401
Views
1
CrossRef citations to date
0
Altmetric
Review

Zinc Absorption & Homeostasis in the Human Body: A General Overview

, ORCID Icon, ORCID Icon, , &

References

  • Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: A Multipurpose Trace Element. Arch. Toxic. 2006, 80(1), 1–9. DOI: 10.1007/s00204-005-0009-5.
  • Saper, R. B.; Rash, R. Zinc: An essential micronutrient. Am. Fam. Physician. 2009, 79, 768–772.
  • Bertini, I.; Luchinat, C.; Monnanni, R. Zinc Enzymes. J. Chem. Educ. 1985, 62(11), 917–923. DOI: 10.1021/ed062p924.
  • Cabrera, Á. J. R. Zinc, aging, and immunosenescence: an overview. Pathobiol. Aging Age-Related Dis. 2015, 5(1), 25592. DOI: 10.3402/pba.v5.25592.
  • Miao, X.; Sun, W.; Fu, Y.; Miao, L.; Cai, L. Zinc Homeostasis in the Metabolic Syndrome and Diabetes. Front. Med. China. 2013, 7(1), 31–52. DOI: 10.1007/s11684-013-0251-9.
  • Piao, M.; Cong, X.; Lu, Y.; Feng, C.; Ge, P. Neuropsychiatry (London). Neuropsychiatry. 2018, 07(04), 378–386. DOI: 10.4172/Neuropsychiatry.1000225.
  • Tahmasebi, K.; Amani, R.; Nazari, Z.; Ahmadi, K.; Moazzen, S.; Mostafavi, S. A. Association of Mood Disorders with Serum Zinc Concentrations in Adolescent Female Students. Biol. Trace Elem. Res. 2017, 178(2), 180–188. DOI: 10.1007/s12011-016-0917-7.
  • Szewczyk, B. Zinc Homeostasis and Neurodegenerative Disorders. Front. Aging Neurosci. 2013, 5, 1–12. DOI: 10.3389/fnagi.2013.00033.
  • Igic, P. G.; Lee, E.; Harper, W.; Roach, K. W. Toxic Effects Associated with Consumption of Zinc. Mayo. Clinic. Proceed. 2002, 77(7), 713–716. DOI: 10.4065/77.7.713.
  • Daniels, W. M. U.; Hendricks, J.; Salie, R.; Van Rensburg, S. J. A Mechanism for Zinc Toxicity in Neuroblastoma Cells. Metab. Brain Dis. 2004, 19(1/2), 79–88. DOI: 10.1023/B:MEBR.0000027419.79032.bd.
  • Sian, L.; Krebs, N. F.; Westcott, J. E.; Fengliang, L.; Tong, L.; Miller, L. V.; Sonko, B.; Hambidge, M. Zinc Homeostasis During Lactation in a Population with a Low Zinc Intake. Am. J. Clin. Nutr. 2002, 75(1), 99–103. DOI: 10.1093/ajcn/75.1.99.
  • Bafaro, E.; Liu, Y.; Xu, Y.; Dempski, R. E. The Emerging Role of Zinc Transporters in Cellular Homeostasis and Cancer. Signal Transduct. Target. Ther. 2017, 2(1), 1–12. DOI: 10.1038/sigtrans.2017.29.
  • Hara, T.; Aki Takeda, T.; Takagishi, T.; Fukue, K.; Kambe, T.; Fukada, T. Physiological Roles of Zinc Transporters: Molecular and Genetic Importance in Zinc Homeostasis. J. Physiol. Sci. 2017, 67(2), 283–301. DOI: 10.1007/s12576-017-0521-4.
  • Wessels, I.; Maywald, M.; Rink, L. Nutrient Patterns Associated with Fasting Glucose and Glycated Haemoglobin Levels in a Black South African Population. Nutrients. 2017, 9(1), 9–12. DOI: 10.3390/nu9010009.
  • King, L. R.; Shames, J. C.; Woodhouse, D. M. Zinc Homeostasis in Humans. J. Nutr. 2000, 130(5), 1360S–1366S. DOI: 10.1093/jn/130.5.1360S.
  • Kim, M.; Son, D.; Choi, J. W.; Jae, J.; Suh, D. J.; Ha, J. M.; Lee, K. Y. Production of Phenolic Hydrocarbons Using Catalytic Depolymerization of Empty Fruit Bunch (EFB)-Derived Organosolv Lignin on Hβ-Supported Ru. Chem. Eng. J. 2017, 309, 187–196. DOI: 10.1016/j.cej.2016.10.011.
  • Wang, X.; Zhou, B. Dietary Zinc Absorption: A Play of Zips and ZnTs in the Gut. IUBMB Life. 2010, 62(3), 176–182. DOI: 10.1002/iub.291.
  • Lee, H. H.; Prasad, A. S.; Brewer, G. J.; Owyang, C. Zinc Absorption in Human Small Intestine. Am. J. Physiol. - Gastrointest. Liver Physiol. 1989, 256(1), G87–91. DOI: 10.1152/ajpgi.1989.256.1.g87.
  • Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. 2013, 18(2), 144–157.
  • Maares, M.; Haase, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of in vitro Intestinal Models. Nutrients. 2020, 12(3), 762. DOI: 10.3390/nu12030762.
  • Cho, C. H. Zinc- Absorption and Role in Gastrointestinal Metabolism and Disorders. Diges. Diseases. 1991, 9(1), 49–60. DOI: 10.1159/000171292.
  • Tran, C. D.; Miller, L. V.; Krebs, N. F.; Lei, S.; Hambidge, K. M. Zinc Absorption as a Function of the Dose of Zinc Sulfate in Aqueous Solution. Am. J. Clin. Nutr. 2004, 80(6), 1570–1573. DOI: 10.1093/ajcn/80.6.1570.
  • Sandström, B.; Davidsson, L.; Cederblad, Å.; Lönnerdal, B. Oral Iron, Dietary Ligands and Zinc Absorption. J. Nutr. 1985, 115(3), 411–414. DOI: 10.1093/jn/115.3.411.
  • Lönnerdal, B.; Sandberg, A. -S.; Sandström, B.; Kunz, C. Inhibitory Effects of Phytic Acid and Other Inositol Phosphates on Zinc and Calcium Absorption in Suckling Rats. J. Nutr. 1989, 119(2), 211–214. DOI: 10.1093/jn/119.2.211.
  • Sandstrom, B.; Sandberg, A. S. Inhibitory Effects of Isolated Inositol Phosphates on Zinc Absorption in Humans. J. Trace Elem. Electrolytes Health Dis. 1992, 6(2), 99–103.
  • Kim, E. Y.; Pai, T. K.; Han, O. Effect of Bioactive Dietary Polyphenols on Zinc Transport Across the Intestinal Caco-2 Cell Monolayers. J. Agric. Food. Chem. 2011, 59(8), 3606–3612. DOI: 10.1021/jf104260j.
  • Coudray, C.; Bousset, C.; Tressol, J. C.; Pépin, D.; Rayssiguier, Y. Short-Term Ingestion of Chlorogenic or Caffeic Acids Decreases Zinc but Not Copper Absorption in Rats, Utilization of Stable Isotopes and Inductively-Coupled Plasma Mass Spectrometry Technique. Br. J. Nutr. 1998, 80(6), 575–584. DOI: 10.1017/S0007114598001676.
  • Ganji, V.; Kies, C. V. Zinc Bioavailability and Tea Consumption. Plant Foods Hum. Nutr. 1994, 46(3), 267–276. DOI: 10.1007/BF01088999.
  • Sreenivasulu, K.; Raghu, P.; Nair, K. M. Polyphenol-Rich Beverages Enhance Zinc Uptake and Metallothionein Expression in Caco-2 Cells. J. Food Sci. 2010, 75(4), H123–128. DOI: 10.1111/j.1750-3841.2010.01582.x.
  • Coudray, C.; Tressol, J. C.; Feillet-Coudray, C.; Bellanger, J.; Pépin, D.; Mazur, A. Long-Term Consumption of Red Wine Does Not Modify Intestinal Absorption or Status of Zinc and Copper in Rats. J. Nutr. 2000, 130(5), 1309–1313. DOI: 10.1093/jn/130.5.1309.
  • Scheibel, M. S.; Mehta, T. Effect of Dietary Fiber on Bioavailability of Zinc and Copper and Histology in Rats. Nutr. Res. 1985, 5(1), 81–93. DOI: 10.1016/S0271-5317(85)80021-X.
  • Sandstrom, B.; Arvidsson, B.; Cederblad, A.; Bjorn-Rasmussen, E. Zinc Absorption from Composite Meals I. The Significance of Wheat Extraction Rate, Zinc, Calcium, and Protein Content in Meals Based on Bread. Am. J. Clin. Nutr. 1980, 33(4), 739–745. DOI: 10.1093/ajcn/33.4.739.
  • Sandstrom, B.; Cederblad, A. Zinc Absorption from Composite Meals II. Influence of the Main Protein Source. Am. J. Clin. Nutr. 1980, 33(8), 1778–1783. DOI: 10.1093/ajcn/33.8.1778.
  • Ballini, A.; Gnoni, A.; Vito, D. D. E.; Dipalma, G.; Cantore, S.; Gargiulo Isacco, C.; Saini, R.; Santacroce, L.; Topi, S.; Scarano, A., et al. Effect of Probiotics on the Occurrence of Nutrition Absorption Capacities in Healthy Children: A Randomized Double-Blinded Placebo-Controlled Pilot Study. Eu.R Rev. Med. Pharmacol. Sci. 2019, 23(19), 8645–8657. DOI: 10.26355/eurrev_201910_19182.
  • Donangelo, C. M.; Zapata, C. L. V.; Woodhouse, L. R.; Shames, D. M.; Mukherjea, R.; King, J. C. Zinc Absorption and Kinetics During Pregnancy and Lactation in Brazilian Women. Am. J. Clin. Nutr. 2005, 82(1), 118–124. DOI: 10.1093/ajcn/82.1.118.
  • Taylor, C. M.; Bacon, J. R.; Aggett, P. J.; Bremner, I. Homeostatic Regulation of Zinc Absorption and Endogenous Losses in Zinc-Deprived Men. Am. J. Clin. Nutr. 1991, 53(3), 755–763. DOI: 10.1093/ajcn/53.3.755.
  • Quihui, L.; Morales, G. G.; Méndez, R. O.; Leyva, J. G.; Esparza, J.; Valencia, M. E. Could giardiasis be a risk factor for low zinc status in schoolchildren from northwestern Mexico? A cross-sectional study with longitudinal follow-up. BMC Public Health. 2010, 10(1), 85. DOI: 10.1186/1471-2458-10-85.
  • Filippi, J.; Al-Jaouni, R.; Wiroth, J. B.; Hébuterne, X.; Schneider, S. M. Nutritional Deficiencies in Patients with Crohnʼs Disease in Remission. Inflamm. Bowel Dis. 2006, 12(3), 185–191. DOI: 10.1097/01.MIB.0000206541.15963.c3.
  • Santucci, N. R.; Alkhouri, R. H.; Baker, R. D.; Baker, S. S. Vitamin and Zinc Status Pretreatment and Posttreatment in Patients with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2014, 59(4), 455–457. DOI: 10.1097/MPG.0000000000000477.
  • Olivares, J. L.; Fernández, R.; Fleta, J.; Rodríguez, G.; Clavel, A. Serum Mineral Levels in Children with Intestinal Parasitic Infection. Dig. Dis. 2003, 21(3), 258–261. DOI: 10.1159/000073344.
  • Arbabi, M.; Esmaili, N.; Parastouei, K.; Hooshyar, H.; Rasti, S. Levels of Zinc, Copper, Magnesium Elements, and Vitamin B12, in Sera of Schoolchildren with Giardiasis and Entrobiosis in Kashan, Iran. Zahedan J. Res. Med. Sci. 2015, 17(11), 1–4. DOI: 10.17795/zjrms-3659.
  • Valberg, L. S.; Flanagan, P. R.; Kertesz, A.; Bondy, D. C. Zinc Absorption in Inflammatory Bowel Disease. Dig. Dis. Sci. 1986, 31(7), 724–731. DOI: 10.1007/BF01296450.
  • Solomons, N. W. Dietary Sources of Zinc and Factors Affecting Its Bioavailability. Food Nutr. Bull. 2001, 22(2), 138–154. DOI: 10.1177/156482650102200204.
  • Lönnerdal, B. Dietary Factors Influencing Zinc Absorption. J. Nutr. 2000, 130(5), 1378–1383. DOI: 10.1093/jn/130.5.1378S.
  • Katimba, H. A.; Wang, R.; Cheng, C. Current Findings Support the Potential Use of Bioactive Peptides in Enhancing Zinc Absorption in Humans. Crit. Rev. Food Sci. Nutr. 2021, 0, 1–21. DOI: 10.1080/10408398.2021.1996328.
  • Knudsen, E.; Sandstrom, B.; Solgaard, P. Zinc, Copper and Magnesium Absorption from a Fibre-Rich Diet. J. Trace Elem. Med. Biol. 1996, 10(2), 68–76. DOI: 10.1016/S0946-672X(96)80014-9.
  • Gupta, R. K.; Gangoliya, S. S.; Singh, N. K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52(2), 676–684. DOI: 10.1007/s13197-013-0978-y.
  • B, K.; Coulibaly Abdoulaye, C. J. Phytic Acid in Cereal Grains: Structure, Healthy or Harmful Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. Am. J. Plant Nutr. Fertil. Technol. 2011, 1, 1–22.
  • Otegui, M. S.; Capp, R.; Staehelin, L. A. Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum. The Plant Cell. 2002, 14(6), 1311–1327. DOI: 10.1105/tpc.010486.
  • Crea, F.; De Stefano, C.; Milea, D.; Sammartano, S. Formation and Stability of Phytate Complexes in Solution. Coord. Chem. Rev. 2008, 252(10–11), 1108–1120. DOI: 10.1016/j.ccr.2007.09.008.
  • Schlemmer, U.; Frølich, W.; Prieto, R. M.; Grases, F. Phytate in Foods and Significance for Humans: Food Sources, Intake, Processing, Bioavailability, Protective Role and Analysis. Mol. Nutr Food Res. 2009, 53(S2), S330–375. DOI: 10.1002/mnfr.200900099.
  • Larsson, M.; Rossander-Hulthén, L.; Sandström, B.; Sandberg, A. -S. Improved Zinc and Iron Absorption from Breakfast Meals Containing Malted Oats with Reduced Phytate Content. Br. J. Nutr. 1996, 76(5), 677–688. DOI: 10.1079/BJN19960075.
  • Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016, 21(7), 901. DOI: 10.3390/molecules21070901.
  • Seifzadeh, N.; Ali Sahari, M.; Barzegar, M.; Ahmadi Gavlighi, H.; Calani, L.; Del Rio, D.; Galaverna, G. Evaluation of Polyphenolic Compounds in Membrane Concentrated Pistachio Hull Extract. Food Chem. 2019, 277, 398–406. DOI: 10.1016/j.foodchem.2018.10.001.
  • Singla, R. K.; Dubey, A. K.; Garg, A.; Sharma, R. K.; Fiorino, M.; Ameen, S. M.; Haddad, M. A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102(5), 1397–1400. DOI: 10.5740/jaoacint.19-0133.
  • Lesjak, M.; Hoque, R.; Balesaria, S.; Skinner, V.; Debnam, E. S.; Srai, S. K. S.; Sharp, P. A. Quercetin Inhibits Intestinal Iron Absorption and Ferroportin Transporter Expression in vivo and in vitro. PLoS One. 2014, 9(7), 1–10. DOI: 10.1371/journal.pone.0102900.
  • Mascitelli, L.; Goldstein, M. R. Inhibition of Iron Absorption by Polyphenols as an Anti-Cancer Mechanism. Qjm. 2011, 104(5), 459–461. DOI: 10.1093/qjmed/hcq239.
  • Primikyri, A.; Mazzone, G.; Lekka, C.; Tzakos, A. G.; Russo, N.; Gerothanassis, I. P. Understanding Zinc(ii) Chelation with Quercetin and Luteolin: A Combined NMR and Theoretical Study. J. Phys. Chem B. 2015, 119(1), 83–95. DOI: 10.1021/jp509752s.
  • Xu, Y.; Qian, L. L.; Yang, J.; Han, R. M.; Zhang, J. P.; Skibsted, L. H. Kaempferol Binding to Zinc(ii), Efficient Radical Scavenging Through Increased Phenol Acidity. J. Phys. Chem B. 2018, 122(44), 10108–10117. DOI: 10.1021/acs.jpcb.8b08284.
  • Borowska, S.; Tomczyk, M.; Strawa, J. W.; Brzóska, M. M. Estimation of the Chelating Ability of an Extract from Aronia Melanocarpa L. Berries and Its Main Polyphenolic Ingredients Towards Ions of Zinc and Copper. Molecules. 2020, 25(7), 6–8. DOI: 10.3390/molecules25071507.
  • Dueik, V.; Chen, B. K.; Diosady, L. L. Iron-Polyphenol Interaction Reduces Iron Bioavailability in Fortified Tea: Competing Complexation to Ensure Iron Bioavailability. J. Food Qual. 2017, 2017, 1–7. DOI: 10.1155/2017/1805047.
  • Barry, J. -L.; Hoebler, C.; MacFarlane, G. T.; MacFarlane, S.; Mathers, J. C.; Reed, K. A.; Mortensen, P. B.; Nordgaard, I.; Rowland, I. R.; Rumney, C. J. Estimation of the Fermentability of Dietary Fibre in Vitro: A European Interlaboratory Study. Br. J. Nutr. 1995, 74(3), 303–322. DOI: 10.1079/BJN19950137.
  • Saikia, S.; Mahanta, C. L. In vitro Physicochemical, Phytochemical and Functional Properties of Fiber Rich Fractions Derived from By-Products of Six Fruits. J. Food Sci. Technol. 2016, 53(3), 1496–1504. DOI: 10.1007/s13197-015-2120-9.
  • Figuerola, F.; Hurtado, M. L.; Estévez, A. M.; Chiffelle, I.; Asenjo, F. Fibre Concentrates from Apple Pomace and Citrus Peel as Potential Fibre Sources for Food Enrichment. Food Chem. 2005, 91(3), 395–401. DOI: 10.1016/j.foodchem.2004.04.036.
  • Persson, H.; Nyman, M.; Liljeberg, H.; Önning, G.; Frølich, W. Binding of Mineral Elements by Dietary Fibre Components in Cereals—in Vitro (III). Food Chem. 1991, 40(2), 169–183. DOI: 10.1016/0308-8146(91)90100-3.
  • Nair, B. M.; Asp, N. G.; Nyman, M.; Persson, H. Binding of Mineral Elements by Some Dietary Fibre Components—in Vitro (I). Food Chem. 1987, 23(4), 295–303. DOI: 10.1016/0308-8146(87)90115-4.
  • Mariotti, F.; Gardner, C. D. Dietary Protein and Amino Acids in Vegetarian Diets—a Review. Nutrients. 2019, 11(11), 1–19. DOI: 10.3390/nu11112661.
  • Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients. 2019, 11(8), 1825. DOI: 10.3390/nu11081825.
  • Sillman, J.; Nygren, L.; Kahiluoto, H.; Ruuskanen, V.; Tamminen, A.; Bajamundi, C.; Nappa, M.; Wuokko, M.; Lindh, T.; Vainikka, P., et al. Bacterial Protein for Food and Feed Generated via Renewable Energy and Direct Air Capture of CO2: Can It Reduce Land and Water Use? Glob. Food Sec. 2019, 22, 25–32. DOI: 10.1016/j.gfs.2019.09.007.
  • Upadhyaya, S.; Tiwari, S.; Arora, N.; Singh, D. P. Microbes and Environmental Management; Singh, J. S. Ed. Studium Press, 2016; pp 260–279. DOI: 10.13140/RG.2.1.1775.8801.
  • Vonderheid, S. C.; Tussing-Humphreys, L.; Park, C.; Pauls, H.; Hemphill, N. O.; Labomascus, B.; McLeod, A.; Koenig, M. D. A Systematic Review and Meta-Analysis on the Effects of Probiotic Species on Iron Absorption and Iron Status. Nutrients. 2019, 11(12), 2938. DOI: 10.3390/nu11122938.
  • Markowiak, P.; Ślizewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017, 9(9), 1021. DOI: 10.3390/nu9091021.
  • Dudek-Wicher, R. K.; Junka, A.; Bartoszewicz, M. The Influence of Antibiotics and Dietary Components on Gut Microbiota. Prz. Gastroenterol. 2018, 13(2), 85–92. DOI: 10.5114/pg.2018.76005.
  • Yan, F.; Polk, D. B. Manipulation of the Innate Immune Response by Varicella Zoster Virus. Front. Immunol. 2020, 11, 1–12. DOI: 10.3389/fimmu.2020.00001.
  • Amara, A. A.; Shibl, A. Role of Probiotics in Health Improvement, Infection Control and Disease Treatment and Management. Saudi Pharm. J. 2015, 23(2), 107–114. DOI: 10.1016/j.jsps.2013.07.001.
  • Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E. M. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013, 2013, 1–7. DOI: 10.5402/2013/481651.
  • Moslehi-Jenabian, S.; Pedersen, L. L.; Jespersen, L. Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients. 2010, 2(4), 449–473. DOI: 10.3390/nu2040449.
  • Krebs, N. F. Overview of zinc absorption and excretion in the human gastrointestinal tract. International Workshop on Zinc and Health - Current Status and Future Directions, Bethesda, 2000, 130:1374S–1377S. DOI: 10.1093/jn/130.5.1374S.
  • Krebs, N. F. Zinc Supplementation During Lactation. Am. J. Clin. Nutr. 1998, 68(2), 509S–512S. DOI: 10.1093/ajcn/68.2.509S.
  • Donangelo, C. M.; King, J. C. Maternal Zinc Intakes and Homeostatic Adjustments During Pregnancy and Lactation. Nutrients. 2012, 4(7), 782–798. DOI: 10.3390/nu4070782.
  • Swanson, C. A.; King, J. C. Zinc and Pregnancy Outcome. Am. J. Clin. Nutr. 1987, 46(5), 763–771. DOI: 10.1093/ajcn/46.5.763.
  • Moser-Veillon, P. B. Zinc Needs and Homeostasis During Lactation. Analyst. 1995, 120(3), 895–897. DOI: 10.1039/an9952000895.
  • Caulfield, L. E.; Zavaleta, N.; Shankar, A. H.; Merialdi, M. Potential Contribution of Maternal Zinc Supplementation During Pregnancy to Maternal and Child Survival. Am. J. Clin. Nutr. 1998, 68(2), 499S–508S. DOI: 10.1093/ajcn/68.2.499S.
  • Chaffee, B. W.; King, J. C. Effect of Zinc Supplementation on Pregnancy and Infant Outcomes: A Systematic Review. Paediatr. Perinat. Epidemiol. 2012, 26, 118–137. DOI: 10.1111/j.1365-3016.2012.01289.x.
  • Rwebembera, A. A. B.; Munubhi, E. K. D.; Manji, K. P.; Mpembeni, R.; Philip, J. Relationship Between Infant Birth Weight <=2000 G and Maternal Zinc Levels at Muhimbili National Hospital, Dar Es Salaam, Tanzania. J. Trop. Pediatr. 2006, 52(2), 118–125. DOI: 10.1093/tropej/fmi077.
  • Badakhsh, M. H.; Khamseh, M. E.; Seifoddin, M.; Kashanian, M.; Malek, M.; Shafiee, G.; Baradaran, H. R. Impact of Maternal Zinc Status on Fetal Growth in an Iranian Pregnant Population. Gynecol. Endocrinol. 2011, 27(12), 1074–1076. DOI: 10.3109/09513590.2011.569792.
  • Sazawal, S.; Black, R. E.; Dhingra, P.; Jalla, S.; Krebs, N.; Malik, P.; Dhingra, U.; Bhan, M. K. Zinc Supplementation does not Affect the Breast Milk Zinc Concentration of Lactating Women Belonging to Low Socioeconomic Population. J. Hum. Nutr. Food Sci. 2013, 1, 1–6.
  • Keikha, M.; Shayan-Moghadam, R.; Bahreynian, M.; Kelishadi, R. Nutritional Supplements and Mother’s Milk Composition: A Systematic Review of Interventional Studies. Int. Breastfeed. J. 2021, 16(1), 1–30. DOI: 10.1186/s13006-020-00354-0.
  • Jarmakiewicz-Czaja, S.; Piątek, D.; Filip, R. The Influence of Nutrients on Inflammatory Bowel Diseases. J. Nutr. Metab. 2020, 2020, 1–14. DOI: 10.1155/2020/2894169.
  • M’koma, A. E. Inflammatory Bowel Disease: An Expanding Global Health Problem. Clin. Med. Insights Gastroenterol. 2013, 6, 33–47. DOI: 10.4137/CGast.S12731.
  • Kilby, K.; Mathias, H.; Boisvenue, L.; Heisler, C.; Jones, J. L. Micronutrient Absorption and Related Outcomes in People with Inflammatory Bowel Disease: A Review. Nutrients. 2019, 11(6), 1–18. DOI: 10.3390/nu11061388.
  • Han, Y. M.; Yoon, H.; Lim, S.; Sung, M. K.; Shin, C. M.; Park, Y. S.; Kim, N.; Lee, D. H.; Kim, J. S. Risk Factors for Vitamin D, Zinc, and Selenium Deficiencies in Korean Patients with Inflammatory Bowel Disease. Gut Liver. 2017, 11(3), 363–369. DOI: 10.5009/gnl16333.
  • Luo, Y.; Xie, W. Effect of Soaking and Sprouting on Iron and Zinc Availability in Green and White Faba Bean (Vicia Faba L.). J. Food Sci. Technol. 2014, 51(12), 3970–3976. DOI: 10.1007/s13197-012-0921-7.
  • Bell, V.; Ferrão, J.; Fernandes, T. Improving Bread Quality with the Application of a Newly Purified Thermostable α-Amylase from Rhizopus Oryzae FSIS4. Foods. 2017, 6(1), 1–17. DOI: 10.3390/foods6010001.
  • Castro-Alba, V.; Lazarte, C. E.; Perez-Rea, D.; Carlsson, N. G.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Fermentation of Pseudocereals Quinoa, Canihua, and Amaranth to Improve Mineral Accessibility Through Degradation of Phytate. J. Sci. Food Agric. 2019, 99(11), 5239–5248. DOI: 10.1002/jsfa.9793.
  • Tsafrakidou, P.; Michaelidou, A. M.; Biliaderis, C. G. Fermented Cereal-Based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods. 2020, 9(6), 734. DOI: 10.3390/FOODS9060734.
  • Konietzny, U.; Greiner, R. Molecular and Catalytic Properties of Phytate-Degrading Enzymes (Phytases). Int. J. Food Sci. Technol. 2002, 37(7), 791–812. DOI: 10.1046/j.1365-2621.2002.00617.x.
  • Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and Enzyme Treatment of Tannin Sorghum Gruels: Effects on Phenolic Compounds, Phytate and in vitro Accessible Iron. Food Chem. 2006, 94(3), 369–376. DOI: 10.1016/j.foodchem.2004.11.027.
  • Sandberg, A. -S. Bioavailability of Minerals in Legumes. Br. J. Nutr. 2002, 88(S3), 281–285. DOI: 10.1079/BJN/2002718.
  • Khetarpaul, N.; Chauhan, B. M. Effect of Fermentation by Pure Cultures of Yeasts and Lactobacilli on Phytic Acid and Polyphenol Content of Pearl Millet. J. Food Sci. 1989, 54(3), 780–781. DOI: 10.1111/j.1365-2621.1989.tb04712.x.
  • Afify, A. E. M. M. R.; El-Beltagi, H. S.; El-Salam, S. M. A.; Omran, A. A. Bioavailability of Iron, Zinc, Phytate and Phytase Activity During Soaking and Germination of White Sorghum Varieties. PLoS One. 2011, 6(10), 1–7. DOI: 10.1371/journal.pone.0025512.
  • Lestienne, I.; Icard-Vernière, C.; Mouquet, C.; Picq, C.; Trèche, S. Effects of Soaking Whole Cereal and Legume Seeds on Iron, Zinc and Phytate Contents. Food Chem. 2005, 89(3), 421–425. DOI: 10.1016/j.foodchem.2004.03.040.
  • Albarracín, M.; González, R. J.; Drago, S. R. Effect of Soaking Process on Nutrient Bio-Accessibility and Phytic Acid Content of Brown Rice Cultivar. LWT. 2013, 53(1), 76–80. DOI: 10.1016/j.lwt.2013.01.029.
  • El-Hady, E. A. A.; Habiba, R. A. Effect of Soaking and Extrusion Conditions on Antinutrients and Protein Digestibility of Legume Seeds. LWT. 2003, 36(3), 285–293. DOI: 10.1016/S0023-6438(02)00217-7.
  • Liang, J.; Han, B. Z.; Nout, M. J. R.; Hamer, R. J. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem. 2008, 110(4), 821–828. DOI: 10.1016/j.foodchem.2008.02.064.
  • Kumari, S.; Krishnan, V.; Jolly, M.; Sachdev, A. In vivo bioavailability of essential minerals and phytase activity during soaking and germination in soybean (Glycine max L.). Aust. J. Crop Sci. 2014, 8, 1168–1174.
  • Raes, K.; Knockaert, D.; Struijs, K.; Van Camp, J. Role of Processing on Bioaccessibility of Minerals: Influence of Localization of Minerals and Anti-Nutritional Factors in the Plant. Trends Food Sci. Technol. 2014, 37(1), 32–41. DOI: 10.1016/j.tifs.2014.02.002.
  • Azeke, M. A.; Egielewa, S. J.; Eigbogbo, M. U.; Ihimire, I. G. Effect of Germination on the Phytase Activity, Phytate and Total Phosphorus Contents of Rice (Oryza Sativa), Maize (Zea Mays), Millet (Panicum Miliaceum), Sorghum (Sorghum Bicolor) and Wheat (Triticum Aestivum). J. Food Sci. Technol. 2011, 48(6), 724–729. DOI: 10.1007/s13197-010-0186-y.
  • Luo, Y.; Xie, W.; Cui, Q. Effects of Phytases and Dehulling Treatments on in vitro Iron and Zinc Bioavailability in Faba Bean (Vicia fabaL.) Flour and Legume Fractions. J. Food Sci. 2010, 75(2), C191–198. DOI: 10.1111/j.1750-3841.2009.01490.x.
  • Ghavidel, R. A.; Prakash, J. The Impact of Germination and Dehulling on Nutrients, Antinutrients, in vitro Iron and Calcium Bioavailability and in vitro Starch and Protein Digestibility of Some Legume Seeds. LWT. 2007, 40(7), 1292–1299. DOI: 10.1016/j.lwt.2006.08.002.
  • Hemalatha, S.; Platel, K.; Srinivasan, K. Influence of Germination and Fermentation on Bioaccessibility of Zinc and Iron from Food Grains. Eur. J. Clin. Nutr. 2007, 61(3), 342–348. DOI: 10.1038/sj.ejcn.1602524.
  • Ribeiro, N. D.; Maziero, S. M.; Prigol, M.; Nogueira, C. W.; Rosa, D. P.; Possobom, M. T. D. F. Mineral Concentrations in the Embryo and Seed Coat of Common Bean Cultivars. J. Food Compos. Anal. 2012, 26(1–2), 89–95. DOI: 10.1016/j.jfca.2012.03.003.
  • Klepacka, J.; Najda, A.; Klimek, K. Effect of Buckwheat Groats Processing on the Content and Bioaccessibility of Selected Minerals. Foods. 2020, 9(6), 832. DOI: 10.3390/foods9060832.
  • Gibson, R. S.; Bailey, K. B.; Gibbs, M.; Ferguson, E. L. A Review of Phytate, Iron, Zinc, and Calcium Concentrations in Plant-Based Complementary Foods Used in Low-Income Countries and Implications for Bioavailability. Food Nutr. Bull. 2010, 31(2_suppl2), 134–146. DOI: 10.1177/15648265100312S206.
  • Sreerama, Y. N.; Neelam, D. A.; Sashikala, V. B.; Pratape, V. M. Distribution of Nutrients and Antinutrients in Milled Fractions of Chickpea and Horse Gram: Seed Coat Phenolics and Their Distinct Modes of Enzyme Inhibition. J. Agric. Food. Chem. 2010, 58(7), 4322–4330. DOI: 10.1021/jf903101k.
  • Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S. A. An Electrochemical-Amplified-Platform Based on the Nanostructure Voltammetric Sensor for the Determination of Carmoisine in the Presence of Tartrazine in Dried Fruit and Soft Drink Samples. J. Food Meas. Charact. 2018, 12(1), 634–640. DOI: 10.1007/s11694-017-9676-1.
  • van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P. R.; Eisenbrand, G. A Review on the Beneficial Aspects of Food Processing. Mol. Nutr Food Res. 2010, 54(9), 1215–1247. DOI: 10.1002/mnfr.200900608.
  • Inyang Udousoro, I.; Ekop, R. U.; Johnson Udo, E. Effect of Thermal Processing on Antinutrients in Common Edible Green Leafy Vegetables Grown in Ikot Abasi, Nigeria. Pakistan J. Nutr. 2013, 12(2), 162–167. DOI: 10.3923/pjn.2013.162.167.
  • Njoki, J. W.; Sila, D. N.; Onyango, A. N. Impact of Processing Techniques on Nutrient and Anti-Nutrient Content of Grain Amaranth (A. albus). Food Sci. Qual. Manage. 2014, 25, 10–17.
  • Rehman, Z. U.; Shah, W. H. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chem. 2005, 91(2), 327–331. DOI: 10.1016/j.foodchem.2004.06.019.
  • Zia-Ur-Rehman, W. H. S. Domestic processing effects on some insoluble dietary fibre components of various food legumes Zia-ur-Rehman. Food Chem. 2004, 87(4), 613–617. DOI: 10.1016/j.foodchem.2004.01.012.
  • Arinola, S. O.; Adesina, K. Effect of Thermal Processing on the Nutritional, Antinutritional, and Antioxidant Properties of Tetracarpidium Conophorum (African Walnut). J. Food Process. 2014, 2014, 1–4. DOI: 10.1155/2014/418380.
  • Kataria, A.; Sharma, S.; Singh, A.; Singh, B. Effect of Hydrothermal and Thermal Processing on the Antioxidative, Antinutritional and Functional Characteristics of Salvia Hispanica. J. Food Meas. Charact. 2022, 16(1), 332–343. DOI: 10.1007/s11694-021-01161-9.
  • Sharma, S.; Singh, A.; Sharma, U.; Kumar, R.; Yadav, N. Effect of thermal processing on anti nutritional factors and in vitro bioavailability of minerals in desi and kabuli cultivars of chick pea grown in north India. Legum. Res. 2018, 41, 267–274.
  • Kutoš, T.; Golob, T.; Kač, M.; Plestenjak, A. Dietary Fibre Content of Dry and Processed Beans. Food Chem. 2003, 80(2), 231–235. DOI: 10.1016/S0308-8146(02)00258-3.
  • Punna, R.; Paruchuri, U. R. Effect of Maturity and Processing on Total, Insoluble and Soluble Dietary Fiber Contents of Indian Green Leafy Vegetables. Int. J. Food Sci. Nutr. 2004, 55(7), 561–567. DOI: 10.1080/09637480500126418.
  • Koszucka, A.; Nowak, A. Thermal Processing Food-Related Toxicants: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59(22), 3579–3596. DOI: 10.1080/10408398.2018.1500440.
  • Vallejo, L. H.; Buendía, G.; Elghandour, M. M. M. Y.; Menezes-Blackburn, D.; Greiner, R.; Salem, A. Z. M. The Effect of Exogenous Phytase Supplementation on Nutrient Digestibility, Ruminal Fermentation and Phosphorous Bioavailability in Rambouillet Sheep. J. Sci. Food Agric. 2018, 98(13), 5089–5094. DOI: 10.1002/jsfa.9047.
  • Jatuwong, K.; Suwannarach, N.; Kumla, J.; Penkhrue, W.; Kakumyan, P.; Lumyong, S. Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Front. Microbiol. 2020, 11, 1–18. DOI: 10.3389/fmicb.2020.00188.
  • Maas, R. M.; Verdegem, M. C. J.; Stevens, T. L.; Schrama, J. W. Effect of Exogenous Enzymes (Phytase and Xylanase) Supplementation on Nutrient Digestibility and Growth Performance of Nile Tilapia (Oreochromis Niloticus) Fed Different Quality Diets. Aquaculture. 2020, 529, 735723. DOI: 10.1016/j.aquaculture.2020.735723.
  • Farhadi, D.; Karimi, A.; Sadeghi, A. A.; Rostamzadeh, J.; Bedford, M. R. Effect of a High Dose of Exogenous Phytase and Supplementary Myo-Inositol on Mineral Solubility of Broiler Digesta and Diets Subjected to in vitro Digestion Assay. Poult. Sci. 2019, 98(9), 3870–3883. DOI: 10.3382/ps/pez104.
  • Hirvonen, J.; Liljavirta, J.; Saarinen, M. T.; Lehtinen, M. J.; Ahonen, I. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of myo-Inositol Phosphate Esters in Various Feed Materials. J. Agric. Food. Chem. 2019, 67, 11396–11402. doi: 10.1021/acs.jafc.9b03919.
  • Bilgiçli, N.; Elgün, A.; Türker, S. Effects of various phytase sources on phytic acid content, mineral extractability and protein digestibility of tarhana. Food Chem. 2006, 98(2), 329–337. DOI: 10.1016/j.foodchem.2005.05.078.
  • Haros, M.; Rosell, C. M.; Benedito, C. Fungal Phytase as a Potential Breadmaking Additive. Eur. Food Res. Technol. 2001, 213(4–5), 317–322. DOI: 10.1007/s002170100396.
  • Hurrell, R. F.; Reddy, M. B.; Juillerat, M. A.; Cook, J. D. Degradation of Phytic Acid in Cereal Porridges Improves Iron Absorption by Human Subjects. Am. J. Clin. Nutr. 2003, 77(5), 1213–1219. DOI: 10.1093/ajcn/77.5.1213.
  • Méndez-Carmona, J. Y.; Ascacio-Valdés, J. A.; Aguilar, C. N. Enzyme technology for production of food ingredients and functional foods J.Y. Value-Addition in Food Products and Processing Through Enzyme Technology; Academic Press: London, 2021; pp 1–11. DOI: 10.1016/B978-0-323-89929-1.00002-0.
  • Schons, P. F.; Ries, E. F.; Battestin, V.; Macedo, G. A. Effect of Enzymatic Treatment on Tannins and Phytate in Sorghum (Sorghum Bicolor) and Its Nutritional Study in Rats. Int. J. Food Sci. Technol. 2011, 46(6), 1253–1258. DOI: 10.1111/j.1365-2621.2011.02620.x.
  • Weihua, X.; Miao, Z.; Jing, L.; Chuanxi, X.; Yuwei, L. Effects of phytase and tannase on in vivo nutruitive utilisation of faba bean (Vicia faba L.) flour. Int. Food Res. J. 2015, 22(4), 1550–1556.
  • Cousins, R. J. Gastrointestinal Factors Influencing Zinc Absorption and Homeostasis. Int. J. Vitam. Nutr. Res. 2010, 80(4–5), 243–248 . DOI: 10.1024/0300-9831/a000030.
  • Kasana, S.; Din, J.; Maret, W. Genetic Causes and Gene–Nutrient Interactions in Mammalian Zinc Deficiencies: Acrodermatitis Enteropathica and Transient Neonatal Zinc Deficiency as Examples. J. Trace Elem. Med. Biol. 2015, 29, 47–62. DOI: 10.1016/j.jtemb.2014.10.003.
  • Saritha, L.; Gupta, D.; Chandrashekar, M.; Thappa, D. M.; Rajesh, N. G. Acquired Zinc Deficiency in an Adult Female. Indian J. Dermatol. 2012, 57(6), 492–494. DOI: 10.4103/0019-5154.103073.
  • Nishito, Y.; Kambe, T. Zinc Transporter 1 (ZNT1) Expression on the Cell Surface is Elaborately Controlled by Cellular Zinc Levels. J. Biol. Chem. 2019, 294(43), 15686–15697. DOI: 10.1074/jbc.RA119.010227.
  • Cragg, R. A.; Phillips, S. R.; Piper, J. M.; Varma, J. S.; Campbell, F. C.; Mathers, J. C.; Ford, D. Homeostatic Regulation of Zinc Transporters in the Human Small Intestine by Dietary Zinc Supplementation. Gut. 2005, 54(4), 469–478. DOI: 10.1136/gut.2004.041962.
  • Eide, D. J. Zinc Transporters and the Cellular Trafficking of Zinc. Biochim. Biophys. Acta - Mol. Cell Res. 2006, 1763(7), 711–722. DOI: 10.1016/j.bbamcr.2006.03.005.
  • Dufner-Beattie, J.; Kuo, Y. M.; Gitschier, J.; Andrews, G. K. The Adaptive Response to Dietary Zinc in Mice Involves the Differential Cellular Localization and Zinc Regulation of the Zinc Transporters ZIP4 and ZIP5. J. Biol. Chem. 2004, 279(47), 49082–49090. DOI: 10.1074/jbc.M409962200.
  • Aydemir, T. B.; Cousins, R. J. The Multiple Faces of the Metal Transporter ZIP14 (SLC39A14). J. Nutr. 2018, 148(2), 174–184. DOI: 10.1093/jn/nxx041.
  • Landowski, C. P.; Suzuki, Y.; Hediger, M. A. Seldin and Giebisch's The Kidney:Physiology & Pathophysiology; London: Academic Press. 2007 The Mammalian Transporter Families
  • Bosco, M. D.; Mohanasundaram, D. M.; Drogemuller, C. J.; Lang, C. J.; Zalewski, P. D.; Coates, P. T. Zinc and Zinc Transporter Regulation in Pancreatic Islets and the Potential Role of Zinc in Islet Transplantation. Rev. Diabet. Stud. 2010, 7(4), 263–274. DOI: 10.1900/RDS.2010.7.263.
  • Baltaci, A. K.; Yuce, K.; Mogulkoc, R. Zinc Metabolism and Metallothioneins. Biol. Trace Elem. Res. 2018, 183(1), 22–31. DOI: 10.1007/s12011-017-1119-7.
  • Rahman, M. T.; Haque, N.; Abu Kasim, N. H.; De Ley, M. Origin, Function, and Fate of Metallothionein in Human Blood. Rev. Physiol. Biochem. Pharmacol. 2017, 173, 41–62. DOI: 10.1007/112_2017_1.
  • Lu, J.; Jin, T.; Nordberg, G. F.; Nordberg, M. Cell Stress Chaperones. Cell Stress & Chaperones. 2001, 6(2), 97–104. DOI: 10.1379/1466-1268(2001)006<0097:MGEIPL>2.0.CO;2.
  • Ohashi, W.; Hara, T.; Takagishi, T.; Hase, K.; Fukada, T. Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters. Dig. Dis. Sci. 2019, 64(9), 2404–2415. DOI: 10.1007/s10620-019-05561-2.
  • Liuzzi, J. P.; Cousins, R. J. Mammalian Zinc Transporters. Annu. Rev. Nutr. 2004, 24(1), 151–172. DOI: 10.1146/annurev.nutr.24.012003.132402.
  • Nistor, N.; Ciontu, L.; Frasinariu, O. E.; Lupu, V. V.; Ignat, A.; Streanga, V. Acrodermatitis Enteropathica A Case Report. Medicine. 2016, 95(20), 1–4. DOI: 10.1097/MD.0000000000003553.
  • Lie, E.; Sung, S.; Yang, S. H. Adult autoimmune enteropathy presenting initially with acquired Acrodermatitis Enteropathica: a case report. BMC Dermatol. 2017, 17(1), 1–6. DOI: 10.1186/s12895-017-0059-4.
  • Maverakis, E.; Fung, M. A.; Lynch, P. J.; Draznin, M.; Michael, D. J.; Ruben, B.; Fazel, N. Acrodermatitis Enteropathica and an Overview of Zinc Metabolism. J. Am. Acad. Dermatol. 2007, 56(1), 116–124. DOI: 10.1016/j.jaad.2006.08.015.
  • Miletta, M. C.; Bieri, A.; Kernland, K.; Schöni, M. H.; Petkovic, V.; Flück, C. E.; Eblé, A.; Mullis, P. E. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn 2+ for Normal Growth and Development. Int. J. Endocrinol. 2013, 2013, 1–8. DOI: 10.1155/2013/259189.
  • Watson, L.; Cartwright, D.; Jardine, L. A.; Pincus, D.; Koorts, P.; Kury, S.; Bezieau, S.; George, S.; Moloney, S.; Holt, J., et al. Transient Neonatal Zinc Deficiency in Exclusively Breastfed Preterm Infants. J. Paediatr. Child Health. 2018, 54(3), 319–322. DOI: 10.1111/jpc.13780.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.