, G. Touchless technologies for decontamination in the hospital: a review of hydrogen peroxide and UV devices. Current infectious disease reports 2015, 17(9), 1–11.
  • FDA, U. Substances generally recognized as safe, proposed rule. Federal Register 1997, 62(74), 18937–18964.
  • Stampi, S.; De Luca, G.; Zanetti, F. Evaluation of the efficiency of peracetic acid in the disinfection of sewage effluents. Journal of applied microbiology 2001, 91(5), 833–838.
  • Pottage, T.; Macken, S.; Walker, J.; Bennett, A. Meticillin-resistant Staphylococcus aureus is more resistant to vaporized hydrogen peroxide than commercial Geobacillus stearothermophilus biological indicators. Journal of Hospital Infection 2012, 80(1), 41–45.
  • Artés-Hernández, F.; Aguayo, E.; Escalona, V.; Artés, F.; Gómez, P. Improved strategies for keeping overall quality of fresh-cut produce. In International Conference on Quality Management of Fresh Cut Produce 746, 2007; pp 245–258.
  • Suslow, T. Postharvest Chlorination: Basic Properties & Key Points for Effective Distribution. 1997.
  • Dharmarha, V.; Pulido, N.; Boyer, R. R.; Pruden, A.; Strawn, L. K.; Ponder, M. A. Effect of post-harvest interventions on surficial carrot bacterial community dynamics, pathogen survival, and antibiotic resistance. International journal of food microbiology 2019, 291, 25–34.
  • Li, K.; Chiu, Y. C.; Jiang, W.; Jones, L.; Etienne, X.; Shen, C. Comparing the Efficacy of Two Triple-Wash Procedures With Sodium Hypochlorite, a Lactic–Citric Acid Blend, and a Mix of Peroxyacetic Acid and Hydrogen Peroxide to Inactivate Salmonella, Listeria monocytogenes, and Surrogate Enterococcus faecium on Cucumbers and Tomatoes. Frontiers in Sustainable Food Systems 2020, 4, 19.
  • Oh, S. W.; Gray, P.; Dougherty, R.; Kang, D. H. Aerosolization as novel sanitizer delivery system to reduce food‐borne pathogens. Letters in applied microbiology 2005, 41(1), 56–60.
  • Leblanc, D.; Gagné, M. J.; Brassard, J. Effectiveness of water and sanitizer washing solutions for removing enteric viruses from blueberries. Food Control 2021, 126, 108043.
  • Stefanello, A.; Magrini, L. N.; Lemos, J. G.; Garcia, M. V.; Bernardi, A. O.; Cichoski, A. J.; Copetti, M. V. Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM). International journal of food microbiology 2020, 335, 108856.
  • Svoboda, A.; Shaw, A.; Wilson, L.; Mendonca, A.; Nair, A.; Daraba, A. The effects of produce washes on the quality and shelf life of “cantaloupe”(Cucumis melo var. cantalupensis) and “watermelon”(Citrullus lantus var. lanatus). Journal of Food Quality 2016, 39(6), 773–779.
  • Boczkaj, G.; Fernandes, A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chemical Engineering Journal 2017, 320, 608–633.
  • Sánchez-Lafuente, C.; Furlanetto, S.; Fernández-Arévalo, M.; Alvarez-Fuentes, J.; Rabasco, A. M.; Faucci, M. T.; Pinzauti, S.; Mura, P. Didanosine extended-release matrix tablets: optimization of formulation variables using statistical experimental design. International journal of pharmaceutics 2002, 237 (1–2), 107–118.
  • Jin, J.; El-Din, M. G.; Bolton, J. R. Assessment of the UV/chlorine process as an advanced oxidation process. Water research 2011, 45(4), 1890–1896.
  • Fan, X.; Sokorai, K. J.; Gurtler, J. B. Advanced oxidation process for the inactivation of Salmonella typhimurium on tomatoes by combination of gaseous ozone and aerosolized hydrogen peroxide. International journal of food microbiology 2020, 312, 108387.
  • LU, Y.; WU, C. Reduction of Salmonella enterica Contamination on Grape Tomatoes by Washing with Thyme Oil, Thymol, and Carvacrol as Compared with Chlorine Treatment. Journal of Food Protection 2010, 73(12), 2270–2275. DOI: 10.4315/0362-028X-73.12.2270 %J Journal of Food Protection (acccessed 1/5/2022).
  • Maktabi, S.; Zarei, M.; Rashnavady, R. Effect of sequential treatments with sodium dodecyl sulfate and citric acid or hydrogen peroxide on the reduction of some foodborne pathogens on eggshell. Iran J Vet Res 2018, 19(2), 113–117. PubMed.
  • Li, Y.; Wu, C. Enhanced inactivation of Salmonella Typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide. Food Research International 2013, 54(2), 1553–1559. DOI: 10.1016/j.foodres.2013.09.012.
  • Lu, Y.; Wu, C. Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash. International journal of food microbiology 2012, 152 (1–2), 31–34.
  • Muraro, P. C. L.; Pinheiro, L. D. S.; Chuy, G.; Vizzotto, B. S.; Pavoski, G.; Espinosa, D. C. R.; Rech, V. C.; da Silva, W. L. Silver nanoparticles from residual biomass: Biosynthesis, characterization and antimicrobial activity. Journal of Biotechnology 2022, 343, 47–51. DOI: 10.1016/j.jbiotec.2021.11.003.
  • Cao, X.; Zhu, L.; Bai, Y.; Li, F.; Yu, X. Green one-step synthesis of silver nanoparticles and their biosafety and antibacterial properties. Green Chemistry Letters and Reviews 2022, 15(1), 28–34. DOI: 10.1080/17518253.2021.2018506.
  • Han, B.; Han, X.; Ren, M.; You, Y.; Zhan, J.; Huang, W. Antimicrobial Effects of Novel H2O2-Ag+ Complex on Membrane Damage to Staphylococcus aureus, Escherichia coli O157: H7,and Salmonella Typhimurium. Journal of Food Protection 2021, 85(1), 104–111. DOI: 10.4315/jfp-21-087 (acccessed 7/1/2022).
  • Tomczyk, L.; Cegielska-Radziejewska, R.; Lewko, L.; Konieczny, P. J.; Agriculture. An assessment of the influence of silver stabilized hydrogen peroxide on the eggshell condition. Emirates Journal of Food and Agriculture 2018, 131–136.
  • Eryilmaz, M.; Kaskatepe, B.; Kiymaci, M. E.; Erol, H. B.; Simsek, D.; Gümüstas, A. J. In vitro antimicrobial activity of three new generation disinfectants. Tropical Journal of Pharmaceutical Research 2016, 15(10), 2191–2195.
  • Amaeze, N.; Shareef, M.; Henriquez, F.; Williams, C.; Mackay, W. Influence of delivery system on the efficacy of low concentrations of hydrogen peroxide in the disinfection of common healthcare-associated infection pathogens. Journal of Hospital Infection 2020, 106(1), 189–195.
  • Bourassa, D. V.; Harris, C. E.; Bartenfeld J. L.; Buhr, R. J. Assessment of Stabilized Hydrogen Peroxide for Use in Reducing Campylobacter Levels and Prevalence on Broiler Chicken Wings. Journal of Food Protection 2020, 84(3), 449–455. DOI: 10.4315/JFP-20-356 %J Journal of Food Protection (acccessed 1/7/2022).
  • Alkawareek, M. Y.; Bahlool, A.; Abulateefeh, S. R.; Alkilany, A. M. Synergistic antibacterial activity of silver nanoparticles and hydrogen peroxide. PLoS ONE 2019, 14 (8), e0220575.
  • He, W.; Zhou, Y. T.; Wamer, W. G.; Boudreau, M. D.; Yin, J. J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012, 33(30), 7547–7555. DOI: 10.1016/j.biomaterials.2012.06.076.
  • Dai, X.; Guo, Q.; Zhao, Y.; Zhang, P.; Zhang, T.; Zhang, X.; Li, C. J.; interfaces. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Appl Mater Interfaces 2016, 8(39), 25798–25807.
  • Teixeira, R. F.; Balbinot Filho, C. A.; Borges, C. D. Essential oils as natural antimicrobials for application in edible coatings for minimally processed apple and melon: A review on antimicrobial activity and characteristics of food models. Food Packaging and Shelf Life 2022, 31, 100781. DOI: 10.1016/j.fpsl.2021.100781.
  • Zhang, X.; Zhou, D.; Cao, Y.; Zhang, Y.; Xiao, X.; Liu, F.; Yu, Y. Synergistic inactivation of Escherichia coli O157: H7and Staphylococcus aureus by gallic acid and thymol and its potential application on fresh-cut tomatoes. Food Microbiology 2022, 102, 103925. DOI: 10.1016/j.fm.2021.103925.
  • Upadhyay, A.; Upadhyaya, I.; Mooyottu, S.; Kollanoor-Johny, A.; Venkitanarayanan, K. Efficacy of plant-derived compounds combined with hydrogen peroxide as antimicrobial wash and coating treatment for reducing Listeria monocytogenes on cantaloupes. Food Microbiology 2014, 44, 47–53. DOI: 10.1016/j.fm.2014.05.005.
  • Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Ananda Baskaran, S.; Mooyottu, S.; Karumathil, D.; Venkitanarayanan, K. Inactivation of Listeria monocytogenes on frankfurters by plant-derived antimicrobials alone or in combination with hydrogen peroxide. International Journal of Food Microbiology 2013, 163(2), 114–118. DOI: 10.1016/j.ijfoodmicro.2013.01.023.
  • Kwiatkowski, P.; Grygorcewicz, B.; Pruss, A.; Wojciuk, B.; Giedrys-Kalemba, S.; Dołêgowska, B.; Zielińska-Bliźniewska, H.; Olszewski, J.; Sienkiewicz, M.; Kochan, E. J.; et al. Synergistic effect of fennel essential oil and hydrogen peroxide on bacterial biofilm. Advances in Dermatology and Allergology 2020, 37 (5), 690.
  • Pan, Y.; Breidt Jr, F.; Kathariou, S. Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Applied and environmental microbiology 2006, 72(12), 7711–7717.
  • Costa, A.; Bertolotti, L.; Brito, L.; Civera, T. Biofilm formation and disinfectant susceptibility of persistent and nonpersistent Listeria monocytogenes isolates from Gorgonzola cheese processing plants. Foodborne pathogens and disease 2016, 13(11), 602–609.
  • DeQueiroz, G.; Day, D. Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. Journal of applied microbiology 2007, 103(4), 794–802.
  • Malik, Y. S.; Goyal, S. M. Virucidal efficacy of sodium bicarbonate on a food contact surface against feline calicivirus, a norovirus surrogate. International journal of food microbiology 2006, 109 (1–2), 160–163.
  • Acheson, D.; Bresee, J. S.; Widdowson, M. A.; Monroe, S. S.; Glass, R. I. Foodborne viral gastroenteritis: challenges and opportunities. Clinical infectious diseases 2002, 35(6), 748–753.
  • Paluszak, Z.; Gryń, G.; Bauza-Kaszewska, J.; Skowron, K. J.; Wiktorczyk- Kapischke, N.; Korkus, J.; Pawlak, M.; Szymańska, E.; Kraszewska, Z.; Buszko, K.; et al. Prevalence and antimicrobial susceptibility of Listeria monocytogenes strains isolated from a meat processing plant. Annals of Agricultural and Environmental Medicine 2021, 28(4), 595–604. DOI: 10.26444/aaem/131799.
  • Delgado, D. A.; de Souza Sant’Ana, A.; Granato, D.; Rodriguez de Massaguer, P. Inactivation of Neosartorya fischeri and Paecilomyces variotii on paperboard packaging material by hydrogen peroxide and heat. Food Control 2012, 23(1), 165–170. DOI: 10.1016/j.foodcont.2011.07.004.
  • Hong, E. J.; Kang, D. H. Effect of sequential dry heat and hydrogen peroxide treatment on inactivation of Salmonella Typhimurium on alfalfa seeds and seeds germination. Food microbiology 2016, 53, 9–14.
  • Ochiai, Y.; Yamada, F.; Yoshikawa, Y.; Mochizuki, M.; Takano, T.; Hondo, R.; Ueda, F. Sequential transition of the injury phenotype, temperature-dependent survival and transcriptional response in Listeria monocytogenes following lethal H2O2 exposure. International journal of food microbiology 2017, 259, 52–58.
  • Gottselig, S. M.; Dunn-Horrocks, S. L.; Woodring, K. S.; Coufal, C. D.; Duong, T. Advanced oxidation process sanitization of eggshell surfaces. Poultry science 2016, 95(6), 1356–1362.
  • Wells, J.; Coufal, C.; Parker, H.; McDaniel, C. Disinfection of eggshells using ultraviolet light and hydrogen peroxide independently and in combination. Poultry science 2010, 89(11), 2499–2505.
  • Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S. A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 2008, 83(6), 769–776.
  • Wang, H.; Hasani, M.; Wu, F.; Warriner, K. Pre-oxidation of spent lettuce wash water by continuous Advanced Oxidation Process to reduce chlorine demand and cross-contamination of pathogens during post-harvest washing. Food Microbiology 2022, 103. DOI:10.1016/j.fm.2021.103937.
  • Ikai, H.; Nakamura, K.; Shirato, M.; Kanno, T.; Iwasawa, A.; Sasaki, K.; Niwano, Y.; Kohno, M. Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation. Antimicrobial agents and chemotherapy 2010, 54(12), 5086–5091.
  • Marron, E. L.; Mitch, W. A.; von Gunten, U.; Sedlak, D. L. A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water Reuse. Accounts of Chemical Research 2019, 52(3), 615–622. DOI: 10.1021/acs.accounts.8b00612.
  • Xiang, Y.; Gonsior, M.; Schmitt-Kopplin, P.; Shang, C. Influence of the UV/H2O2 Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation. Environmental Science & Technology 2020, 54(23), 14964–14973. DOI: 10.1021/acs.est.0c03220.
  • Hadjok, C.; Mittal, G.; Warriner, K. Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. Journal of applied microbiology 2008, 104(4), 1014–1024.
  • Guo, S.; Huang, R.; Chen, H. Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce. International journal of food microbiology 2017, 257, 101–109.
  • Wang, H.; Hasani, M.; Wu, F.; Prosser, R.; MacHado, G. B.; Warriner, K. Hydroxyl-radical activated water for inactivation of Escherichia coli O157: H7,Salmonella and Listeria monocytogenes on germinating mung beans. International Journal of Food Microbiology 2022, 367. DOI:10.1016/j.ijfoodmicro.2022.109587.
  • Guan, W.; Fan, X.; Yan, R. Effect of combination of ultraviolet light and hydrogen peroxide on inactivation of Escherichia coli O157: H7, native microbial loads, and quality of button mushrooms. Food Control 2013, 34(2), 554–559.
  • Xie, Y.; Hajdok, C.; Mittal, G.; Warriner, K. Inactivation of MS2 F (+) coliphage on lettuce by a combination of UV light and hydrogen peroxide. Journal of Food Protection 2008, 71(5), 903–907.
  • Huang, R.; Chen, H. Sanitation of tomatoes based on a combined approach of washing process and pulsed light in conjunction with selected disinfectants. Food Research International 2019, 116, 778–785.
  • Huang, Y.; Sido, R.; Huang, R.; Chen, H. Application of water-assisted pulsed light treatment to decontaminate raspberries and blueberries from Salmonella. International journal of food microbiology 2015, 208, 43–50.
  • Wang, J. L.; Xu, L. J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Critical reviews in environmental science and technology 2012, 42(3), 251–325.
  • Ramos, B.; Miller, F.; Brandão, T.; Teixeira, P.; Silva, C. Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innovative Food Science & Emerging Technologies 2013, 20, 1–15.
  • Niemira, B. A. Cold plasma decontamination of foods. Annual review of food science and technology 2012, 3, 125–142.
  • Song, Y.; Fan, X. Cold plasma enhances the efficacy of aerosolized hydrogen peroxide in reducing populations of Salmonella Typhimurium and Listeria innocua on grape tomatoes, apples, cantaloupe and romaine lettuce. Food Microbiology 2020, 87, 103391.
  • Awad, T. S.; Moharram, H. A.; Shaltout, O. E.; Asker, D.; Youssef, M. M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International 2012, 48(2), 410–427. DOI: 10.1016/j.foodres.2012.05.004.
  • Sango, D.; Abela, D.; McElhatton, A.; Valdramidis, V. P. Assisted ultrasound applications for the production of safe foods. Journal of Applied Microbiology 2014, 116(5), 1067–1083. DOI: 10.1111/jam.12468 (acccessed 3/16/2023).
  • Hulsmans, A.; Joris, K.; Lambert, N.; Rediers, H.; Declerck, P.; Delaedt, Y.; Ollevier, F.; Liers, S. Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system. Ultrasonics Sonochemistry 2010, 17(6), 1004–1009. DOI: 10.1016/j.ultsonch.2009.10.013.
  • Shamila-Syuhada, A. K.; Chuah, L. O.; Wan-Nadiah, W. A.; Cheng, L. H.; Alkarkhi, A. F. M.; Effarizah, M. E.; Rusul, G. Inactivation of microbiota and selected spoilage and pathogenic bacteria in milk by combinations of ultrasound, hydrogen peroxide, and active lactoperoxidase system. International Dairy Journal 2016, 61, 120–125. DOI: 10.1016/j.idairyj.2016.05.002.
  • Lagnika, C.; Zhang, M.; Nsor-Atindana, J.; Bashari, M. Effects of ultrasound and chemical treatments on white mushroom (Agaricus bisporus) prior to modified atmosphere packaging in extending shelf-life. Journal of Food Science and Technology 2014, 51(12), 3749–3757. DOI: 10.1007/s13197-012-0904-8.
  • Palanisamy, N.; Seale, B.; Turner, A.; Hemar, Y. Low frequency ultrasound inactivation of thermophilic bacilli (Geobacillus spp. and Anoxybacillus flavithermus) in the presence of sodium hydroxide and hydrogen peroxide. Ultrasonics Sonochemistry 2019, 51, 325-331. DOI:10.1016/j.ultsonch.2018.09.025.
  • São José, J. F.; Vanetti, M. C. Application of ultrasound and chemical sanitizers to watercress, parsley and strawberry: Microbiological and physicochemical quality. LWT - Food Science and Technology 2015, 63(2), 946–952. DOI: 10.1016/j.lwt.2015.04.029.
  • Brilhante São José, J. F.; Dantas Vanetti M. C. ,Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control 2012, 24(1), 95–99. DOI: 10.1016/j.foodcont.2011.09.008.
  • Sierra, G.; Boucher, R. M. Ultrasonic Synergistic Effects in Liquid-Phase Chemical Sterilization. Applied microbiology 1971, 22(2), 160–164. DOI: 10.1128/am.22.2.160-164.1971.
  • Dalle Zotte, A.; Singh, Y.; Bacci, A.; Costa, L.; Cullere, M. Is hydrogen peroxide and peracetic acid dipping solution before MAP effective as an antimicrobial and antioxidant agent in extending rabbit meat shelf life?
  • Murray, K.; Moyer, P.; Wu, F.; Goyette, J.; Warriner, K. Inactivation of Listeria monocytogenes on and within apples destined for caramel apple production by using sequential forced air ozone gas followed by a continuous advanced oxidative process treatment. Journal of Food Protection 2018, 81(3), 357–364.
  • Hasani, M.; Wu, F.; Warriner, K. Validation of a vapor‐phase advanced oxidation process for inactivating Listeria monocytogenes, its surrogate Lactobacillus fructivorans, and spoilage molds associated with green or red table grapes. Journal of food science 2020, 85(9), 2645–2655.
  • Hasani, M.; Chudyk, J.; Murray, K.; Lim, L. T.; Lubitz, D.; Warriner, K. Inactivation of Salmonella, Listeria monocytogenes, Aspergillus and Penicillium on lemons using advanced oxidation process optimized through response surface methodology. Innovative Food Science & Emerging Technologies 2019, 54, 182–191.
  • Crowe, K. M.; Bushway, A. A.; Bushway, R. J.; Davis-Dentici, K.; Hazen, R. A. A comparison of single oxidants versus advanced oxidation processes as chlorine-alternatives for wild blueberry processing (Vaccinium angustifolium). International journal of food microbiology 2007, 116(1), 25–31.
  • Nasheri, N.; Harlow, J.; Chen, A.; Corneau, N.; Bidawid, S. Survival and Inactivation by Advanced Oxidative Process of Foodborne Viruses in Model Low-Moisture Foods. Food and environmental virology 2021, 13(1), 107–116.
  • Sapers, G.; Sites, J. Efficacy of 1% hydrogen peroxide wash in decontaminating apples and cantaloupe melons. Journal of food science 2003, 68(5), 1793–1797.
  • Song, Y.; Annous, B. A.; Fan, X. Cold plasma-activated hydrogen peroxide aerosol on populations of Salmonella Typhimurium and Listeria innocua and quality changes of apple, tomato and cantaloupe during storage-A pilot scale study. Food Control 2020, 117, 107358.
  • Cliffe-Byrnes, V.; O’Beirne, D. Effects of washing treatment on microbial and sensory quality of modified atmosphere (MA) packaged fresh sliced mushroom (Agaricus bisporus). Postharvest Biology and Technology 2008, 48(2), 283–294.
  • Peng, L.; Yang, S.; Li, Q.; Jiang, Y.; Joyce, D. C. Hydrogen peroxide treatments inhibit the browning of fresh-cut Chinese water chestnut. Postharvest Biology and Technology 2008, 47(2), 260–266.
  • Rico, D.; Martin-Diana, A. B.; Barat, J.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends in food science & technology 2007, 18(7), 373–386.
  • Sapers, G.; Miller, R.; Pilizota, V.; Kamp, F. Shelf‐life extension of fresh mushrooms (Agaricus bisporus) by application of hydrogen peroxide and browning inhibitors. Journal of food science 2001, 66(2), 362–366.
  • Mileto, D.; Mancon, A.; Staurenghi, F.; Rizzo, A.; Econdi, S.; Gismondo, M. R.; Guidotti, M. Inactivation of SARS-CoV-2 in the Liquid Phase: Are Aqueous Hydrogen Peroxide and Sodium Percarbonate Efficient Decontamination Agents? ACS Chemical Health & Safety 2021.
  • Bidra, A. S.; Pelletier, J. S.; Westover, J. B.; Frank, S.; Brown, S. M.; Tessema, B. Comparison of in vitro inactivation of SARS CoV‐2 with hydrogen peroxide and povidone‐iodine oral antiseptic rinses. Journal of Prosthodontics 2020, 29(7), 599–603.
  • Ho, J.; Prosser, R.; Hasani, M.; Chen, H.; Skanes, B.; Lubitz, W. D.; Warriner, K. Degradation of chlorpyrifos and inactivation of Escherichia coli O157: H7and Aspergillus niger on apples using an advanced oxidation process. Food Control 2020, 109, 106920. DOI:10.1016/j.foodcont.2019.106920.
  • Lee, M.-J.; Bae, D.-H.; Lee, D.-H.; Jang, K.-H.; Oh, D.-H.; Ha, S.-D. Reduction of Bacillus cereus in cooked rice treated with sanitizers and disinfectants. Journal of microbiology and biotechnology 2006, 16(4), 639–642.
  • Ha, J. H.; Choi, C.; Lee, H. J.; Ju, I. S.; Lee, J. S.; Ha, S. D. Efficacy of chemical disinfectant compounds against human norovirus. Food Control 2016, 59, 524–529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.