670
Views
3
CrossRef citations to date
0
Altmetric
Review

Lupin Seed Proteins: A Comprehensive Review of Composition, Extraction Technologies, Food Functionality, and Health Benefits

, , &

References

  • Abraham, E. M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci. 2019, 20(4), 851. DOI: 10.3390/ijms20040851.
  • Knecht, K. T.; Sanchez, P.; Kinder, D. H. Lupine Seeds (Lupinus Spp.): History of Use, Use as an Antihyperglycemic Medicinal and Use as a Food Plant. In Nuts and Seeds in Health and Disease Prevention; Academic Press: 2020; pp. 393–402. doi:10.1016/B978-0-12-818553-7.00027-9
  • Dendle, P. Lupines, Manganese, and Devil-Sickness: An Anglo-Saxon Medical Response to Epilepsy. Bull. Hist. Med. 2001, 75(1), 91–101. DOI: 10.1353/bhm.20001.0009.
  • Vogelsang-O’dwyer, M.; Bez, J.; Petersen, I. L.; Joehnke, M. S.; Detzel, A.; Busch, M.; Krueger, M.; Ispiryan, L.; O’mahony, J. A.; Arendt, E. K. Techno-Functional, Nutritional and Environmental Performance of Protein Isolates from Blue Lupin and White Lupin. Foods. 2020, 9(2), 230. DOI: 10.3390/foods9020230.
  • Gladstones, J. S. Distribution, Origin, Taxonomy, History and Importance. In Lupins as Crop Plants: Biology, Production, and Utilization, Gladstone, J. S., Atkins, C. A., Hamblin, J., eds; CABI: Wallingford, UK, 1998; pp. 1–39.
  • Tapadia, M.; Johnson, S.; Utikar, R.; Newsholme, P.; Carlessi, R. Antidiabetic Effects and Mechanisms of Action of γ-Conglutin from Lupin Seeds. J. Funct. Foods. 2021, 87, 104786. DOI: 10.1016/j.jff.2021.104786.
  • Van de Noort, M. Lupin: An Important Protein and Nutrient Source. In Sustainable Protein Sources; Academic Press: 2017; pp. 165–183. doi:10.1016/B978-0-12-802778-3.00010-X
  • Duranti, M.; Consonni, A.; Magni, C.; Sessa, F.; Scarafoni, A. The Major Proteins of Lupin Seed: Characterization and Molecular Properties for Use as Functional and Nutraceutical Ingredients. Trends Food Sci. Technol. 2008, 19(12), 624–633. DOI: 10.1016/j.tifs.2008.07.002.
  • Cabello-Hurtado, F.; Keller, J.; Ley, J.; Sanchez-Lucas, R.; Jorrín-Novo, J. V.; Aïnouche, A. Proteomics for Exploiting Diversity of Lupin Seed Storage Proteins and Their Use as Nutraceuticals for Health and Welfare. J Proteomics. 2016, 143, 57–68. DOI: 10.1016/j.jprot.2016.03.026.
  • Blagrove, R. J.; Gillespie, J. M. Isolation, Purification and Characterization of the Seed Globulins of Lupinus Angustifolius. Funct. Plant Biol. 1975, 2(1), 13–27. DOI: 10.1071/PP9750013.
  • Klupšaitė, D.; Juodeikienė, G. Legume: Composition, Protein Extraction and Functional Properties. A Review. Chem. Technol. 2015, 66(1), 5–12. DOI: 10.5755/j01.ct.66.1.12355.
  • Shrestha, S.; Van’t Hag, L.; Haritos, V. S.; Dhital, S. Lupin Proteins: Structure, Isolation and Application. Trends Food Sci. Technol. 2021, 116, 928–939. DOI: 10.1016/j.tifs.2021.08.035.
  • Müntz, K. Deposition of Storage Proteins. Plant Mol. Biol. 1998, 38(1), 77–99. DOI: 10.1023/A:1006020208380.
  • Magni, C.; Scarafoni, A.; Herndl, A.; Sessa, F.; Prinsi, B.; Espen, L.; Duranti, M. Combined 2D Electrophoretic Approaches for the Study of White Lupin Mature Seed Storage Proteome. Phytochemistry. 2007, 68(7), 997–1007. DOI: 10.1016/j.phytochem.2007.01.003.
  • Duranti, M.; Horstmann, C.; Gilroy, J.; Croy, R. R. D. The Molecular Basis for N-Glycosylation in the 11S Globulin (Legumin) of Lupin Seed. J. Protein Chem. 1995, 14(2), 107–110. DOI: 10.1007/BF01888368.
  • Foley, R. C.; Gao, L. L.; Spriggs, A.; Soo, L. Y.; Goggin, D. E.; Smith, P. M.; Atkins, C. A.; Singh, K. B. Identification and Characterization of Seed Storage Protein Transcripts from Lupinus Angustifolius. BMC. Plant Biol. 2011, 11(1), 1–15. DOI: 10.1186/1471-2229-11-59.
  • Duranti, M.; Sessa, F.; Carpen, A. Identification, Purification and Properties of the Precursor of Conglutin β, the 7S Storage Globulin of Lupinus Albus L. Seeds. J. E. Bot. 1992, 43(10), 373–1378. DOI: 10.1093/jxb/43.10.1373.
  • Rodrigues dos Ramos, P. C.; Ferreira, R. M. S. B.; Franco, E.; Teixeira, A. R. N. Accumulation of a Lectin-Like Breakdown Product of β-Conglutin Catabolism in Cotyledons of Germinating Lupinus Albus L. Seeds. Planta. 1997, 203(1), 26–34. DOI: 10.1007/s004250050161.
  • Salmanowicz, B. P.; Weder, J. K. Primary Structure of 2S Albumin from Seeds of Lupinus Albus. Z. Lebensm. Unters. Forsch. 1997, 204(2), 129–135. DOI: 10.1007/s002170050049.
  • Gayler, K. R.; Wachsmann, F.; Kolivas, S.; Nott, R.; Johnson, E. D. Isolation and Characterization of Protein Bodies in Lupinus Angustifolius. Plant Physiol. 1989, 91(4), 1425–1431. DOI: 10.1104/pp.91.4.1425.
  • Eaton-Mordas, C. A.; Moore, K. A. Seed Glycoproteins of Lupinus Angustifolius. Phytochemistry. 1978, 17(4), 619–621. DOI: 10.1016/S0031-9422(00)94195-5.
  • Shewry, P. R.; Napier, J. A.; Tatham, A. S. Seed Storage Proteins: Structures and Biosynthesis. The Plant Cells. 1995, 7(7), 945. DOI: 10.2307/3870049.
  • Duranti, M.; Di Cataldo, A.; Sessa, F.; Scarafoni, A.; Ceciliani, F. Metal Ions Restore the Proteolytic Resistance of Denatured Conglutin γ, a Lupin Seed Glycoprotein, by Promoting Its Refolding. J. Agric. Food. Chem. 2002, 50(7), 2029–2033. DOI: 10.1021/jf010512c.
  • Scarafoni, A.; Consonni, A.; Galbusera, V.; Negri, A.; Tedeschi, G.; Rasmussen, P.; Magni, C.; Duranti, M. Identification and Characterization of a Bowman-Birk Inhibitor Active Towards Trypsin but Not Chymotrypsin in Lupinus Albus Seeds. Phytochemistry. 2008, 69(9), 1820–1825. DOI: 10.1016/j.phytochem.2008.03.023.
  • Berghout, J. A. M.; Pelgrom, P. J. M.; Schutyser, M. A. I.; Boom, R. M.; Van Der Goot, A. J. Sustainability Assessment of Oilseed Fractionation Processes: A Case Study on Lupin Seeds. J. Food Eng. 2015, 150, 117–124. DOI: 10.1016/j.jfoodeng.2014.11.005.
  • Pelgrom, P. J.; Berghout, J. A.; van der Goot, A. J.; Boom, R. M.; Schutyser, M. A. Preparation of Functional Lupine Protein Fractions by Dry Separation. LWT-Food Sci. Technol. 2014, 59(2), 680–688. DOI: 10.1016/j.lwt.2014.06.007.
  • Pelgrom, P. J.; Wang, J.; Boom, R. M.; Schutyser, M. A. Pre-And Post-Treatment Enhance the Protein Enrichment from Milling and Air Classification of Legumes. J. Food Eng. 2015, 155, 53–61. DOI: 10.1016/j.jfoodeng.2015.01.005.
  • Wang, J.; Zhao, J.; De Wit, M.; Boom, R. M.; Schutyser, M. A. Lupine Protein Enrichment by Milling and Electrostatic Separation. Innovative Food Sci. Emerging Technol. 2016, 33, 596–602. DOI: 10.1016/j.ifset.2015.12.020.
  • Silventoinen, P.; Sipponen, M. H.; Holopainen-Mantila, U.; Poutanen, K.; Sozer, N. Use of Air Classification Technology to Produce Protein-Enriched Barley Ingredients. J. Food Eng. 2018, 222, 169–177. DOI: 10.1016/j.jfoodeng.2017.11.016.
  • Muranyi, I. S.; Otto, C.; Pickardt, C.; Koehler, P.; Schweiggert-Weisz, U. Microscopic Characterization and Composition of Proteins from Lupin Seed (Lupinus Angustifolius L.) as Affected by the Isolation Procedure. Food. Res. Int. 2013, 54(2), 1419–1429. DOI: 10.1016/j.foodres.2013.10.004.
  • Jayasena, V.; Chih, H. J.; Nasar-Abbas, S. Efficient Isolation of Lupin Protein. Food Aust. 2011, 63(7), 306–309.
  • Muranyi, I. S.; Otto, C.; Pickardt, C.; Osen, R.; Koehler, P.; Schweiggert‐weisz, U. Influence of the Isolation Method on the Techno-Functional Properties of Protein Isolates from Lupinus Angustifolius L. J. Food Sci. 2016, 81(11), C2656–2663. DOI: 10.1111/1750-3841.13515.
  • Albe-Slabi, S.; Mesieres, O.; Mathé, C.; Ndiaye, M.; Galet, O.; Kapel, R. Combined Effect of Extraction and Purification Conditions on Yield, Composition and Functional and Structural Properties of Lupin Proteins. Foods. 2022, 11(11), 1646. DOI: 10.3390/foods11111646.
  • Devkota, L.; Kyriakopoulou, K.; Bergia, R.; Dhital, S. Structural and Thermal Characterization of Protein Isolates from Australian Lupin Varieties as Affected by Processing Conditions. Foods. 2023, 12(5), 908. DOI: 10.3390/foods12050908.
  • Schlegel, K.; Lidzba, N.; Ueberham, E.; Eisner, P.; Schweiggert-Weisz, U. Fermentation of Lupin Protein Hydrolysates—effects on Their Functional Properties, Sensory Profile and the Allergenic Potential of the Major Lupin Allergen Lup an 1. Foods. 2021, 10(2), 281. DOI: 10.3390/foods10020281.
  • Tahmasian, A.; Broadbent, J. A.; Juhász, A.; Nye-Wood, M.; Le, T. T.; Bose, U.; Colgrave, M. L. Evaluation of Protein Extraction Methods for In-Depth Proteome Analysis of Narrow-Leafed Lupin (Lupinus Angustifolius) Seeds. Food Chem. 2022, 367, 130722. DOI: 10.1016/j.foodchem.2021.130722.
  • Bader, S.; Oviedo, J. P.; Pickardt, C.; Eisner, P. Influence of Different Organic Solvents on the Functional and Sensory Properties of Lupin (Lupinus Angustifolius L.) Proteins. LWT-Food Sci. Technol. 2011, 44(6), 1396–1404. DOI: 10.1016/j.lwt.2011.01.007.
  • Berghout, J. A. M.; Boom, R. M.; Van der Goot, A. J. The Potential of Aqueous Fractionation of Lupin Seeds for High-Protein Foods. Food Chem. 2014, 159, 64–70. DOI: 10.1016/j.foodchem.2014.02.166.
  • Pozani, S.; Doxastakis, G.; Kiosseoglou, V. Functionality of Lupin Seed Protein Isolate in Relation to Its Interfacial Behaviour. Food Hydrocolloids. 2002, 16(3), 241–247. DOI: 10.1016/S0268-005X(01)00094-7.
  • Henchion, M.; Hayes, M.; Mullen, A. M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods. 2017, 6(7), 53. DOI: 10.3390/foods6070053.
  • Schlegel, K.; Sontheimer, K.; Hickisch, A.; Wani, A. A.; Eisner, P.; Schweiggert‐weisz, U. Enzymatic Hydrolysis of Lupin Protein Isolates-Changes in the Molecular Weight Distribution, Techno-Functional Characteristics, and Sensory Attributes. Food Sci. Nutr. 2019, 7(8), 2747–2759. DOI: 10.1002/fsn3.1139.
  • Aryee, A. N. A.; Agyei, D.; Udenigwe, C. C. Impact of Processing on the Chemistry and Functionality of Food Proteins. In Proteins in Food Processing; Woodhead Publishing: 2018; pp. 27–45. doi:10.1016/B978-0-08-100722-8.00003-6
  • Osemwota, E. C.; Alashi, A. M.; Aluko, R. E. Comparative Study of the Structural and Functional Properties of Membrane-Isolated and Isoelectric pH Precipitated Green Lentil Seed Protein Isolates. Membranes. 2021, 11(9), 694. DOI: 10.3390/membranes11090694.
  • Burgos‐díaz, C.; Piornos, J. A.; Wandersleben, T.; Ogura, T.; Hernández, X.; Rubilar, M. Emulsifying and Foaming Properties of Different Protein Fractions Obtained from a Novel Lupin Variety AluProt‐CGNA®(Lupinus luteus). J. Food Sci. 2016, 81(7), 1699–1706. DOI: 10.1111/1750-3841.13350.
  • Bader, S.; Bez, J.; Eisner, P. Can Protein Functionalities Be Enhanced by High-Pressure Homogenization? A Study on Functional Properties of Lupin Proteins. Procedia Food Sci. 2011, 1, 1359–1366. DOI: 10.1016/j.profoo.2011.09.201.
  • Burgos-Díaz, C.; Wandersleben, T.; Olivos, M.; Lichtin, N.; Bustamante, M.; Solans, C. Food-Grade Pickering Stabilizers Obtained from a Protein-Rich Lupin Cultivar (AluProt-CGNA®): Chemical Characterization and Emulsifying Properties. Food Hydrocolloids. 2019, 87, 847–857. DOI: 10.1016/j.foodhyd.2018.09.018.
  • Ariizumi, M.; Kubo, M.; Handa, A.; Hayakawa, T.; Matsumiya, K.; Matsumura, Y. Influence of Processing Factors on the Stability of Model Mayonnaise with Whole Egg During Long-Term Storage. Biosci. Biotechnol., Biochem. 2017, 81(4), 803–811. DOI: 10.1080/09168451.2017.1281725.
  • Alu’datt, M. H.; Rababah, T.; Alhamad, M. N.; Ereifej, K.; Gammoh, S.; Kubow, S.; Tawalbeh, D. Preparation of Mayonnaise from Extracted Plant Protein Isolates of Chickpea, Broad Bean and Lupin Flour: Chemical, Physicochemical, Nutritional and Therapeutic Properties. J. Food Sci. Technol. 2017, 54(6), 1395–1405. DOI: 10.1007/s13197-017-2551-6.
  • Santhi, D.; Kalaikannan, A.; Sureshkumar, S. Factors Influencing Meat Emulsion Properties and Product Texture: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57(10), 2021–2027. DOI: 10.1080/10408398.2013.858027.
  • Youssef, M. K.; Barbut, S. Effects of Protein Level and Fat/Oil on Emulsion Stability, Texture, Microstructure and Color of Meat Batters. Meat Sci. 2009, 82(2), 228–233. DOI: 10.1016/j.meatsci.2009.01.015.
  • Jiang, J.; Xiong, Y. L. Extreme pH Treatments Enhance the Structure-Reinforcement Role of Soy Protein Isolate and Its Emulsions in Pork Myofibrillar Protein Gels in the Presence of Microbial Transglutaminase. Meat Sci. 2012, 93(3), 469–476. DOI: 10.1016/j.meatsci.2012.11.002.
  • Sun, X. D.; Arntfield, S. D. Gelation Properties of Salt-Extracted Pea Protein Isolate Catalyzed by Microbial Transglutaminase Cross-Linking. Food Hydrocolloids. 2011, 25(1), 25–31. DOI: 10.1016/j.foodhyd.2010.05.002.
  • Lopes, M.; Pierrepont, C.; Duarte, C. M.; Filipe, A.; Medronho, B.; Sousa, I. Legume Beverages from Chickpea and Lupin, as New Milk Alternatives. Foods. 2020, 9(10), 1458. DOI: 10.3390/foods9101458.
  • Duarte, C. M.; Mota, J.; Assunção, R.; Martins, C.; Ribeiro, A. C.; Lima, A.; Raymundo, A.; Nunes, M. C.; Ferreira, R. B.; Sousa, I. New Alternatives to Milk from Pulses: Chickpea and Lupin Beverages with Improved Digestibility and Potential Bioactivities for Human Health. Front Nutr. 2022, 9, 852907. DOI: 10.3389/fnut.2022.852907.
  • Kyriakopoulou, K.; Dekkers, B.; van der Goot, A. J. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Academic Press: 2019; pp. 103–126. doi:10.1016/B978-0-12-814874-7.00006-7
  • Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2021, 247(2), 297–308. DOI: 10.1007/s00217-020-03630-9.
  • Palanisamy, M.; Töpfl, S.; Berger, R. G.; Hertel, C. Physico-Chemical and Nutritional Properties of Meat Analogues Based on Spirulina/Lupin Protein Mixtures. Eur. Food Res. Technol. 2019, 245(9), 1889–1898. DOI: 10.1007/s00217-019-03298-w.
  • Kiosseoglou, V.; Paraskevopoulou, A.; Poojary, M. M. Functional and Physicochemical Properties of Pulse Proteins. In Pulse Foods; Academic Press: 2021; pp. 113–146. doi:10.1016/B978-0-12-818184-3.00006-4
  • Boukid, F.; Pasqualone, A. Lupine (Lupinus Spp.) Proteins: Characteristics, Safety and Food Applications. Eur. Food Res. Technol. 2022, 248(2), 345–356. DOI: 10.1007/s00217-021-03909-5.
  • Banu, I.; Patrașcu, L.; Vasilean, I.; Dumitrașcu, L.; Aprodu, I. Influence of the Protein-Based Emulsions on the Rheological, Thermo-Mechanical and Baking Performance of Muffin Formulations. Appl. Sci. 2023, 13(5), 3316. DOI: 10.3390/app13053316.
  • Al-Ali, H. A.; Shah, U.; Hackett, M. J.; Gulzar, M.; Karakyriakos, E.; Johnson, S. K. Technological Strategies to Improve Gelation Properties of Legume Proteins with the Focus on Lupin. Innovative Food Sci. Emerging Technol. 2021, 68, 102634. DOI: 10.1016/j.ifset.2021.102634.
  • Małecki, J.; Muszyński, S.; Sołowiej, B. G. Proteins in Food systems—Bionanomaterials, Conventional and Unconventional Sources, Functional Properties, and Development Opportunities. Polymers. 2021, 13(15), 2506. DOI: 10.3390/polym13152506.
  • Arnoldi, A.; Boschin, G.; Zanoni, C.; Lammi, C. The Health Benefits of Sweet Lupin Seed Flours and Isolated Proteins. J. Funct. Foods. 2015, 18, 550–563. DOI: 10.1016/j.jff.2015.08.012.
  • Bettzieche, A.; Brandsch, C.; Schmidt, M.; Weiße, K.; Eder, K.; Stangl, G. I. Differing Effect of Protein Isolates from Different Cultivars of Blue Lupin on Plasma Lipoproteins of Hypercholesterolemic Rats. Biosci. Biotechnol., Biochem. 2008, 72(12), 3114–3121. DOI: 10.1271/bbb.80221.
  • Radtke, J.; Geissler, S.; Schutkowski, A.; Brandsch, C.; Kluge, H.; Duranti, M. M.; Keller, S.; Jahreis, G.; Hirche, F.; Stangl, G. I. Lupin Protein Isolate versus Casein Modifies Cholesterol Excretion and mRna Expression of Intestinal Sterol Transporters in a Pig Model. Nutr. Metab. 2014, 11(1), 1–11. DOI: 10.1186/1743-7075-11-9.
  • Dove, E. R.; Mori, T. A.; Chew, G. T.; Barden, A. E.; Woodman, R. J.; Puddey, I. B.; Sipsas, S.; Hodgson, J. M. Lupin and Soya Reduce Glycaemia Acutely in Type 2 Diabetes. Br. J. Nutr. 2011, 106(7), 1045–1051. DOI: 10.1017/S0007114511001334.
  • Ward, N. C.; Mori, T. A.; Beilin, L. J.; Johnson, S.; Williams, C.; Gan, S. K.; Puddey, I. B.; Woodman, R.; Phillips, M.; Connolly, E., et al. The Effect of Regular Consumption of Lupin-Containing Foods on Glycaemic Control and Blood Pressure in People with Type 2 Diabetes Mellitus. Food Funct. 2020, 11(1), 741–747. DOI: 10.1039/C9FO01778J.
  • Lima-Cabello, E.; Morales-Santana, S.; Foley, R. C.; Melser, S.; Alché, V.; Siddique, K. H.; Singh, K. B.; Alché, J. D.; Jimenez-Lopez, J. C. Ex Vivo and In Vitro Assessment of Anti-Inflammatory Activity of Seed β-Conglutin Proteins from Lupinus Angustifolius. J. Funct. Foods. 2018, 40, 510–519. DOI: 10.1016/j.jff.2017.11.040.
  • Lima-Cabello, E.; Alché, J. D.; Morales-Santana, S.; Clemente, A.; Jimenez-Lopez, J. C. Narrow-Leafed Lupin (Lupinus Angustifolius L.) Seeds Gamma-Conglutin is an Anti-Inflammatory Protein Promoting Insulin Resistance Improvement and Oxidative Stress Amelioration in PANC-1 Pancreatic Cell Line. Antioxidants. 2019, 9(1), 12. DOI: 10.3390/antiox9010012.
  • Lammi, C.; Zanoni, C.; Scigliuolo, G. M.; D’amato, A.; Arnoldi, A. Lupin Peptides Lower Low-Density Lipoprotein (LDL) Cholesterol Through an Up-Regulation of the LDL Receptor/Sterol Regulatory Element Binding Protein 2 (SREBP2) Pathway at HepG2 Cell Line. J. Agric. Food. Chem. 2014, 62(29), 7151–7159. DOI: 10.1021/jf500795b.
  • Boschin, G.; Scigliuolo, G. M.; Resta, D.; Arnoldi, A. ACE-Inhibitory Activity of Enzymatic Protein Hydrolysates from Lupin and Other Legumes. Food Chem. 2014, 145, 34–40. DOI: 10.1016/j.foodchem.2013.07.076.
  • Lammi, C.; Aiello, G.; Vistoli, G.; Zanoni, C.; Arnoldi, A.; Sambuy, Y.; Ferruzza, S.; Ranaldi, G. A Multidisciplinary Investigation on the Bioavailability and Activity of Peptides from Lupin Protein. J. Funct. Foods. 2016, 24, 297–306. DOI: 10.1016/j.jff.2016.04.017.
  • Opazo-Navarrete, M.; Burgos-Díaz, C.; Garrido-Miranda, K. A.; Acuña-Nelson, S. Effect of Enzymatic Hydrolysis on Solubility and Emulsifying Properties of Lupin Proteins (Lupinus Luteus). Colloids Interfaces. 2022, 6(4), 82. DOI: 10.3390/colloids6040082.
  • Cruz-Chamorro, I.; Álvarez-Sánchez, N.; Del Carmen Millán-Linares, M.; Del Mar Yust, M.; Pedroche, J.; Millán, F.; Lardone, P. J.; Carrera-Sánchez, C.; Guerrero, J. M.; Carrillo-Vico, A. Lupine Protein Hydrolysates Decrease the Inflammatory Response and Improve the Oxidative Status in Human Peripheral Lymphocytes. Food. Res. Int. 2019, 126, 108585. DOI: 10.1016/j.foodres.2019.108585.
  • Guo, X.; Shang, W.; Strappe, P.; Zhou, Z.; Blanchard, C. Peptides Derived from Lupin Proteins Confer Potent Protection Against Oxidative Stress. J. Sci. Food Agric. 2018, 98(14), 5225–5234. DOI: 10.1002/jsfa.9059.
  • Kamran, F.; Phillips, M.; Reddy, N. Functional Properties of Australian Blue Lupin (Lupinus angustifolius) Protein and Biological Activities of Protein Hydrolysates. Legume Sci. 2021, 3(1), 65. DOI: 10.1002/leg3.65.
  • Villacrés, E.; Cueva, P.; Díaz, M.; Rosell, C. M. Replacing Wheat Flour with Debittered and Fermented Lupin: Effects on Bread’s Physical and Nutritional Features. Plant Foods Hum. Nutr. 2020, 75(4), 569–575. DOI: 10.1007/s11130-020-00844-w.
  • Woldemariam, H. W.; Asres, A. M.; Gemechu, F. G. Physicochemical and Sensory Properties of Ice Cream Prepared Using Sweet Lupin and Soymilk as Alternatives to Cow Milk. Int. J. Food. Prop. 2022, 25(1), 278–287. DOI: 10.1080/10942912.2022.2032733.
  • Çoban, D. İ.; Babiker, E. E.; Al Juhaimi, F.; Uslu, N.; Özcan, M. M.; Ghafoor, K.; Mohamed Ahmed, I. A.; Almusallam, I. A. Fatty Acid Composition, Mineral Contents, and Glycemic Index Values of Chips Produced with Different Cooking Methods and Lupine (Lupinus Albus L.) Flour Formulations. J. Food Process Preserv. 2021, 45(2), e15161. DOI: 10.1111/jfpp.15161.
  • Özcan, M. M.; İ̇pek, D.; Ghafoor, K.; Al Juhaimi, F.; Uslu, N.; Babiker, E. E.; Mohamed Ahmed, I. A.; Alsawmahi, O. N. Physico‐chemical and Sensory Properties of Chips Produced Using Different Lupin (Lupinus Albus L.) Flour Formulations and Cooking Methods. Int. J. Food Sci. Technol. 2021, 56(6), 2780–2788. DOI: 10.1111/ijfs.14913.
  • Albuja-Vaca, D.; Yepez, C.; Vernaza, M. G.; Navarrete, D. Gluten-Free Pasta: Development of a New Formulation Based on Rice and Lupine Bean Flour (Lupinus mutabilis) Using a Mixture-Process Design. Food Sci. Technol. 2019, 40, 408–414. DOI: 10.1590/fst.02319.
  • Leonard, W.; Hutchings, S. C.; Warner, R. D.; Fang, Z. Effects of Incorporating Roasted Lupin (Lupinus angustifolius) Flour on the Physicochemical and Sensory Attributes of Beef Sausage. Int. J. Food Sci. Technol. 2019, 54(5), 1849–1857. DOI: 10.1111/ijfs.14088.
  • Auger, I.; Corre, V. Lupin-Flour, Process for Obtaining It, and Its Uses. EU patent EP0449697A1, June 1, 1994.
  • Hussmann, P. Process, and Apparatus for Freeing Bitter Lupin Seed of Bitter Substances Therein. U.S. patent 4576820, March 18, 1986.
  • Wasche, A.; Holley, W.; Luck, T.; Nurrenbach, T.; Borcherding, A. Method for Treating and Processing Lupin Seeds Containing Alkaloid, Oil, and Protein. U.S. patent 6335044, September 21, 2000.
  • Jaeggle, W. Processing Plants, Especially Lupin Seeds, by Water Extraction to Remove Antinutritive Compounds. WIPO patent 1940992, June 27, 2002.
  • Tucek, M. Use of Lupin Bran in High Fibre Food Products. EU patent WO2006133492A1, November 19, 2009.
  • Kaur, S.; Fryirs, C.; Neale, R. Process for the Production of Lupin Extract. Canada patent 2530804, March 29, 2006.
  • Mitchell, P. R.; Shammet, K. M. Lupin Food Product Base and Processes. U.S. 2008241343A1, October 2, 2008.
  • Cronje, J.; Jayasena, V. Food Product Precursor, a Food Product and a Method of Making a Food Product Comprising Lupin Flour. EU patent US2014234512A1, May 2, 2012.
  • Jayasena, V. Food Product. EU patent AU201934955A1, March 26, 2020.
  • Johnson, S.; Al-Ali, H. A. A. Modified Lupin Protein. EU patent WO2012222976A1, May 13, 2020.
  • Van Den Einden, A. W. Crunchy Crisps from Lupin Flour and Method for Production Thereof. EU patent EP3037004A1, June 29, 2016.
  • Duranti, M. Pasta Enriched with Vegetable. EU patent EP0997078A2, May 3, 2000.
  • Snowden, J.; Sipsas, S.; John, C. An Improved Method to Produce Lupin Protein-Based Dairy Substitutes. EU patent WO2004093560A1, July 5, 2007.
  • Bremer, E. Process for the Production of Lupin Milk Containing Protein and Process for the Further Treatment of This Product and Tofu-Like Foodstuff Obtained Thereby. EU patent EP0449396A1, July 7, 1994.
  • Song, J.; Yang, Y.; Han, D.; Ma, L. Method for Preparing Probiotics Fermented Lupin Fermented Product. EU patent CN111820376A, July 29, 2020.
  • Eisner, P.; Fischl, R.; Mittermaier, S.; Zacherl, C.; Toelstede, S.; Jacobs, D.; Schreiber, K.; Hickisch, A. Emulsion with Lupine Protein. Canada patent 2953644, April 20, 2017.
  • Fitchett, C. S.; Buttimer, E. T.; Howard, J. A. Functional Protein Composition, Emulsions Based Thereon and Processes for Their Preparation. EU patent EPO522800B2, January 31, 2001
  • Fryirs, C. G.; Paterson, G. R.; Duckworth, S. E. Oil-In-Water Emulsifier. EU patent WO2010127414A1, November 11, 2010.
  • Baudouin, C.; Leclere-Bienfait, S.; Msika, P.; Bredif, S. Lupin Peptide and Skin Firmness. U.S. patent 20170157019A1, January 7, 2016
  • Msika, P.; Piccirilli, A.; Paul, F. Lupin Peptide Extract Having a Metalloprotease Inhibiting Activity, for Treatment of Disorders Due to Excessive Destruction of Collagen or Supporting Macroproteins. EU patent FR2792202A1, April 18, 2016.
  • Charagnac, J. L. Topically Applied Dermatological or Cosmetic Composition, Useful E.G for Promoting Skin Regeneration or Treating Edema, Comprises Flavonoid, Lupin Peptide Extract and Vegetable Oil. EU patent FR2834638A1, July 18, 2003.
  • Choulot, J.; Piccirilli, A.; Piccardi, N.; Msika, P.; Paul, F. Lupin Total Extract Consisting of a Lupin Sugar and a Lupin Peptide Extract, Method for the Production and Use Thereof. U.S. patent 20080050458A1, May 27, 2014.
  • Millan, R. F.; Pedroche, J. J.; Yust, E. M.; Millan, L. M.; Villanueva, L. A. Peptide Isolated in a Lupin Hydrolysate and Use Thereof in the Treatment of Inflammatory Diseases. EU patent WO2016051000A1, April 7, 2016
  • Morazzoni, P.; Duranti, M. Use of Lupin Conglutin for the Treatment of Type II Diabetes. U.S. patent 20060142185A1, October 15, 2013.
  • Luzi, L.; Terruzzi, I. M. Conglutin Gamma as Medicament and Diet Supplement. WO patent WO2009144278A2, May 19, 2011.
  • Terruzzi, I. M.; Luzi, L. Uses of Conglutin Gamma. Canada patent 2726231, December 3, 2009.
  • Jimenez, L. J.; Alche, R. J.; Lima, C. E. Method for the Detection And/Or Quantification of Lupin Beta-Conglutin Allergen Proteins. EU patent EP3514166A1, July 24, 2019.
  • Zhang, S.; Ouyang, K.; Shen, H.; Yu, Z. Food Allergen Lupin Component LAMP (Loop-Mediated Isothermal Application) Field Quick Detection Method. EU patent CN103160608A, June 19, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.