316
Views
1
CrossRef citations to date
0
Altmetric
Review

Flash Vacuum Expansion: Effect on Physicochemical, Biochemical and Sensory Parameters in Fruit Processing

, , , , ORCID Icon, & show all

References

  • Meijer, G. W.; Lähteenmäki, L.; Stadler, R. H.; Weiss, J. Issues Surrounding Consumer Trust and Acceptance of Existing and Emerging Food Processing Technologies. Crit. Rev. Food Sci. Nutr. 2021, 61(1), 97–115. DOI: 10.1080/10408398.2020.1718597.
  • Butz, P.; Tauscher, B. Emerging Technologies: Chemical Aspects. Food. Res. Int. 2002, 35(2–3), 279–284. DOI: 10.1016/S0963-9969(01)00197-1.
  • Ghoshal, G. Emerging Food Processing Technologies. In Food Processing for Increased Quality and Consumption; Academic Press: London, UK, 2018; pp. 29–65.
  • Frewer, L. J. Consumer Acceptance and Rejection of Emerging Agrifood Technologies and Their Applications. Eur. Rev. Agric. Econ. 2017, 44(4), 683–704. DOI: 10.1093/erae/jbx007.
  • Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A. M.; Rathod, N. B.; Bader, F.; Barba, F. J.; Biancolillo, A.; Cropotova, J.; Galanakis, C. M.; Jambrak, A. R., et al. The Fourth Industrial Revolution in the Food Industry—part I: Industry 4.0 Technologies. Crit. Rev. Food Sci. Nutr. 2022, 1–17. DOI:10.1080/10408398.2022.2034735.
  • Toledo, R. T.; Singh, R. K.; Kong, F. Emerging Food Processing Technologies BT - Fundamentals of Food Process Engineering. In Fundamentals of Food Process Engineering, Heldman, Dennis., ed.; Springer International Publishing: Cham, 2018; pp. 403–422.
  • Jermann, C.; Koutchma, T.; Margas, E.; Leadley, C.; Ros-Polski, V. Mapping Trends in Novel and Emerging Food Processing Technologies Around the World. Innovative Food Sci. Emerging Technol. 2015, 31, 14–27. DOI: 10.1016/j.ifset.2015.06.007.
  • Priyadarshini, A.; Rajauria, G.; O’donnell, C. P.; Tiwari, B. K. Emerging Food Processing Technologies and Factors Impacting Their Industrial Adoption. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3082–3101. DOI: 10.1080/10408398.2018.1483890.
  • Hassoun, A.; Bekhit, A. E.; Jambrak, A. R.; Regenstein, J. M.; Chemat, F.; Morton, J. D.; Gudj ́onsd ́ottir, Prieto, M.; Carpena, M.; Varela, A.; Varela, P.; Arshad, R. N. Gudj ́onsd ́ottir et al. The Fourth Industrial Revolution in the Food Industry—part II: Emerging Food Trends. Crit. Rev. Food Sci. Nutr. 2022, 1–31. 10.1080/10408398.2022.2106472
  • Perrea, T.; Grunert, K. G.; Krystallis, A. Consumer Value Perceptions of Food Products from Emerging Processing Technologies: A Cross-Cultural Exploration. Food Qual. Prefer. 2015, 39, 95–108. DOI: 10.1016/j.foodqual.2014.06.009.
  • Lee, S. H.; Choi, W.; Jun, S. Conventional and Emerging Combination Technologies for Food Processing. Food Eng. Rev. 2016, 8(4), 414–434. DOI: 10.1007/s12393-016-9145-3.
  • Lavilla, M.; Gayán, E. Consumer Acceptance and Marketing of Foods Processed Through Emerging Technologies. In Innovative Technologies for Food Preservation, Barba, F., Sant'Ana, A., Orlien, V., Koubaa, M. eds.; Academic Press: Valencia, Spain, 2018; pp. 233–253.
  • Galanakis, C. M. Functionality of Food Components and Emerging Technologies. Foods. 2021, 10(1), 128. DOI: 10.3390/foods10010128.
  • Brat, P.; Olle, D.; Gancel, A. L.; Reynes, M.; Brillouet, J. M. Essential Oils Obtained by Flash Vacuum-Expansion of Peles from Lemon, Sweet Orange, Mandarin and Grapefruit. Cirad/EDP Sciences. Fruits. 2001, 56(6), 395–402. DOI: 10.1051/fruits:2001102.
  • Brat, P. Application of Flash Release, a New Extraction Procedure (Juice, Pulp, Essential Oil). Fruitrop. 2001, 85, 11–13.
  • Vargas-Ortiz, M.; Servent, A.; Salgado-Cervantes, M.; Pallet, D. Stability of the Lipid Fraction of Avocado Puree Obtained by Flash Vacuum-Expansion Process. Innovative Food Sci. Emerging Technol. 2017, 41, 109–116. DOI: 10.1016/j.ifset.2017.02.016.
  • Pieribattesti, J. C.; Hunez, M.; Cogat, P. O. = Procédé et matériel pour l´extraction de jus et d´arômes á partir de substrats végétaux, possibilités de traitements complémentaires sur le meme matériel. 8814311, May 04, 1990.
  • Cogat, P. O. Apparatus for Separating Biochemical Compounds from Biological Substances. U.S. Patent Document. 1989.
  • Cogat, P. O. Installation pour extarire, concentrer et classer des composés biochimiques á partir de substances biologiques végetales ou animales; Allemagne, Brevet n° EP 0570306B1; Office Européen des Brevets: Munich, 1993.
  • Cogat, P. O.; Brillouet, J. M.; Reynes, M.; Cogat, P. O.; Ollé, D. Dispositif additionnel au matériel de chauffage-refroidissement sous vide permettant de gérer les liquides afin d´éviter la dilution par de l´eau exogéne et afin d´assurer la pre-concentration des matiéres. FR9313286A, November 08, 1993.
  • Cogat, P. O. Inventor, Aurore Développement, assignee. Installation pour le traitement de matières biologiques hydratées. European Patent Office, Munich, Germany. European patent, EP 0,727,948 B1, n° PCT/FR94/01297. 1994.
  • Cogat, P. O. Procédé et equipements d´impegnation de matiéres solides organiques fibreuses, par vaporisation sous vide de l´eau de cosntitution et injection en contrepression d´une solution. Institud National de la Propriété Industrielle, Paris, France. Brevet, n° 9505014. 1995.
  • Cogat, P. O. Procédé pour l´impregnation de matiéres organiques fibreuses hydratées, et installations pour la mise en oeuvre de ce procédé. Organisation Mondiale de la propriété Intellectuelle, Genéve, Suisse. WO98/04391, November 01, 1996.
  • Goldstein, R. J.; Eckert, E. R. G.; Ibele, W. E.; Patankar, S. V.; Simon, T. W.; Kuehn, T. H.; Strykoski, P. J.; Tamma, K. K.; Bar-Cohen, A.; Heberlein, J. V. R., et al. Heat Transfer—a Review of 2003 Literature. Int. J. Heat Mass Transfer. 2005, 49(3–4), 451–534.
  • Kumar, P.; Franzese, G.; Eugene Stanley, H. Dynamics and Thermodynamics of Water. Phys.: Condens. Matter. 2008, 20(24), 244144. DOI: 10.1088/0953-8984/20/24/244114.
  • Raven, J. A. The Role of Vacuoles. New Phytol. 1987, 106(3), 357–422. DOI: 10.1111/j.1469-8137.1987.tb00149.x.
  • Marty, F. P. V. The Plant Cell. The Plant Cell. 1999, 11(4), 587–600. DOI: 10.2307/3870886.
  • Krüger, F.; Schumacher, K. Pumping Up the Volume-Vacuole Biogenesis in Arabidopsis Thaliana. Semin. Cell Dev. Biol. 2019, 80, 106–112. DOI: 10.1016/j.semcdb.2017.07.008.
  • Marín-Castro, U. R.; Salgado-Cervantes, M.; Pallet, D.; Vargas-Ortiz, M.; Servent, A. Flash Vacuum expansion: An Alternative with Potential for Ataulfo and Manila Mango Processing. J. Food Sci. Technol. 2022, 59(8), 3063–3072. DOI: 10.1007/s13197-022-05479-0.
  • Brat, P.; Brillouet, J. M.; Reynes, M.; Cogat, P. O.; Ollé, D. Free Volatile Components of Passion Fruit Puree Obtained by Flash Vacuum-Expansion. J. Agric. Food. Chem. 2000, 48(12), 6210–6214. DOI: 10.1021/jf000645i.
  • Arias, C.; Rodríguez, P.; Cortés, M.; Soto, I.; Quintero, J.; Vaillant, F. Innovative Process Coupling Short Steam Blanching with Vacuum Flash-Expansion Produces in One Single Stage High-Quality Purple Passion Fruit Smoothies. Foods. 2022, 11(6), 832. DOI: 10.3390/foods11060832.
  • Paranjpe, S. S.; Morgan, M. T. Improving Grape Juice Yield and Quality Using Flash Vacuum Expansion. ASABE Annual Meeting, Chicago Illinois, USA, 2007.
  • Paranjpe, S. S.; Ferruzzi, M.; Morgan, M. T. Effect of a Flash Vacuum Expansion Process on Grape Juice Yield and Quality. LWT - Food Sci. Technol. 2012, 48(2), 147–155. DOI: 10.1016/j.lwt.2012.02.021.
  • Threlfall, R. T.; Morris, J. R.; Howard, L. R.; Brownmiller, C. R.; Walker, T. L. Pressing Effects on Yield, Quality and Nutraceuticals Contents of Fruits Skins and Seeds from Black Beauty and Sunbelt Grapes. J. Food Sci. 2005, 70(3), S167–171. DOI: 10.1111/j.1365-2621.2005.tb07152.x.
  • Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Structure Changes of Food Products During Processing. Foods. 2022, 11(15), 2365. DOI: 10.3390/foods11152365.
  • Brat, P.; Olle, D.; Reynes, N.; Alter, P.; Cogat, P. O. Preparation of Tropical Fruit Purees by Flash Vacuum-Expansion. Acta Hortic. 2002, 575(575), 535–541. DOI: 10.17660/ActaHortic.2002.575.62.
  • Vargas-Ortiz, M.; Rodríguez-Jimenes, G.; Salgado-Cervantes, M.; Pallet, D. Minimally Processed Avocado Through Flash Vacuum-Expansion: Its Effect in Major Physicochemical Aspects of the Puree and Stability on Storage. J. Food Process Preserv. 2016, 41(3), e12988. Article e12988. DOI: 10.1111/jfpp.12988.
  • Vildósola, P. Efecto del escaldado sobre la calidad del puré congelado de palta cv. Hass, cosechada con dos índices de madurez. Universidad Católica de Valparaíso. Quillota-Chile: Thesis to obtain the degree of agricultural engineer, 2008.
  • Samoticha, J.; Wojdylo, A.; Chmielewska, J.; Ozmianski, J. The Effects of Flash Release Conditions on the Phenolic Compounds and Antioxidant Activity of Pinot Noir Red Wine. Eur. Food Res. Technol. 2016, 243(6), 999–1007. DOI: 10.1007/s00217-016-2817-7.
  • Marín-Castro, U. R.; Garcia-Alvarado, M. Á.; Vargas-Ortiz, M.; Pallet, D.; Salgado-Cervantes, M. A.; Servent, A. Sensory and Nutritional Qualities of ´Manila´ Mango Ready-To-Eat Puree Enhanced Using Mild Flash Vacuum Expansion Processing. Fruits. 2021, 76(5), 248–257. DOI: 10.17660/th2021/76.5.5.
  • Osuna-García, J. A.; Guzmán-Robles, M. L.; Tovar-Gómez, B.; de Oca, M. M. M.; Vidal-Martínez, V. A. Calidad del mango Ataulfo producido en Nayarit, México. Rev. Fitotec. Mex. 2002, 25(4), 367. DOI: 10.35196/rfm.2002.4.367.
  • Brito, B.; Rodríguez, M.; Samaniego, I.; Jaramillo, M. I.; Vaillant, F. E. Characterising Polysaccharides in Cherimoya (Annona Cherimola Mill.) Purée and Their Enzymatic Liquefaction. Eur. Food Res. Technol. 2008, 226(3), 355–361. DOI: 10.1007/s00217-006-0545-0.
  • Zheng, J.; Xiao, H. Editorial: Los efectos del procesamiento de alimentos en los componentes de los alimentos y sus funciones para la salud. Frente. Nutrición. 2022, 9, 837956.
  • Cui, J.; Zhao, C.; Feng, L.; Han, Y.; Du, H.; Xiao, H.; Zheng, J. Pectins from Fruits: Relationships Between Extraction Methods, Structural Characteristics, and Functional Properties. Trends Food Sci. Technol. 2021, 110, 39–54. DOI: 10.1016/j.tifs.2021.01.077.
  • Azeredo, H. M.; Tonon, R. V.; McClements, D. J. Designing Healthier Foods: Reducing the Content or Digestibility of Key Nutrients. Trends Food Sci. Technol. 2021, 118, 459–470. DOI: 10.1016/j.tifs.2021.10.023.
  • Zailani, M. A.; Kamilah, H.; Husaini, A.; Seruji, A. Z. R. A.; Sarbini, S. R. Functional and Digestibility Properties of Sago (Metroxylon Sagu) Starch Modified by Microwave Heat Treatment. Food Hydrocolloids. 2022, 122, 107042. DOI: 10.1016/j.foodhyd.2021.107042.
  • Vargas-Ortiz, M.; Servent, A.; Rodríguez-Jimenes, G.; Pallet, D.; Salgado-Cervantes, M. Effect of Thermal Stage in the Processing Avocado by Flash Vacuum Expansion: Effect on the Antioxidant Capacity and the Quality of the Mash. J. Food Process Preserv. 2016, 41(5), e13118. DOI: 10.1111/jfpp.13118.
  • Elez-Martínez, P.; Soliva, F. R. C.; Gorinstein, S.; Martin, B. O. Natural Antioxidants Preserve the Lipid Oxidative Stability of Minimally Processed Avocado Purée. J. Food Sci. 2005, 70(5), S325–329. DOI: 10.1111/j.1365-2621.2005.tb09986.x.
  • Mepba, H. D.; Sokari, T. G.; Eboh, L.; Banigo, E. B.; Kiin Kabari, D. B. Stabilized Avocado Pastes: Chemical Contents and Oxidative Changes During Storage. Open Food Sci. J. 2008, 2(1), 77–84. DOI: 10.2174/1874256400802010077.
  • Rodríguez-Carpena, J. G.; Morcuende, D.; Andrade, M. J.; Kylly, P.; Estévez, M. Avocado (Persea Americana Mill.) Phenolics, In Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food. Chem. 2011, 59(10), 5625–5635. DOI: 10.1021/jf1048832.
  • Mooz, E. D.; Gaiano, N. M.; Shimano, M. Y. H.; Amancio, R. D.; Spoto, M. H. F. Physical and Chemical Characterization of the Pulp of Different Varieties of Avocado Targeting Oil Extraction Potential. Food Sci. Technol. 2012, 32(2), 274–280. DOI: 10.1590/S0101-20612012005000055.
  • Vinha, A. F.; Moreira, J.; Barreira, S. V. P. Physicochemical Parameters, Phytochemical Composition and Antioxidant Activity of the Algarvian Avocado (Persea americana Mill.). J Agric. Scie. 2013, 5(12), 100–109. DOI: 10.5539/jas.v5n12p100.
  • Ahmed, J.; Shivhare, U. S.; Ramaswamy, H. S. A Fraction Conversion Kinetic Model for Thermal Degradation of Color in Red Chilli Puree and Paste. LWT - Food Sci. Technol. 2002, 35(6), 497–503. DOI: 10.1006/fstl.2002.0897.
  • Morel-Salmi, C.; Souquet, J. M.; Bes, M.; Cheynier, V. Effect of Flash Release Treatment on Phenolic Extraction and Wine Composition. J. Agric. Food. Chem. 2006, 54(12), 4270–4276. DOI: 10.1021/jf053153k.
  • Doco, T.; Williams, P.; Cheynier, V. Effect of Flash Release and Pectinolytic Enzyme Treatments on Wine Polysaccharide Composition. J. Agric. Food. Chem. 2007, 55(16), 6643–6649. DOI: 10.1021/jf071427t.
  • Mason, H. Comparative Biochemistry of the Phenolase Complex. Adv. Enzymol. Relat. Areas Mol. Biol. 1955, 16, 105–184.
  • Prota, G. Progress in the Chemistry of Melanins and Related Metabolites. Med. Res. Rev. 1988, 8(4), 525–556. DOI: 10.1002/med.2610080405.
  • Wirth, J.; Morel-Salmi, C.; Souquet, J. M.; Dieval, J. B.; Aagaard, O.; Vidal, S.; Fulcrand, H.; Cheyniera, V. The Impact of Oxygen Exposure Before and After Bottling on the Polyphenolic Composition of Red Wines. Food Chem. 2010, 123(1), 107–116. DOI: 10.1016/j.foodchem.2010.04.008.
  • Salgado-Cervantes, M.; Adrien, S.; Isabelle, M.; Vargas-Ortiz, M.; Dominique, P. Flash Vacuum-Expansion Process: Effect on the Sensory, Color and Texture Attributes of Avocado (Persea americana) Puree. Plant Foods Hum. Nutr. 2019, 74(3), 370–375. DOI: 10.1007/s11130-019-00749-3.
  • Ntuli, R. G.; Ponangi, R.; Jeffery, D. W.; Wilkinson, K. L. Impact of Juice Extraction Method (Flash Détente Vs. Conventional Must Heating) and Chemical Treatments on Color Stability of Rubired Juice Concentrates Under Accelerated Aging Conditions. Foods. 2020, 9(9), 1270. DOI: 10.3390/foods9091270.
  • Marín-Castro, U. R.; Dominique, P.; García-Alvarado, M. A.; Vargas-Ortiz, M. A.; Salgado-Cervantes, M. A.; Servant, A. Effect of the Thermal State During Manila Mango Processing by Mild Flash Vacuum-Expansion on Carotenoids and Enzymatic Activity. Innovative Food Sci. Emerging Technol. 2022, 75, 102900. DOI: 10.1016/j.ifset.2021.102900.
  • Breene, W. M. Application of Texture Profile Analysis to Instrumental Food Texture Evaluation. J. Texture Stud. 1975, 6(1), 53–82. DOI: 10.1111/j.1745-4603.1975.tb01118.x.
  • Peleg, M. The Instrumental Texture Profile Analysis Revisited. J. Texture Stud. 2019, 50(5), 362–368. DOI: 10.1111/jtxs.12392.
  • Pruthi, J. S.; Lal, G. Carotenoids in Passion Fruit Juice (Passiflora edulis). Food Res. 1958, 23(5), 505. DOI: 10.1111/j.1365-2621.1958.tb17596.x.
  • Escudier, J. L. Una valoración suplementaria de la uva mejorando las extracciones: La Flash-Détente (1ª parte). Nindea.Net-Wine Int. Techn. J. 2002, 1, 1–6.
  • Ageron, D.; Escuider, J. L.; Abbal, P.; Moutounet, M. Utilisation de tubings en matériaux composites dans des puits producteurs activés par pompage en offshore. Revue de l’Institut Français du Pétrole. 1995, 153(1), 50–53. DOI: 10.2516/ogst:1995005.
  • Escudier, J. L.; Mikolajczak, M.; Moutounet, M. Pré-traitement des raisins par flash-deténte sous vide et caractéristiques des vins. 1998
  • Doco, T.; Brillouet, J. M. Isolation and Characterisation of a Rhamnogalacturonan II from Red Wine. Carbohydr. Res. 1993, 243(2), 333–343. DOI: 10.1016/0008-6215(93)87037-S.
  • Pellerin, P.; Vidal, S.; Williams, P.; Brillouet, J. M. Characterization of Five Type II Arabinogalactan-Protein Complexes from Red Wine Type II Arabinogalactan-Protein Complexes from Red Wine Increasing Uronic Acid Content. Carbohydr. Res. 1995, 190(1), 183–197. DOI: 10.1016/0008-6215(95)00206-9.
  • Vidal, S.; Williams, P.; Doco, T.; Moutounet, M.; Pellerin, P. The Polysaccharides of Red Wine: Total Fractionation and Characterization. Carbohydr. Polym. 2003, 54(4), 439–447. DOI: 10.1016/S0144-8617(03)00152-8.
  • Doco, T.; Vuchot, P.; Cheynier, V.; Moutounet, M. Structural Modification of Arabinogalactan-Proteins During Aging of Red Wines on Lees. Am. J. Enol. Vitic. 2003, 54(3), 150–157. DOI: 10.5344/ajev.2003.54.3.150.
  • Ayesterán, B.; Guadalupe, Z.; León, D. Quantification of Major Grape Polysaccharides (Tempranillo V.) Released by Maceration Enzymes During the Fermentation Process. Anal. Chim. Acta. 2004, 513(1), 29–39. DOI: 10.1016/j.aca.2003.12.012.
  • Doco, T.; Brillouet, J. -M.; Moutounet, M. Evolution of Grape (Cv. Carignan Noir) and Yeast Polysaccharides During Fermentation and Post-Maceration. Am. J. Enol. Vitic. 1996, 47(1), 108–110. DOI: 10.5344/ajev.1996.47.1.108.
  • Francioli, S.; Buxaderas, S.; Pellerin, P. Influence of Botrytis Cinerea on the Polysaccharide Composition of Xarel.Lo Musts and Cava Base Wines. Am. J. Enol. Vitic. 1999, 50(4), 456–460. DOI: 10.5344/ajev.1999.50.4.456.
  • Vidal, S.; Doco, T.; Moutounet, M.; Pellerin, P. Soluble Polysaccharide Content at Initial Time of Experimental Must Preparation. Am. J. Enol. Vitic. 2000, 51(2), 115–121. DOI: 10.5344/ajev.2000.51.2.115.
  • Ghosh, D.; Karmakar, P. Insight into anti-oxidative carbohydrate polymers from medicinal plants: Structure-activity relationships, mechanism of actions and interactions with bovine serum albumin. Int. J. Biol. Macromol. 2021, 166, 1022–1034. doi:10.1016/j.ijbiomac.2020.10.258
  • Pellerin, P.; Doco, T.; Vidal, S.; Williams, P.; Brillouet, J. M.; O´neill, M. A. Structural Characterization of Red Wine Rhamnogalacturonan II. Carbohydr. Res. 1996, 190(2), 183–197. DOI: 10.1016/0008-6215(96)00139-5.
  • Waters, E. J.; Pellerin, P.; Brillouet, J. M. A Saccharomyces Mannoprotein That Protects Wine from Protein Haze. Carbohydr. Polym. 1994, 23(3), 185–191. DOI: 10.1016/0144-8617(94)90101-5.
  • Doco, T.; Quellec, N.; Moutounet, M.; Pellerin, P. Polysaccharide Patterns During the Aging of Carignan Noir Red Wines. Am. J. Enol. Vitic. 1999, 50(1), 25–32. DOI: 10.5344/ajev.1999.50.1.25.
  • Spanos, G. A.; Wrolstad, R. E. Influence of Processing and Storage on the Phenolic Composition of Thompson Seedless Grape Juice. J. Agric. Food. Chem. 1990, 38(7), 1565–1571. DOI: 10.1021/jf00097a030.
  • Spanos, G. A.; Wrolstad, R. E. Phenolics of Apple, Pear, and White Grape Juices and Their Changes with Processing and Storage. A Review. J. Agric. Food. Chem. 1992, 40(9), 1478–1487. DOI: 10.1021/jf00021a002.
  • du Toit, W.; Oberholster, A. Processing and Impact on Antioxidants in Beverages; Preedy, V. Ed.; Elsevier: London, 2014.
  • Carew, A. L.; Close, D. C.; Dambergs, R. G. Yeast Strain Affects Phenolic Concentration in Pinot Noir Wines Made by Microwave Maceration with Early Pressing. J. Appl. Microbiol. 2015, 118(6), 1385–1394. DOI: 10.1111/jam.12785.
  • Giovinazzo, G.; Grieco, F. Functional Properties of Grape and Wine Polyphenols. Plant Foods Hum. Nutr. 2015, 70(4), 454–462. DOI: 10.1007/s11130-015-0518-1.
  • Leong, S. Y.; Burritt, D. J.; Oey, I. Evaluation of the Anthocyanin Release and Health-Promoting Properties of Pinot Noir Grape Juices After Pulsed Electric Fields. Food Chem. 2016, 196, 833–841. DOI: 10.1016/j.foodchem.2015.10.025.
  • Soong, Y. Y.; Barlow, P. J. Antioxidant Activity and Phenolic Content of Selected Fruit Seeds. Food Chem. 2004, 88(3), 411–417. DOI: 10.1016/j.foodchem.2004.02.003.
  • Wang, W.; Bostic, T. R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122(4), 1193–1198. DOI: 10.1016/j.foodchem.2010.03.114.
  • Matsusaka, Y.; Kawabata, J. Evaluation of Antioxidant Capacity of Non-Edible Parts of Some Selected Tropical Fruits. Food Sci. Technol. 2010, 16(5), 467–472. DOI: 10.3136/fstr.16.467.
  • Yoruk, R.; Marshall, M. R. Physicochemical Properties and Function of Plant Polyphenol Oxidase: A Review 1. J. of Food Biochem. 2003, 27(5), 361–422. DOI: 10.1111/j.1745-4514.2003.tb00289.x.
  • Gómez-López, V. M. Some Biochemical Properties of Polyphenol Oxidase from Two Varieties of Avocado. Food Chem. 2002, 77(2), 163–169. DOI: 10.1016/S0308-8146(01)00331-4.
  • Singh, B.; Suri, K.; Shevkani, K.; Kaur, A.; Kaur, A.; Singh, N. Enzymatic Browning of Fruit and Vegetables: A Review. In Enzymes in Food Technology Improvements and Innovations, 1st ed.; Kuddus, M. ed.; Singapore: Springer Nature, 2018; pp 63–78.
  • Carvajal, L. N. T. Estudio teórico de los complejos de michaelis que forma la enzima lipoxigenasa 15 de mamíferos con el ácido araquidónico y el ácido linoleico (Doctoral dissertation, Universitat Autònoma de Barcelona). 2011.
  • Bahçeci, K. S.; Serpen, A.; Gökmen, V.; Acar, J. Study of Lipoxygenase and Peroxidase as Indicator Enzymes in Green Beans: Change of Enzyme Activity, Ascorbic Acid and Chlorophylls During Frozen Storage. J. Food Eng. 2005, 66(2), 187–192. DOI: 10.1016/j.jfoodeng.2004.03.004.
  • Jacobo-Velázquez, D. A.; Castellanos-Dohnal, G.; Caballero-Mata, P.; Hernández-Brenes, C. Cambios bioquímicos durante el almacenamiento de puré de aguacate adicionado con antioxidantes naturales y procesado con alta presión hidrostática. CyTA- J. of Food. 2013, 11(4), 379–391. DOI: 10.1080/19476337.2013.775185.
  • Mountounet, M.; Escuider, J. L. Pretreatment of Grapes by Flash Release Under Vacuum Influence on Wine Quality. Bulletin de 1´O.I.V. 2000, 73, 272–282.
  • Baggio, P. Flash Extraction—what Can It Do for You. Proceedings of the ASVO Proceedings: Managing the Best out of Difficult Vintages. 2017, 29–31
  • de Ridder, D. Flash Détente Technology. https://www.wineland.co.za/flash-detente-technology/ (Accessed 17 March 2022). 2018.
  • Logan, S. Sniffing Out the Case for Flash Detente. Aust. N.Z. Grapegrow. 2020, 680, 89–95.
  • Goldfarb, A. Flash Détente Reaching Critical Mass. Wine Bus. Mon. https://www.winebusiness.com/wbm/?go=getArticleSignIn&dataId=194819 (Accessed October 01, 2022). 2018.
  • Maza, M.; Álvarez, I.; Raso, J. Thermal and Non-Thermal Physical Methods for Improving Polyphenol Extraction in Red Winemaking. Beverages. 2019, 5(3), 47. DOI: 10.3390/beverages5030047.
  • Besnard, É.; Laffargue, F.; Relhié, F.; Alibert, V. Influence de l’itinéraire de vinification après Flash-détente dans l’élaboration d’une nouvelle gamme de vins du Lot. (accessed on 1 november 2022.)http://www.vignevin-occitanie.com/wp-content/uploads/2018/08/flash-detente-lot-malbecpdf.
  • Ntuli, R. G.; Saltman, Y.; Ponangi, R.; Jeffery, D. W.; Bindon, K.; Wilkinson, K. L. Impact of Fermentation Temperature and Grape Solids Content on the Chemical Composition and Sensory Profiles of Cabernet Sauvignon Wines Made from Flash Détente Treated Must Fermented Off-Skins. Food Chem. 2022, 369, 130861. DOI: 10.1016/j.foodchem.2021.130861.
  • Ntuli, R. G.; Saltman, Y.; Ponangi, R.; Jeffery, D. W.; Bindon, K.; Wilkinson, K. L. Impact of Skin Contact Time, Oak and Tannin Addition on the Chemical Composition, Color Stability and Sensory Profile of Merlot Wines Made from Flash Détente Treatment. Food Chem. 2022, 405, 134849. DOI: 10.1016/j.foodchem.2022.134849.
  • Link, J. V.; Tribuzi, G.; de Morales, J. O.; Laurindo, J. B. Assessment of Texture and Storage Conditions of Mangoes Slices Dried by a Conductive Multi-Flash Process. J. Food Eng. 2018, 239, 8–14. DOI: 10.1016/j.jfoodeng.2018.06.024.
  • Ntuli, R. G.; Ponangi, R.; Jeffery, D. W.; Wilkinson, K. L. Color Extraction and Stability of Rubired Juice Concentrate Produced via Conventional Must Heating or Flash Détente Processing. ACS Food Sci. Technol. 2021, 1(5), 829–838. DOI: 10.1021/acsfoodscitech.1c00004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.