224
Views
2
CrossRef citations to date
0
Altmetric
Review

A Critical Review on the Gluten-Induced Enteropathy/Celiac Disease: Gluten-Targeted Dietary and Non-Dietary Therapeutic Approaches

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all

References

  • Dowd, B.; Walker-Smith, J. S. G. Samuel Gee, Aretaeus, and the Coeliac Affection. Br. Med. J. 1974, 2(5909), 45. DOI: 10.1136/bmj.2.5909.45.
  • Yan, D.; Holt, P. R. W. D. Willem Dicke. Brilliant Clinical Observer and Translational Investigator. Discoverer of the Toxic Cause of Celiac Disease. Clinical and Translational Science. 2009, 2(6), 446–448. DOI: 10.1111/j.1752-8062.2009.00167.x.
  • Weijers, H.; Lindquist, B.; Anderson, C.; Rey, J.; Shmerling, D.; Visakorpi, J.; Hadorn, B.; Grüttner, R. Diagnostic Criteria in Coeliac Disease. Acta. Paediatr. Scand. 1970, 59, 461–463.
  • Ludvigsson, J. F.; Leffler, D. A.; Bai, J. C.; Biagi, F.; Fasano, A.; Green, P. H.; Hadjivassiliou, M.; Kaukinen, K.; Kelly, C. P.; Leonard, J. N., et al. The Oslo Definitions for Coeliac Disease and Related Terms. Gut. 2013, 62(1), 43–52. DOI: 10.1136/gutjnl-2011-301346.
  • Van Heel, D. A.; Franke, L.; Hunt, K. A.; Gwilliam, R.; Zhernakova, A.; Inouye, M.; Wapenaar, M. C.; Barnardo, M. C.; Bethel, G.; Holmes, G. K., et al. A Genome-Wide Association Study for Celiac Disease Identifies Risk Variants in the Region Harboring IL2 and IL21. Nat. Genet. 2007, 39(7), 827–829. DOI: 10.1038/ng2058.
  • Lundin, K. E. Non-Celiac Gluten Sensitivity-Why Worry? BMC Med. 2014, 12(1), 1–3. DOI: 10.1186/1741-7015-12-86.
  • Dale, H. F.; Biesiekierski, J. R.; Lied, G. A. Non-Coeliac Gluten Sensitivity and the Spectrum of Gluten-Related Disorders: An Updated Overview. Nutr. res. rev. 2019, 32(1), 28–37. DOI: 10.1017/S095442241800015X.
  • Shewry, P. R.; Tatham, A. S. The Prolamin Storage Proteins of Cereal Seeds: Structure and Evolution. Biochem. J. 1990, 267(1), 1. DOI: 10.1042/bj2670001.
  • Wieser, H. Comparative Investigations of Gluten Proteins from Different Wheat Species I. Qualitative and Quantitative Composition of Gluten Protein Types. Eur. Food Res. Technol. 2000, 211(4), 262–268. DOI: 10.1007/s002170000165.
  • Leišová-Svobodová, L.; Sovová, T.; Dvořáček, V. Analysis of Oat Seed Transcriptome with Regards to Proteins Involved in Celiac Disease. Sci. Rep. 2022, 12(1), 1–11. DOI: 10.1038/s41598-022-12711-6.
  • Pronin, D.; Börner, A.; Scherf, K. A. Old and Modern Wheat (Triticum Aestivum L.) Cultivars and Their Potential to Elicit Celiac Disease. Food Chem. 2021, 339, 127952. DOI: 10.1016/j.foodchem.2020.127952.
  • Brandtzaeg, P. The Changing Immunological Paradigm in Coeliac Disease. Immunol. Lett. 2006, 105(2), 127–139. DOI: 10.1016/j.imlet.2006.03.004.
  • Maiuri, L.; Ciacci, C.; Ricciardelli, I.; Vacca, L.; Raia, V.; Auricchio, S.; Picard, J.; Osman, M.; Quaratino, S.; Londei, M. Association Between Innate Response to Gliadin and Activation of Pathogenic T Cells in Coeliac Disease. Lancet. 2003, 362(9377), 30–37. DOI: 10.1016/S0140-6736(03)13803-2.
  • Maiuri, L.; Ciacci, C.; Auricchio, S.; Brown, V.; Quaratino, S.; Londei, M. Interleukin 15 Mediates Epithelial Changes in Celiac Disease. Gastroenterol. 2000, 119(4), 996–1006. DOI: 10.1053/gast.2000.18149.
  • Tollefsen, S. HLA-DQ2 and -DQ8 Signatures of Gluten T Cell Epitopes in Celiac Disease. J. Clin. Invest. 2006, 116(8), 2226–2236. DOI: 10.1172/JCI27620.
  • Bernardo, D. Human Intestinal Dendritic Cells as Controllers of Mucosal Immunity. Revista Española de Enfermedades Digestivas. 2013, 105(5), 279–290. DOI: 10.4321/S1130-01082013000500006.
  • Del Pozzo, G.; Farina, F.; Picascia, S.; Laezza, M.; Vitale, S.; Gianfrani, C. HLA Class II Genes in Precision-Based Care of Childhood Diseases: What We Can Learn from Celiac Disease. Pediatr. Res. 2021, 89(2), 307–312. DOI: 10.1038/s41390-020-01217-4.
  • Molberg, Ø.; Kett, K.; Scott, H.; Thorsby, E.; Sollid, L.; Lundin, K. Gliadin Specific, HLA Dq2‐restricted T Cells are Commonly Found in Small Intestinal Biopsies from Coeliac Disease Patients, but Not from Controls. Scandinavian Journal of Immunology. 1997, 46(1), 103–109. DOI: 10.1046/j.1365-3083.1997.d01-93.x-i2.
  • Bodd, M.; Kim, C. Y.; Lundin, K. E.; Sollid, L. M. T-Cell Response to Gluten in Patients with HLA-DQ2. 2 Reveals Requirement of Peptide-MHC Stability in Celiac Disease. Gastroenterol. 2012, 142(3), 552–561. DOI: 10.1053/j.gastro.2011.11.021.
  • Camarca, A.; Anderson, R. P.; Mamone, G.; Fierro, O.; Facchiano, A.; Costantini, S.; Zanzi, D.; Sidney, J.; Auricchio, S.; Sette, A., et al. Intestinal T Cell Responses to Gluten Peptides are Largely Heterogeneous: Implications for a Peptide-Based Therapy in Celiac Disease. J. Immunol. 2009, 182(7), 4158–4166. DOI: 10.4049/jimmunol.0803181.
  • Vader, W.; Kooy, Y.; Van Veelen, P.; De Ru, A.; Harris, D.; Benckhuijsen, W.; Peña, S.; Mearin, L.; Drijfhout, J. W.; Koning, F. The Gluten Response in Children with Celiac Disease is Directed Toward Multiple Gliadin and Glutenin Peptides. Gastroenterol. 2002, 122(7), 1729–1737. DOI: 10.1053/gast.2002.33606.
  • Stepniak, D.; Vader, L. W.; Kooy, Y.; van Veelen, P. A.; Moustakas, A.; Papandreou, N. A.; Eliopoulos, E.; Drijfhout, J. W.; Papadopoulos, G. K.; Koning, F. T-Cell Recognition of HLA-DQ2-Bound Gluten Peptides Can Be Influenced by an N-Terminal Proline at P-1. Immunogenetics. 2005, 57(1–2), 8–15. DOI: 10.1007/s00251-005-0780-8.
  • van de Wal, Y.; Kooy, Y. M.; van Veelen, P.; Vader, W.; August, S. A.; Drijfhout, J. W.; Peña, S. A.; Koning, F. Glutenin is Involved in the Gluten‐driven Mucosal T Cell Response. Eur. J. Immunol. 1999, 29(10), 3133–3139. DOI: 10.1002/(SICI)1521-4141(199910)29:10<3133:AID-IMMU3133>3.0.CO;2-G.
  • Kooy-Winkelaar, Y.; van Lummel, M.; Moustakas, A. K.; Schweizer, J.; Mearin, M. L.; Mulder, C. J.; Roep, B. O.; Drijfhout, J. W.; Papadopoulos, G. K.; van Bergen, J., et al. Gluten-Specific T Cells Cross-React Between HLA-DQ8 and the HLA-DQ2α/DQ8β Transdimer. J. Immunol. 2011, 187(10), 5123–5129. DOI: 10.4049/jimmunol.1101179.
  • Vader, L. W.; Stepniak, D. T.; Bunnik, E. M.; Kooy, Y. M.; De Haan, W.; Drijfhout, J. W.; Van Veelen, P. A.; Koning, F. Characterization of Cereal Toxicity for Celiac Disease Patients Based on Protein Homology in Grains 1 1The Authors Thank Drs. R. R. P. de Vries and R. Offringa for Critical Reading of the Manuscript, A. de Ru for Mass Spectrometric Analysis, and W. Benckhuijsen for Peptide Synthesis. Gastroenterol. 2003, 125(4), 1105–1113. DOI: 10.1016/S0016-5085(03)01204-6.
  • Arentz-Hansen, H.; Fleckenstein, B.; Molberg, Ø.; Scott, H.; Koning, F.; Jung, G.; Roepstorff, P.; Lundin, K. E. A.; Sollid, L. M.; Londei, M., et al. The Molecular Basis for Oat Intolerance in Patients with Celiac Disease. PLoS Med. 2004, 1, e1. DOI: 10.1371/journal.pmed.0010001.
  • Hardy, M. Y.; Tye-Din, J. A.; Stewart, J. A.; Schmitz, F.; Dudek, N. L.; Hanchapola, I.; Purcell, A. W.; Anderson, R. P. Ingestion of Oats and Barley in Patients with Celiac Disease Mobilizes Cross-Reactive T Cells Activated by Avenin Peptides and Immuno-Dominant Hordein Peptides. J. Autoimmun. 2015, 56, 56–65. DOI: 10.1016/j.jaut.2014.10.003.
  • Sjöström, H.; Lundin, K.; Molberg, O.; Körner, R.; McAdam, S.; Anthonsen, D.; Quarsten, H.; Noren, O.; Roepstorff, P.; Thorsby, E., et al. Identification of a Gliadin T-Cell Epitope in Coeliac Disease: General Importance of Gliadin Deamidation for Intestinal T-Cell Recognition. Scandinavian Journal of Immunology. 1998, 48(2), 111–115. DOI: 10.1046/j.1365-3083.1998.00397.x.
  • Qiao, S. -W.; Bergseng, E.; Molberg, Ø.; Jung, G.; Fleckenstein, B.; Sollid, L. M. Refining the Rules of Gliadin T Cell Epitope Binding to the Disease-Associated DQ2 Molecule in Celiac Disease: Importance of Proline Spacing and Glutamine Deamidation. J. Immunol. 2005, 175(1), 254–261. DOI: 10.4049/jimmunol.175.1.254.
  • Arentz–Hansen, H.; Mcadam, S. N.; Molberg, Ø.; Fleckenstein, B.; Lundin, K. E.; Jørgensen, T. J.; Jung, G.; Roepstorff, P.; Sollid, L. M. Celiac Lesion T Cells Recognize Epitopes That Cluster in Regions of Gliadins Rich in Proline Residues. Gastroenterol. 2002, 123(3), 803–809. DOI: 10.1053/gast.2002.35381.
  • Qiao, S. -W.; Sollid, L. M. Two Novel HLA-DQ2. 5-Restricted Gluten T Cell Epitopes in the DQ2. 5-Glia-γ4 Epitope Family. Immunogenetics. 2019, 71(10), 665–667. DOI: 10.1007/s00251-019-01138-5.
  • Tye-Din, J. A.; Stewart, J. A.; Dromey, J. A.; Beissbarth, T.; van Heel, D. A.; Tatham, A.; Henderson, K.; Mannering, S. I.; Gianfrani, C.; Jewell, D. P., et al. Comprehensive, Quantitative Mapping of T Cell Epitopes in Gluten in Celiac Disease. Science Translational Medicine. 2010, 2(41), 41ra51-41ra51. DOI: 10.1126/scitranslmed.3001012.
  • Dørum, S.; Bodd, M.; Fallang, L. -E.; Bergseng, E.; Christophersen, A.; Johannesen, M. K.; Qiao, S. -W.; Stamnaes, J.; De Souza, G. A.; Sollid, L. M. HLA-DQ Molecules as Affinity Matrix for Identification of Gluten T Cell Epitopes. J. Immunol. 2014, 193(9), 4497–4506. DOI: 10.4049/jimmunol.1301466.
  • Van De Wal, Y.; Kooy, Y. M.; Van Veelen, P. A.; Peña, S. A.; Mearin, L. M.; Molberg, Ø.; Lundin, K. E.; Sollid, L. M.; Mutis, T.; Benckhuijsen, W. E. Small Intestinal T Cells of Celiac Disease Patients Recognize a Natural Pepsin Fragment of Gliadin. Proceedings of the National Academy of Sciences, USA 1998, 95, 10050–10054 doi:10.1073/pnas.95.17.10050.
  • Arentz-Hansen, H.; Körner, R.; Molberg, Ø.; Quarsten, H.; Vader, W.; Kooy, Y. M.; Lundin, K. E.; Koning, F.; Roepstorff, P.; Sollid, L. M., et al. The Intestinal T Cell Response to α-Gliadin in Adult Celiac Disease is Focused on a Single Deamidated Glutamine Targeted by Tissue Transglutaminase. J. Exp. Med. 2000, 191(4), 603–612. DOI: 10.1084/jem.191.4.603.
  • Sollid, L. M.; Tye-Din, J. A.; Qiao, S. -W.; Anderson, R. P.; Gianfrani, C.; Koning, F. Update 2020: Nomenclature and Listing of Celiac Disease–Relevant Gluten Epitopes Recognized by CD4+ T Cells. Immunogenetics. 2020, 72(1–2), 85–88. DOI: 10.1007/s00251-019-01141-w.
  • Ménard, S.; Lebreton, C.; Schumann, M.; Matysiak-Budnik, T.; Dugave, C.; Bouhnik, Y.; Malamut, G.; Cellier, C.; Allez, M.; Crenn, P., et al. Paracellular versus Transcellular Intestinal Permeability to Gliadin Peptides in Active Celiac Disease. Am. J. Pathol. 2012, 180(2), 608–615. DOI: 10.1016/j.ajpath.2011.10.019.
  • Manavalan, J. S.; Hernandez, L.; Shah, J. G.; Konikkara, J.; Naiyer, A. J.; Lee, A. R.; Ciaccio, E.; Minaya, M. T.; Green, P. H.; Bhagat, G. Serum Cytokine Elevations in Celiac Disease: Association with Disease Presentation. Hum. Immunol. 2010, 71(1), 50–57. DOI: 10.1016/j.humimm.2009.09.351.
  • Caruso, R.; Marafini, I.; Sedda, S.; Del Vecchio Blanco, G.; Giuffrida, P.; MacDonald, T. T.; Corazza, G. R.; Pallone, F.; Di Sabatino, A.; Monteleone, G. Analysis of the Cytokine Profile in the Duodenal Mucosa of Refractory Coeliac Disease Patients. Clinical Sci. 2014, 126(6), 451–458. DOI: 10.1042/CS20130478.
  • Van Leeuwen, M.; Lindenbergh-Kortleve, D.; Raatgeep, H.; De Ruiter, L.; De Krijger, R.; Groeneweg, M.; Escher, J.; Samsom, J. Increased Production of Interleukin-21, but Not Interleukin-17A, in the Small Intestine Characterizes Pediatric Celiac Disease. Mucosal Immunol. 2013, 6(6), 1202–1213. DOI: 10.1038/mi.2013.19.
  • Sarra, M.; Cupi, M.; Monteleone, I.; Franzè, E.; Ronchetti, G.; Di Sabatino, A.; Gentileschi, P.; Franceschilli, L.; Sileri, P.; Sica, G., et al. IL-15 Positively Regulates IL-21 Production in Celiac Disease Mucosa. Mucosal Immunol. 2013, 6(2), 244–255. DOI: 10.1038/mi.2012.65.
  • Mention, J. -J.; Ahmed, M. B.; Bègue, B.; Barbe, U.; Verkarre, V.; Asnafi, V.; Colombel, J. -F.; Cugnenc, P. -H.; Ruemmele, F. M.; Mcintyre, E., et al. Interleukin 15: A Key to Disrupted Intraepithelial Lymphocyte Homeostasis and Lymphomagenesis in Celiac Disease. Gastroenterol. 2003, 125(3), 730–745. DOI: 10.1016/S0016-5085(03)01047-3.
  • Malamut, G.; El Machhour, R.; Montcuquet, N.; Martin-Lannerée, S.; Dusanter-Fourt, I.; Verkarre, V.; Mention, J. -J.; Rahmi, G.; Kiyono, H.; Butz, E. A., et al. IL-15 Triggers an Antiapoptotic Pathway in Human Intraepithelial Lymphocytes That is a Potential New Target in Celiac Disease–Associated Inflammation and Lymphomagenesis. J. Clin. Invest. 2010, 120(6), 2131–2143. DOI: 10.1172/JCI41344.
  • King, A.; Moodie, S.; Fraser, J.; Curtis, D.; Reid, E.; Dearlove, A.; Ellis, H.; Ciclitira, P. CTLA-4/CD28 Gene Region is Associated with Genetic Susceptibility to Coeliac Disease in UK Families. J. Med. Genet. 2002, 39(1), 51–54. DOI: 10.1136/jmg.39.1.51.
  • Kumar, J.; Kumar, M.; Pandey, R.; Chauhan, N. S. Physiopathology and Management of Gluten‐induced Celiac Disease. J. Food Sci. 2017, 82(2), 270–277. DOI: 10.1111/1750-3841.13612.
  • Lundin, K. E.; Qiao, S. -W.; Snir, O.; Sollid, L. M. Coeliac Disease–From Genetic and Immunological Studies to Clinical Applications. Scand. J. Gastroenterol. 2015, 50(6), 708–717. DOI: 10.3109/00365521.2015.1030766.
  • Castillo, N. E.; Theethira, T. G.; Leffler, D. A. The Present and the Future in the Diagnosis and Management of Celiac Disease. Gastroenterology Report. 2015, 3(1), 3–11. DOI: 10.1093/gastro/gou065.
  • Lundin, K. E.; Sollid, L. M. Advances in Coeliac Disease. Curr. Opin. Gastroenterol. 2014, 30(2), 154–162. DOI: 10.1097/MOG.0000000000000041.
  • Mazumdar, K.; Alvarez, X.; Borda, J. T.; Dufour, J.; Martin, E.; Bethune, M. T.; Khosla, C.; Sestak, K.; Bereswill, S.; Bereswill, S. Visualization of Transepithelial Passage of the Immunogenic 33-Residue Peptide from α-2 Gliadin in Gluten-Sensitive Macaques. PLoS One. 2010, 5(4), e10228. DOI: 10.1371/journal.pone.0010228.
  • Rubio-Tapia, A.; Hill, I. D.; Kelly, C. P.; Calderwood, A. H.; Murray, J. A. ACG Clinical Guidelines: Diagnosis and Management of Celiac Disease. Official Journal of the American College of Gastroenterology| ACG. 2013, 108(5), 656–676. DOI: 10.1038/ajg.2013.79.
  • Chen, Z. E.; Lee, H. E.; Wu, T. -T. Histologic Evaluation in the Diagnosis and Management of Celiac Disease: Practical Challenges, Current Best Practice Recommendations and Beyond. Human Pathology. 2022, 132, 20–30. DOI: 10.1016/j.humpath.2022.07.017.
  • Villanacci, V.; Vanoli, A.; Leoncini, G.; Arpa, G.; Salviato, T.; Bonetti, L. R.; Baronchelli, C.; Saragoni, L.; Parente, P. Celiac Disease: Histology-Differential Diagnosis-Complications. A Practical Approach. Pathologica. 2020, 112(3), 186. DOI: 10.32074/1591-951X-157.
  • McCarty, T. R.; O’Brien, C. R.; Gremida, A.; Ling, C.; Rustagi, T. Efficacy of Duodenal Bulb Biopsy for Diagnosis of Celiac Disease: A Systematic Review and Meta-Analysis. Endoscopy International Open. 2018, 6(11), E1369–1378. DOI: 10.1055/a-0732-5060.
  • Lundin, K. E.; Brottveit, M.; Skodje, G. Noncoeliac gluten sensitivity. In Coeliac Disease and Gluten-Related Disorders, Schieptti, A., Sanders, D. Eds.; United States: Academic Press, 2021; Vol. 2022, pp 177–195 DOI:10.1016/C2019-0-03606-0.
  • Marsh, M. N. Gluten, Major Histocompatibility Complex, and the Small Intestine: A Molecular and Immunobiologic Approach to the Spectrum of Gluten Sensitivity (‘Celiac sprue’). Gastroenterol. 1992, 102(1), 330–354. DOI: 10.1016/0016-5085(92)91819-P.
  • Molina-Infante, J.; Carroccio, A. Suspected Nonceliac Gluten Sensitivity Confirmed in Few Patients After Gluten Challenge in Double-Blind, Placebo-Controlled Trials. Clinical Gastroenterology and Hepatology. 2017, 15(3), 339–348. DOI: 10.1016/j.cgh.2016.08.007.
  • Thompson, T. Gluten Contamination of Commercial Oat Products in the United States. New Engl. J. Med. 2004, 351(19), 2021–2022. DOI: 10.1056/NEJM200411043511924.
  • Deora, V.; Aylward, N.; Sokoro, A.; El-Matary, W. Serum Vitamins and Minerals at Diagnosis and Follow-Up in Children with Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 65(2), 185–189. DOI: 10.1097/MPG.0000000000001475.
  • ALWITRY, A. Vitamin a Deficiency in Coeliac Disease. The British Journal of Ophthalmology. 2000, 84(9), 1075. DOI: 10.1136/bjo.84.9.1075e.
  • Abdalla, A.; Saifullah, S. M.; Osman, M.; Baniya, R.; Sidahmed, S.; LaChance, J.; Bachuwa, G. Prevalence of Occult Celiac Disease in Females with Iron Deficiency in the United States: An NHANES Analysis. Journal of Community Hospital Internal Medicine Perspectives. 2017, 7(6), 347–350. DOI: 10.1080/20009666.2017.1396169.
  • Beniwal, N.; Ameta, G.; Chahar, C. K. Celiac Disease in Children with Severe Acute Malnutrition (SAM): A Hospital Based Study. Indian J. Pediatr. 2017, 84(5), 339–343. DOI: 10.1007/s12098-017-2300-x.
  • Rajpoot, P.; Makharia, G. K. Problems and Challenges to Adaptation of Gluten Free Diet by Indian Patients with Celiac Disease. Nutrients. 2013, 5(12), 4869–4879. DOI: 10.3390/nu5124869.
  • Hmida, N. B.; Ahmed, M. B.; Moussa, A.; Rejeb, M. B.; Said, Y.; Kourda, N.; Meresse, B.; Abdeladhim, M.; Louzir, H.; Cerf-Bensussan, N. Impaired Control of Effector T Cells by Regulatory T Cells: A Clue to Loss of Oral Tolerance and Autoimmunity in Celiac Disease? Official Journal of the American College of Gastroenterology| ACG. 2012, 107(4), 604–611. DOI: 10.1038/ajg.2011.397.
  • Veeraraghavan, G.; Leffler, D. A.; Kaswala, D. H.; Mukherjee, R. Celiac Disease 2015 Update: New Therapies. Expert Review of Gastroenterology & Hepatology. 2015, 9(7), 913–927. DOI: 10.1586/17474124.2015.1033399.
  • Xia, J.; Siegel, M.; Bergseng, E.; Sollid, L. M.; Khosla, C. Inhibition of HLA-DQ2-Mediated Antigen Presentation by Analogues of a High Affinity 33-Residue Peptide from α2-Gliadin. J. Am Chem. Soc. 2006, 128(6), 1859–1867. DOI: 10.1021/ja056423o.
  • Xia, J.; Bergseng, E.; Fleckenstein, B.; Siegel, M.; Kim, C. -Y.; Khosla, C.; Sollid, L. M. Cyclic and Dimeric Gluten Peptide Analogues Inhibiting DQ2-Mediated Antigen Presentation in Celiac Disease. Bioorganic & Medicinal Chemistry. 2007, 15(20), 6565–6573. DOI: 10.1016/j.bmc.2007.07.001.
  • Jüse, U.; van de Wal, Y.; Koning, F.; Sollid, L. M.; Fleckenstein, B. Design of New High-Affinity Peptide Ligands for Human Leukocyte Antigen-DQ2 Using a Positional Scanning Peptide Library. Hum. Immunol. 2010, 71(5), 475–481. DOI: 10.1016/j.humimm.2010.01.021.
  • Siegel, M.; Bethune, M. T.; Gass, J.; Ehren, J.; Xia, J.; Johannsen, A.; Stuge, T. B.; Gray, G. M.; Lee, P. P.; Khosla, C. Rational Design of Combination Enzyme Therapy for Celiac Sprue. Chemistry & Biology. 2006, 13(6), 649–658. DOI: 10.1016/j.chembiol.2006.04.009.
  • Siegel, M.; Khosla, C. Transglutaminase 2 Inhibitors and Their Therapeutic Role in Disease States. Pharmacology & Therapeutics. 2007, 115(2), 232–245. DOI: 10.1016/j.pharmthera.2007.05.003.
  • Stoven, S.; Murray, J. A.; Marietta, E. Celiac Disease: Advances in Treatment via Gluten Modification. Clinical Gastroenterology and Hepatology. Clinical Gastroenterology and Hepatology. 2012, 10(8), 859–862. DOI: 10.1016/j.cgh.2012.06.005.
  • Sollid, L. M.; Jabri, B. Celiac Disease and Transglutaminase 2: A Model for Posttranslational Modification of Antigens and HLA Association in the Pathogenesis of Autoimmune Disorders. Curr Opin Immunol. 2011, 23(6), 732–738. DOI: 10.1016/j.coi.2011.08.006.
  • Carroccio, A.; Di Prima, L.; Noto, D.; Fayer, F.; Ambrosiano, G.; Villanacci, V.; Lammers, K.; Lafiandra, D.; De Ambrogio, E.; Di Fede, G. Searching for Wheat Plants with Low Toxicity in Celiac Disease: Between Direct Toxicity and Immunologic Activation. Digestive Liver Dis. 2011, 43(1), 34–39. DOI: 10.1016/j.dld.2010.05.005.
  • Makharia, G. K. Current and Emerging Therapy for Celiac Disease. Frontiers in Medicine. 2014, 1, 6. DOI: 10.3389/fmed.2014.00006.
  • Gil-Humanes, J.; Pistón, F.; Giménez, M. J.; Martín, A.; Barro, F.; Alvarez, M. L.; Alvarez, M. L. The Introgression of RNAi Silencing of γ-Gliadins into Commercial Lines of Bread Wheat Changes the Mixing and Technological Properties of the Dough. PLoS One. 2012, 7(9), 2012. DOI: 10.1371/journal.pone.0045937.
  • Spaenij–Dekking, L.; Kooy–Winkelaar, Y.; van Veelen, P.; Drijfhout, J. W.; Jonker, H.; van Soest, L.; Smulders, M. J.; Bosch, D.; Gilissen, L. J.; Koning, F. Natural Variation in Toxicity of Wheat: Potential for Selection of Nontoxic Varieties for Celiac Disease Patients. Gastroenterol. 2005, 129(3), 797–806. DOI: 10.1053/j.gastro.2005.06.017.
  • van den Broeck, H.; Hongbing, C.; Lacaze, X.; Dusautoir, J. -C.; Gilissen, L.; Smulders, M.; van der Meer, I. In Search of Tetraploid Wheat Accessions Reduced in Celiac Disease-Related Gluten Epitopes. Mol BioSyst. 2010, 6(11), 2206–2213. DOI: 10.1039/c0mb00046a.
  • Stepniak, D.; Wiesner, M.; de Ru, A. H.; Moustakas, A. K.; Drijfhout, J. W.; Papadopoulos, G. K.; van Veelen, P. A.; Koning, F. Large-Scale Characterization of Natural Ligands Explains the Unique Gluten-Binding Properties of HLA-DQ2. J. Immunol. 2008, 180(5), 3268–3278. DOI: 10.4049/jimmunol.180.5.3268.
  • Brzozowski, B. Immunoreactivity of Wheat Proteins Modified by Hydrolysis and Polymerisation. Eur. Food Res. Technol. 2016, 242(7), 1025–1040. DOI: 10.1007/s00217-015-2608-6.
  • Wolf, C.; Siegel, J. B.; Tinberg, C.; Camarca, A.; Gianfrani, C.; Paski, S.; Guan, R.; Montelione, G.; Baker, D.; Pultz, I. S. Engineering of Kuma030: A Gliadin Peptidase That Rapidly Degrades Immunogenic Gliadin Peptides in Gastric Conditions. J Am Chem Soc. 2015, 137(40), 13106–13113. DOI: 10.1021/jacs.5b08325.
  • Rey, M.; Yang, M.; Lee, L.; Zhang, Y.; Sheff, J. G.; Sensen, C. W.; Mrazek, H.; Halada, P.; Man, P.; McCarville, J. L., et al. Addressing Proteolytic Efficiency in Enzymatic Degradation Therapy for Celiac Disease. Sci Rep. 2016, 6(1), 1–13. DOI: 10.1038/srep30980.
  • Tack, G. J.; Van de Water, J. M.; Bruins, M. J.; Kooy-Winkelaar, E. M.; van Bergen, J.; Bonnet, P.; Vreugdenhil, A. C.; Korponay-Szabo, I.; Edens, L.; von Blomberg, B. M. E. Consumption of Gluten with Gluten-Degrading Enzyme by Celiac Patients: A Pilot-Study. World J. Gastroenterol. 2013, 19(35), 5837. DOI: 10.3748/wjg.v19.i35.5837.
  • Wieser, H. Chemistry of Gluten Proteins. Food Microbiol. 2007, 24(2), 115–119. DOI: 10.1016/j.fm.2006.07.004.
  • Stepniak, D.; Spaenij-Dekking, L.; Mitea, C.; Moester, M.; de Ru, A.; Baak-Pablo, R.; van Veelen, P.; Edens, L.; Koning, F. Highly Efficient Gluten Degradation with a Newly Identified Prolyl Endoprotease: Implications for Celiac Disease. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2006, 291(4), G621–629. DOI: 10.1152/ajpgi.00034.2006.
  • Gass, J.; Bethune, M. T.; Siegel, M.; Spencer, A.; Khosla, C. Combination Enzyme Therapy for Gastric Digestion of Dietary Gluten in Patients with Celiac Sprue. Gastroenterol. 2007, 133(2), 472–480. DOI: 10.1053/j.gastro.2007.05.028.
  • Catassi, C.; Fabiani, E.; Iacono, G.; D’Agate, C.; Francavilla, R.; Biagi, F.; Volta, U.; Accomando, S.; Picarelli, A.; De Vitis, I., et al. A Prospective, Double-Blind, Placebo-Controlled Trial to Establish a Safe Gluten Threshold for Patients with Celiac Disease. Am. J. Clin. Nutr. 2007, 85(1), 160–166. DOI: 10.1093/ajcn/85.1.160.
  • Lähdeaho, M. -L.; Kaukinen, K.; Laurila, K.; Vuotikka, P.; Koivurova, O. -P.; Kärjä-Lahdensuu, T.; Marcantonio, A.; Adelman, D. C.; Mäki, M. Glutenase ALV003 Attenuates Gluten-Induced Mucosal Injury in Patients with Celiac Disease. Gastroenterol. 2014, 146(7), 1649–1658. DOI: 10.1053/j.gastro.2014.02.031.
  • Heredia-Sandoval, N. G.; Islas-Rubio, A. R.; Cabrera-Chávez, F.; de la Barca, A. M. C. Transamidation of Gluten Proteins During the Bread-Making Process of Wheat Flour to Produce Breads with Less Immunoreactive Gluten. Food & Function. 2014, 5(8), 1813–1818. DOI: 10.1039/C4FO00118D.
  • Di Sabatino, A.; Vanoli, A.; Giuffrida, P.; Luinetti, O.; Solcia, E.; Corazza, G. R. The Function of Tissue Transglutaminase in Celiac Disease. Autoimmunity Rev. 2012, 11(10), 746–753. DOI: 10.1016/j.autrev.2012.01.007.
  • Mazzarella, G.; Salvati, V. M.; Iaquinto, G.; Stefanile, R.; Capobianco, F.; Luongo, D.; Bergamo, P.; Maurano, F.; Giardullo, N.; Malamisura, B., et al. Reintroduction of Gluten Following Flour Transamidation in Adult Celiac Patients: A Randomized, Controlled Clinical Study. Clinic. Develop. Immunol. 2012, 2012, 1–10. DOI: 10.1155/2012/329150.
  • Ribeiro, M.; Nunes, F. M.; Guedes, S.; Domingues, P.; Silva, A. M.; Carrillo, J. M.; Rodriguez-Quijano, M.; Branlard, G.; Igrejas, G. Efficient Chemo-Enzymatic Gluten Detoxification: Reducing Toxic Epitopes for Celiac Patients Improving Functional Properties. Sci Rep. 2015, 5(1), 1–17. DOI: 10.1038/srep18041.
  • McCarville, J. L.; Nisemblat, Y.; Galipeau, H. J.; Jury, J.; Tabakman, R.; Cohen, A.; Naftali, E.; Neiman, B.; Halbfinger, E.; Murray, J. A., et al. BL-7010 Demonstrates Specific Binding to Gliadin and Reduces Gluten-Associated Pathology in a Chronic Mouse Model of Gliadin Sensitivity. PLoS One. 2014, 9(11), e109972. DOI: 10.1371/journal.pone.0109972.
  • Pinier, M.; Verdu, E. F.; Nasser–Eddine, M.; David, C. S.; Vézina, A.; Rivard, N.; Leroux, J. C. Polymeric Binders Suppress Gliadin-Induced Toxicity in the Intestinal Epithelium. Gastroenterol. 2009, 136(1), 288–298. DOI: 10.1053/j.gastro.2008.09.016.
  • Galipeau, H. J.; Verdu, E. F. The Double-Edged Sword of Gut Bacteria in Celiac Disease and Implications for Therapeutic Potential. Mucosal Immunol. 2022, 15(2), 235–243. DOI: 10.1038/s41385-021-00479-3.
  • Wong, S. H.; Yu, J. Gut Microbiota in Colorectal Cancer: Mechanisms of Action and Clinical Applications. Nature Reviews Gastroenterology & Hepatology. 2019, 16(11), 690–704. DOI: 10.1038/s41575-019-0209-8.
  • Sabahi, S.; Abbasi, A.; Mortazavi, S. A. Characterization of Cinnamon Essential Oil and Its Application in Malva Sylvestris Seed Mucilage Edible Coating to the Enhancement of the Microbiological, Physicochemical and Sensory Properties of Lamb Meat During Storage. J. Appl. Microbiol. 2022, 133(2), 2022. DOI: 10.1111/jam.15578.
  • Orlando, A.; Linsalata, M.; Bianco, G.; Notarnicola, M.; D’Attoma, B.; Scavo, M. P.; Tafaro, A.; Russo, F. Lactobacillus Rhamnosus GG Protects the Epithelial Barrier of Wistar Rats from the Pepsin-Trypsin-Digested Gliadin (PTG)-Induced Enteropathy. Nutrients. 2018, 10(11), 1698. DOI: 10.3390/nu10111698.
  • Laparra, J. M.; Olivares, M.; Gallina, O.; Sanz, Y.; Leulier, F.; Leulier, F. Bifidobacterium longum CECT 7347 Modulates Immune Responses in a Gliadin-Induced Enteropathy Animal Model. PLoS One. 2012, 7(2), e30744. DOI: 10.1371/journal.pone.0030744.
  • Lindfors, K.; Blomqvist, T.; Juuti-Uusitalo, K.; Stenman, S.; Venäläinen, J.; Mäki, M.; Kaukinen, K. Live Probiotic Bifidobacterium Lactis Bacteria Inhibit the Toxic Effects Induced by Wheat Gliadin in Epithelial Cell Culture. Clinical & Experimental Immunology. 2008, 152(3), 552–558. DOI: 10.1111/j.1365-2249.2008.03635.x.
  • Mickowska, B.; Romanová, K.; Urminská, D. Reduction of Immunoreactivity of Rye and Wheat Prolamins by Lactobacilli and Flavourzyme Proteolysis During Sourdough Fermentation–A Way to Obtain Low-Gluten Bread. Journal of Food & Nutrition Research. 2019, 58, 153–166.
  • Bradauskiene, V.; Vaiciulyte-Funk, L.; Mazoniene, E.; Cernauskas, D. Fermentation with Lactobacillus Strains for Elimination of Gluten in Wheat (Triticum Aestivum) By-Products. In Proceedings of the Baltic Conference on Food Science and Technology: conference proceedings. LLU, 2019.
  • Sarno, M.; Lania, G.; Cuomo, M.; Nigro, F.; Passannanti, F.; Budelli, A.; Fasano, F.; Troncone, R.; Auricchio, S.; Barone, M. V., et al. Lactobacillus Paracasei CBA L74 Interferes with Gliadin Peptides Entrance in Caco-2 Cells. Int. J. Food Sci. Nutr. 2014, 65(8), 953–959. DOI: 10.3109/09637486.2014.940283.
  • D’Arienzo, R.; Maurano, F.; Lavermicocca, P.; Ricca, E.; Rossi, M. Modulation of the Immune Response by Probiotic Strains in a Mouse Model of Gluten Sensitivity. Cytokine. 2009, 48(3), 254–259. DOI: 10.1016/j.cyto.2009.08.003.
  • D’arienzo, R.; Stefanile, R.; Maurano, F.; Mazzarella, G.; Ricca, E.; Troncone, R.; Auricchio, S.; Rossi, M. Immunomodulatory Effects of Lactobacillus Casei Administration in a Mouse Model of Gliadin‐sensitive Enteropathy. Scandinavian Journal of Immunology. 2011, 74(4), 335–341. DOI: 10.1111/j.1365-3083.2011.02582.x.
  • De Angelis, M.; Coda, R.; Silano, M.; Minervini, F.; Rizzello, C. G.; Di Cagno, R.; Vicentini, O.; De Vincenzi, M.; Gobbetti, M. Fermentation by Selected Sourdough Lactic Acid Bacteria to Decrease Coeliac Intolerance to Rye Flour. J. Cereal Sci. 2006, 43(3), 301–314. DOI: 10.1016/j.jcs.2005.12.008.
  • Rizzello, C. G.; De Angelis, M.; Di Cagno, R.; Camarca, A.; Silano, M.; Losito, I.; De Vincenzi, M.; De Bari, M. D.; Palmisano, F.; Maurano, F., et al. Highly Efficient Gluten Degradation by Lactobacilli and Fungal Proteases During Food Processing: New Perspectives for Celiac Disease. Appl. Environ. Microbiol. 2007, 73(14), 4499–4507. DOI: 10.1128/AEM.00260-07.
  • De Angelis, M.; Rizzello, C. G.; Fasano, A.; Clemente, M. G.; De Simone, C.; Silano, M.; De Vincenzi, M.; Losito, I.; Gobbetti, M. VSL# 3 Probiotic Preparation Has the Capacity to Hydrolyze Gliadin Polypeptides Responsible for Celiac Sprue Probiotics and Gluten Intolerance. Biochim. Biophys. Acta-Mol. Basis Dis. 2006, 1762(1), 80–93. DOI: 10.1016/j.bbadis.2005.09.008.
  • Abbasi, A.; Aghebati-Maleki, A.; Yousefi, M.; Aghebati-Maleki, L. Probiotic Intervention as a Potential Therapeutic for Managing Gestational Disorders and Improving Pregnancy Outcomes. Journal of Reproductive Immunology. 2021, 143, 103244. DOI: 10.1016/j.jri.2020.103244.
  • Ashraf, R.; Shah, N. P. Immune System Stimulation by Probiotic Microorganisms. Critical Reviews in Food Science and Nutrition. 2014, 54(7), 938–956. DOI: 10.1080/10408398.2011.619671.
  • Sabahi, S.; Mortazavi, S. A.; Nassiri, M.; Ghazvini, K.; Shahidi, F.; Abbasi, A.; et al. Production of Functional Ice Cream Fortified by Immunoglobulin Y Against Escherichia coli O157: H7 and Helicobacter Pylori. Biointerface Research in Applied Chemistry. 2022, 13(2), 188–198. doi:10.33263/BRIAC132.188.
  • Haza, A.; Zabala, A.; Arranz, N.; Morales, P. Protective Effect of a Lactobacillus Salivarius Strain of Human Origin. Food Sci. Technol. Int. 2005, 11(4), 251–259. DOI: 10.1177/1082013205056402.
  • Orlando, A.; Linsalata, M.; Notarnicola, M.; Tutino, V.; Russo, F. Lactobacillus GG Restoration of the Gliadin Induced Epithelial Barrier Disruption: The Role of Cellular Polyamines. BMC Microbiol. 2014, 14(1), 1–12. DOI: 10.1186/1471-2180-14-19.
  • Oscarsson, E.; Håkansson, Å.; Andrén Aronsson, C.; Molin, G.; Agardh, D. Effects of Probiotic Bacteria Lactobacillaceae on the Gut Microbiota in Children with Celiac Disease Autoimmunity: A Placebo-Controlled and Randomized Clinical Trial. Front. Nutrit. 2021, 8, 354. DOI: 10.3389/fnut.2021.680771.
  • Di Cagno, R.; De Angelis, M.; Lavermicocca, P.; De Vincenzi, M.; Giovannini, C.; Faccia, M.; Gobbetti, M. Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Appl. Environ. Microbiol. 2002, 68(2), 623–633. DOI: 10.1128/AEM.68.2.623-633.2002.
  • Di Cagno, R.; De Angelis, M.; Auricchio, S.; Greco, L.; Clarke, C.; De Vincenzi, M.; Giovannini, C.; D’Archivio, M.; Landolfo, F.; Parrilli, G., et al. Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli is Tolerated in Celiac Sprue Patients. Appl. Environ. Microbiol. 2004, 70(2), 1088–1096. DOI: 10.1128/AEM.70.2.1088-1096.2004.
  • Ciccocioppo, R.; Finamore, A.; Ara, C.; Di Sabatino, A.; Mengheri, E.; Corazza, G. R. Altered Expression, Localization, and Phosphorylation of Epithelial Junctional Proteins in Celiac Disease. Am. J. Clin. Pathol. 2006, 125(4), 502–511. DOI: 10.1309/DTYRA91G8R0KTM8M.
  • Olivares, M.; Laparra, M.; Sanz, Y. Oral Administration of Bifidobacterium longum CECT 7347 Modulates Jejunal Proteome in an in vivo Gliadin-Induced Enteropathy Animal Model. J Proteomics. 2012, 77, 310–320. DOI: 10.1016/j.jprot.2012.09.005.
  • Ozma, M. A.; Abbasi, A.; Ahangarzadeh Rezaee, M.; Hosseini, H.; Hosseinzadeh, N.; Sabahi, S.; Noori, S. M. A.; Sepordeh, S.; Khodadadi, E.; Lahouty, M., et al. A Critical Review on the Nutritional and Medicinal Profiles of Garlic’s (Allium Sativum L.) Bioactive Compounds. Food Rev. Int. 2022, 1–38. DOI: 10.1080/87559129.2022.2100417.
  • Karimi, N.; Jabbari, V.; Nazemi, A.; Ganbarov, K.; Karimi, N.; Tanomand, A.; Karimi, S.; Abbasi, A.; Yousefi, B.; Khodadadi, E., et al. Thymol, Cardamom and Lactobacillus Plantarum Nanoparticles as a Functional Candy with High Protection Against Streptococcus Mutans and Tooth Decay. Microb. Pathogenesis. 2020, 148, 104481. DOI: 10.1016/j.micpath.2020.104481.
  • Abbasi, A.; Saadat, T. R.; Saadat, Y. R. Microbial exopolysaccharides–β-Glucans–as Promising Postbiotic Candidates in Vaccine Adjuvants. Int J Biol Macromol. 2022, 223, 346–361. DOI: 10.1016/j.ijbiomac.2022.11.003.
  • Sarteshnizi, R. A.; Hosseini, H.; Khosroshahi, N. K.; Shahraz, F.; Khaneghah, A. M.; Kamran, M.; Komeili, R.; Chiavaro, E. Effect of Resistant Starch and β-Glucan Combination on Oxidative Stability, Frying Performance, Microbial Count and Shelf Life of Prebiotic Sausage During Refrigerated Storage. Food Technol. Biotechnol. 2017, 55(4), 475. DOI: 10.17113/ftb.55.04.17.5479.
  • Sarteshnizi, R. A.; Hosseini, H.; Bondarianzadeh, D.; Colmenero, F. J.; Khaksar, R. Optimization of Prebiotic Sausage Formulation: Effect of Using β-Glucan and Resistant Starch by D-Optimal Mixture Design Approach. LWT Food Sci. Technol. 2015, 62(1), 704–710. DOI: 10.1016/j.lwt.2014.05.014.
  • Haghshenas, M.; Hosseini, H.; Nayebzadeh, K.; Khanghah, A. M.; Kakesh, B. S.; Fonood, R. K. Production of Prebiotic Functional Shrimp Nuggets Using ß-Glucan and Reduction of Oil Absorption by Carboxymethyl Cellulose: Impacts on Sensory and Physical Properties. J Aquacul Res Dev. 2014, 5(04), 245–248. DOI: 10.4172/2155-9546.1000245.
  • Hurtado-Romero, A.; Del Toro-Barbosa, M.; Garcia-Amezquita, L. E.; García-Cayuela, T. Innovative Technologies for the Production of Food Ingredients with Prebiotic Potential: Modifications, Applications, and Validation Methods. Trends in Food Science & Technology. 2020, 104, 117–131. DOI: 10.1016/j.tifs.2020.08.007.
  • Marasco, G.; Cirota, G. G.; Rossini, B.; Lungaro, L.; Di Biase, A. R.; Colecchia, A.; Volta, U.; De Giorgio, R.; Festi, D.; Caio, G. Probiotics, Prebiotics and Other Dietary Supplements for Gut Microbiota Modulation in Celiac Disease Patients. Nutrients. 2020, 12(9), 2674. DOI: 10.3390/nu12092674.
  • Drabińska, N.; Jarocka-Cyrta, E.; Markiewicz, L. H.; Krupa-Kozak, U. The Effect of Oligofructose-Enriched Inulin on Faecal Bacterial Counts and Microbiota-Associated Characteristics in Celiac Disease Children Following a Gluten-Free Diet: Results of a Randomized, Placebo-Controlled Trial. Nutrients. 2018, 10(2), 201. DOI: 10.3390/nu10020201.
  • Drabińska, N.; Jarocka-Cyrta, E.; Ratcliffe, N. M.; Krupa-Kozak, U. The Profile of Urinary Headspace Volatile Organic Compounds After 12-Week Intake of Oligofructose-Enriched Inulin by Children and Adolescents with Celiac Disease on a Gluten-Free Diet: Results of a Pilot, Randomized, Placebo-Controlled Clinical Trial. Molecules. 2019, 24(7), 1341. DOI: 10.3390/molecules24071341.
  • Smecuol, E.; Hwang, H. J.; Sugai, E.; Corso, L.; Chernavsky, A. C.; Bellavite, F. P.; González, A.; Vodánovich, F.; Moreno, M. L.; Vázquez, H., et al. Exploratory, Randomized, Double-Blind, Placebo-Controlled Study on the Effects of Bifidobacterium Infantis Natren Life Start Strain Super Strain in Active Celiac Disease. J. Clin. Gastroenterol. 2013, 47(2), 139–147. DOI: 10.1097/MCG.0b013e31827759ac.
  • Olivares, M.; Castillejo, G.; Varea, V.; Sanz, Y. Double-Blind, Randomised, Placebo-Controlled Intervention Trial to Evaluate the Effects of Bifidobacterium longum CECT 7347 in Children with Newly Diagnosed Coeliac Disease. Br. J. Nutr. 2014, 112(1), 30–40. DOI: 10.1017/S0007114514000609.
  • Klemenak, M.; Dolinšek, J.; Langerholc, T.; Di Gioia, D.; Mičetić-Turk, D. Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. Digestive Diseases and Sciences. 2015, 60(11), 3386–3392. DOI: 10.1007/s10620-015-3769-7.
  • Quagliariello, A.; Aloisio, I.; Bozzi Cionci, N.; Luiselli, D.; D’Auria, G.; Martinez-Priego, L.; Pérez-Villarroya, D.; Langerholc, T.; Primec, M.; Mičetić-Turk, D., et al. Effect of Bifidobacterium breve on the Intestinal Microbiota of Coeliac Children on a Gluten Free Diet: A Pilot Study. Nutrients. 2016, 8(10), 660. DOI: 10.3390/nu8100660.
  • Håkansson, Å.; Andrén Aronsson, C.; Brundin, C.; Oscarsson, E.; Molin, G.; Agardh, D. Effects of Lactobacillus Plantarum and Lactobacillus Paracasei on the Peripheral Immune Response in Children with Celiac Disease Autoimmunity: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2019, 11(8), 1925. DOI: 10.3390/nu11081925.
  • Francavilla, R.; Piccolo, M.; Francavilla, A.; Polimeno, L.; Semeraro, F.; Cristofori, F.; Castellaneta, S.; Barone, M.; Indrio, F.; Gobbetti, M., et al. Clinical and Microbiological Effect of a Multispecies Probiotic Supplementation in Celiac Patients with Persistent IBS-Type Symptoms: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. J. Clin. Gastroenterol. 2019, 53(3), e117. DOI: 10.1097/MCG.0000000000001023.
  • Smecuol, E.; Constante, M.; Temprano, M.; Costa, A.; Moreno, M.; Pinto-Sanchez, M.; Vázquez, H.; Stefanolo, J.; Gonzalez, A.; D’Adamo, C., et al. Effect of Bifidobacterium Infantis NLS Super Strain in Symptomatic Coeliac Disease Patients on Long-Term Gluten-Free Diet–An Exploratory Study. Beneficial Microbes. 2020, 11(6), 527–534. DOI: 10.3920/BM2020.0016.
  • Ali, B.; Khan, A. R. Efficacy of Probiotics in Management of Celiac Disease. Cureus. 2022, 14. DOI: 10.7759/cureus.22031.
  • Demiroren, K. Can a Synbiotic Supplementation Contribute to Decreasing Anti-Tissue Transglutaminase Levels in Children with Potential Celiac Disease? Pediatric Gastroenterology, Hepatology & Nutrition. 2020, 23(4), 397. DOI: 10.5223/pghn.2020.23.4.397.
  • Feruś, K.; Drabińska, N.; Krupa-Kozak, U.; Jarocka-Cyrta, E. A Randomized, Placebo-Controlled, Pilot Clinical Trial to Evaluate the Effect of Supplementation with Prebiotic Synergy 1 on Iron Homeostasis in Children and Adolescents with Celiac Disease Treated with a Gluten-Free Diet. Nutrients. 2018, 10(11), 1818. DOI: 10.3390/nu10111818.
  • Roncoroni, L.; Bascuñán, K. A.; Doneda, L.; Scricciolo, A.; Lombardo, V.; Branchi, F.; Ferretti, F.; Dell’osso, B.; Montanari, V.; Bardella, M. T., et al. A Low FODMAP Gluten-Free Diet Improves Functional Gastrointestinal Disorders and Overall Mental Health of Celiac Disease Patients: A Randomized Controlled Trial. Nutrients. 2018, 10(8), 1023. DOI: 10.3390/nu10081023.
  • Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A Novel Strategy in Food Allergy Treatment. Crit. Rev. Food Sci. Nutr. 2021, 61(3), 492–499. DOI: 10.1080/10408398.2020.1738333.
  • Li, H.; Song, W.; Liu, T.; Xu, S.; Zhang, S.; Zhang, Y.; Liu, D.; Li, H.; Yu, J. Developing Novel Synbiotic Yoghurt with Lacticaseibacillus paracasei and Lactitol: Investigation of the Microbiology, Textural and Rheological Properties. Int. Dairy J. 2022, 135, 105475. DOI: 10.1016/j.idairyj.2022.105475.
  • Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.; Walsh, S.; O’neil, D.; Macfarlane, G. Synbiotic Therapy (Bifidobacterium longum/Synergy 1) Initiates Resolution of Inflammation in Patients with Active Ulcerative Colitis: A Randomised Controlled Pilot Trial. Gut. 2005, 54(2), 242–249. DOI: 10.1136/gut.2004.044834.
  • Adebola, O. O.; Corcoran, O.; Morgan, W. A. Synbiotics: The Impact of Potential Prebiotics Inulin, Lactulose and Lactobionic Acid on the Survival and Growth of Lactobacilli Probiotics. J. Funct. Foods. 2014, 10, 75–84. DOI: 10.1016/j.jff.2014.05.010.
  • Abbasi, A.; Rad, A. H.; Maleki, L. A.; Kafil, H. S.; Baghbanzadeh, A. Antigenotoxicity and Cytotoxic Potentials of Cell-Free Supernatants Derived from Saccharomyces cerevisiae Var. Boulardii on HT-29 Human Colon Cancer Cell Lines. Probiotics Antimicrob. Proteins. 2023, 2023, 1–13. DOI: 10.1007/s12602-022-10039-1.
  • Sabahi, S.; Homayouni Rad, A.; Aghebati-Maleki, L.; Sangtarash, N.; Ozma, M. A.; Karimi, A.; Hosseini, H.; Abbasi, A. Postbiotics as the New Frontier in Food and Pharmaceutical Research. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–28. DOI: 10.1080/10408398.2022.2056727.
  • Conte, M.; Porpora, M.; Nigro, F.; Nigro, R.; Budelli, A. L.; Barone, M. V.; Nanayakkara, M. Pro-Pre and Postbiotic in Celiac Disease. Appl. Sci. 2021, 11(17), 8185. DOI: 10.3390/app11178185.
  • Martorell, P.; Alvarez, B.; Llopis, S.; Navarro, V.; Ortiz, P.; Gonzalez, N.; Balaguer, F.; Rojas, A.; Chenoll, E.; Ramón, D., et al. Heat-Treated Bifidobacterium longum CECT-7347: A Whole-Cell Postbiotic with Antioxidant, Anti-Inflammatory, and Gut-Barrier Protection Properties. Antioxidants. 2021, 10(4), 536. DOI: 10.3390/antiox10040536.
  • Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W., et al. A Novel Postbiotic from Lactobacillus Rhamnosus GG with a Beneficial Effect on Intestinal Barrier Function. Front. Microbiol. 2019, 10, 477. DOI: 10.3389/fmicb.2019.00477.
  • Cao, Z.; Sugimura, N.; Burgermeister, E.; Ebert, M. P.; Zuo, T.; Lan, P. The Gut Virome: A New Microbiome Component in Health and Disease. EBioMedicine. 2022, 81, 104113. DOI: 10.1016/j.ebiom.2022.104113.
  • Mills, S.; Shanahan, F.; Stanton, C.; Hill, C.; Coffey, A.; Ross, R. P. Movers and Shakers: Influence of Bacteriophages in Shaping the Mammalian Gut Microbiota. Gut Microbes. 2013, 4(1), 4–16. DOI: 10.4161/gmic.22371.
  • Vitetta, L.; Vitetta, G.; Hall, S. Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Front. Immunol. 2018, 9, 2240. DOI: 10.3389/fimmu.2018.02240.
  • El Mouzan, M.; Assiri, A.; Al Sarkhy, A.; Alasmi, M.; Saeed, A.; Al-Hussaini, A.; AlSaleem, B.; Al Mofarreh, M.; Lim, E.; Lim, E. Viral Dysbiosis in Children with New-Onset Celiac Disease. PLoS One. 2022, 17(1), e0262108. DOI: 10.1371/journal.pone.0262108.
  • Garmaeva, S.; Gulyaeva, A.; Sinha, T.; Shkoporov, A. N.; Clooney, A. G.; Stockdale, S. R.; Spreckels, J. E.; Sutton, T. D.; Draper, L. A.; Dutilh, B. E., et al. Stability of the Human Gut Virome and Effect of Gluten-Free Diet. Cell Rep. 2021, 35(7), 109132. DOI: 10.1016/j.celrep.2021.109132.
  • Febvre, H. P.; Rao, S.; Gindin, M.; Goodwin, N. D.; Finer, E.; Vivanco, J. S.; Lu, S.; Manter, D. K.; Wallace, T. C.; Weir, T. L. PHAGE Study: Effects of Supplemental Bacteriophage Intake on Inflammation and Gut Microbiota in Healthy Adults. Nutrients. 2019, 11(3), 666. DOI: 10.3390/nu11030666.
  • Lerner, A.; Ramesh, A.; Matthias, T. The Revival of the Battle Between David and Goliath in the Enteric Viruses and Microbiota Struggle: Potential Implication for Celiac Disease. Microorganisms. 2019, 7(6), 173. DOI: 10.3390/microorganisms7060173.
  • Wagh, S. K.; Lammers, K. M.; Padul, M. V.; Rodriguez-Herrera, A.; Dodero, V. I. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int. J. Mol. Sci. 2022, 23(19), 11748. DOI: 10.3390/ijms231911748.
  • Héder, M. From NASA to EU: The Evolution of the TRL Scale in Public Sector Innovation. The Innovation Journal. 2017, 22, 1–23.
  • Keijzer, C.; Zee, R. V. D.; Eden, W. V.; Broere, F. Treg Inducing Adjuvants for Therapeutic Vaccination Against Chronic Inflammatory Diseases. Front. Immunol. 2013, 4, 245. DOI: 10.3389/fimmu.2013.00245.
  • Ghaffari, S.; Abbasi, A.; Somi, M. H.; Moaddab, S. Y.; Nikniaz, L.; Kafil, H. S.; Ebrahimzadeh Leylabadlo, H. Akkermansia Muciniphila: From Its Critical Role in Human Health to Strategies for Promoting Its Abundance in Human Gut Microbiome. Crit. Rev. Food Sci. Nutr. 2022, 1–21. DOI: 10.1080/10408398.2022.2045894.
  • Baunwall, S. M. D.; Lee, M. M.; Eriksen, M. K.; Mullish, B. H.; Marchesi, J. R.; Dahlerup, J. F.; Hvas, C. L. Faecal Microbiota Transplantation for Recurrent Clostridioides Difficile Infection: An Updated Systematic Review and Meta-Analysis. EClinicalMedicine. 2020, 29, 100642. DOI: 10.1016/j.eclinm.2020.100642.
  • Littmann, E. R.; Lee, J. -J.; Denny, J. E.; Alam, Z.; Maslanka, J. R.; Zarin, I.; Matsuda, R.; Carter, R. A.; Susac, B.; Saffern, M. S., et al. Host Immunity Modulates the Efficacy of Microbiota Transplantation for Treatment of Clostridioides Difficile Infection. Nat Commun. 2021, 12(1), 1–15. DOI: 10.1038/s41467-020-20793-x.
  • Akobeng, A. K.; Singh, P.; Kumar, M.; Al Khodor, S. Role of the Gut Microbiota in the Pathogenesis of Coeliac Disease and Potential Therapeutic Implications. Eur. J. Nutr. 2020, 59(8), 3369–3390. DOI: 10.1007/s00394-020-02324-y.
  • Malamut, G.; Cellier, C. Refractory Celiac Disease. Gastroenterology Clinics of North America. 2019, 48(1), 137–144. DOI: 10.1016/j.gtc.2018.09.010.
  • van Beurden, Y. H.; van Gils, T.; van Gils, N. A.; Kassam, Z.; Mulder, C. J.; Aparicio-Pagés, N. Serendipity in Refractory Celiac Disease: Full Recovery of Duodenal Villi and Clinical Symptoms After Fecal Microbiota Transfer. Journal of Gastrointestinal & Liver Diseases. 2016, 25(3), 385–388. DOI: 10.15403/jgld.2014.1121.253.cel.
  • Choi, K.; Siegel, M.; Piper, J. L.; Yuan, L.; Cho, E.; Strnad, P.; Omary, B.; Rich, K. M.; Khosla, C. Chemistry and Biology of Dihydroisoxazole Derivatives: Selective Inhibitors of Human Transglutaminase 2. Chemistry & Biology. 2005, 12(4), 469–475. DOI: 10.1016/j.chembiol.2005.02.007.
  • Büchold, C.; Hils, M.; Gerlach, U.; Weber, J.; Pelzer, C.; Heil, A.; Aeschlimann, D.; Pasternack, R. Features of ZED1227: The First-In-Class Tissue Transglutaminase Inhibitor Undergoing Clinical Evaluation for the Treatment of Celiac Disease. Cells. 2022, 11(10), 1667. DOI: 10.3390/cells11101667.
  • Jabri, B. Transglutaminase 2 Inhibition for Prevention of Mucosal Damage in Celiac Disease. New Engl. J. Med. 2021, 385(1), 76. DOI: 10.1056/NEJMe2107502.
  • Verdu, E. F.; Schuppan, D. Co-Factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterol. 2021, 161(5), 1395–1411. e1394. DOI: 10.1053/j.gastro.2021.08.016.
  • Paterson, B.; Lammers, K.; Arrieta, M.; Fasano, A.; Meddings, J. The Safety, Tolerance, Pharmacokinetic and Pharmacodynamic Effects of Single Doses of AT‐1001 in Coeliac Disease Subjects: A Proof of Concept Study. Alimentary Pharmacology & Therapeutics. 2007, 26(5), 757–766. DOI: 10.1111/j.1365-2036.2007.03413.x.
  • Leffler, D. A.; Kelly, C. P.; Abdallah, H.; Colatrella, A.; Harris, L.; Leon, F.; Arterburn, L.; Paterson, B.; Lan, Z.; Murray, J. A Randomized, Double-Blind Study of Larazotide Acetate to Prevent the Activation of Celiac Disease During Gluten Challenge. Official Journal of the American College of Gastroenterology| ACG. 2012, 107(10), 1554–1562. DOI: 10.1038/ajg.2012.211.
  • Leffler, D. A.; Kelly, C. P.; Green, P. H.; Fedorak, R. N.; DiMarino, A.; Perrow, W.; Rasmussen, H.; Wang, C.; Bercik, P.; Bachir, N. M., et al. Larazotide Acetate for Persistent Symptoms of Celiac Disease Despite a Gluten-Free Diet: A Randomized Controlled Trial. Gastroenterol. 2015, 148(7), 1311–1319. e1316. DOI: 10.1053/j.gastro.2015.02.008.
  • Kelly, C.; Green, P.; Murray, J.; Dimarino, A.; Colatrella, A.; Leffler, D.; Alexander, T.; Arsenescu, R.; Leon, F.; Jiang, J., et al. Larazotide Acetate in Patients with Coeliac Disease Undergoing a Gluten Challenge: A Randomised Placebo‐controlled Study. Alimentary Pharmacology & Therapeutics. 2013, 37(2), 252–262. DOI: 10.1111/apt.12147.
  • Bach, J. -F. The Effect of Infections on Susceptibility to Autoimmune and Allergic Diseases. New Engl. J. Med. 2002, 347(12), 911–920. DOI: 10.1056/NEJMra020100.
  • Daveson, A. J.; Jones, D. M.; Gaze, S.; McSorley, H.; Clouston, A.; Pascoe, A.; Cooke, S.; Speare, R.; Macdonald, G. A.; Anderson, R., et al. Effect of Hookworm Infection on Wheat Challenge in Celiac Disease–A Randomised Double-Blinded Placebo Controlled Trial. PLoS One. 2011, 6(3), e17366. DOI: 10.1371/journal.pone.0017366.
  • Croese, J.; Giacomin, P.; Navarro, S.; Clouston, A.; McCann, L.; Dougall, A.; Ferreira, I.; Susianto, A.; O’Rourke, P.; Howlett, M., et al. Experimental Hookworm Infection and Gluten Microchallenge Promote Tolerance in Celiac Disease. J. Allergy Clin. Immunol. 2015, 135(2), 508–516. e505. DOI: 10.1016/j.jaci.2014.07.022.
  • Theron, M.; Bentley, D.; Nagel, S.; Manchester, M.; Gerg, M.; Schindler, T.; Silva, A.; Ecabert, B.; Teixeira, P.; Perret, C., et al. Pharmacodynamic Monitoring of RO5459072, a Small Molecule Inhibitor of Cathepsin S. Front. Immunol. 2017, 8, 806. DOI: 10.3389/fimmu.2017.00806.
  • Goel, G.; King, T.; Daveson, A. J.; Andrews, J. M.; Krishnarajah, J.; Krause, R.; Brown, G. J.; Fogel, R.; Barish, C. F.; Epstein, R., et al. Epitope-Specific Immunotherapy Targeting CD4-Positive T Cells in Coeliac Disease: Two Randomised, Double-Blind, Placebo-Controlled Phase 1 Studies. The Lancet Gastroenterology & Hepatology. 2017, 2(7), 479–493. DOI: 10.1016/S2468-1253(17)30110-3.
  • Yokoyama, S.; Perera, P. -Y.; Waldmann, T. A.; Hiroi, T.; Perera, L. P. Tofacitinib, a Janus Kinase Inhibitor Demonstrates Efficacy in an IL-15 Transgenic Mouse Model That Recapitulates Pathologic Manifestations of Celiac Disease. Journal of Clinical Immunology. 2013, 33(3), 586–594. DOI: 10.1007/s10875-012-9849-y.
  • Mei, H. E.; Frölich, D.; Giesecke, C.; Loddenkemper, C.; Reiter, K.; Schmidt, S.; Feist, E.; Daridon, C.; Tony, H. -P.; Radbruch, A., et al. Steady-State Generation of Mucosal IgA+ Plasmablasts is Not Abrogated by B-Cell Depletion Therapy with Rituximab. Blood, the Journal of the American Society of Hematology. 2010, 116(24), 5181–5190. DOI: 10.1182/blood-2010-01-266536.
  • Leffler, D. A.; Dennis, M.; Hyett, B.; Kelly, E.; Schuppan, D.; Kelly, C. P. Etiologies and Predictors of Diagnosis in Nonresponsive Celiac Disease. Clinical Gastroenterology and Hepatology. 2007, 5(4), 445–450. DOI: 10.1016/j.cgh.2006.12.006.
  • Hujoel, I. A.; Murray, J. A. Refractory Celiac Disease. Current Gastroenterol. Reports. 2020, 22(4), 1–8. DOI: 10.1007/s11894-020-0756-8.
  • Roshan, B.; Leffler, D. A.; Jamma, S.; Dennis, M.; Sheth, S.; Falchuk, K.; Najarian, R.; Goldsmith, J.; Tariq, S.; Schuppan, D. The Incidence and Clinical Spectrum of Refractory Celiac Disease in a North American Referral Center. Official Journal of the American College of Gastroenterology| ACG. 2011, 106(5), 923–928. DOI: 10.1038/ajg.2011.104.
  • Green, P. H.; Paski, S.; Ko, C. W.; Rubio-Tapia, A. AGA Clinical Practice Update on Management of Refractory Celiac Disease: Expert Review. Gastroenterol. 2022, 163(5), 2022. DOI: 10.1053/j.gastro.2022.07.086.
  • Burkhardt, J.; Chapa‐rodriguez, A.; Bahna, S. Gluten Sensitivities and the Allergist: Threshing the Grain from the Husks. Allergy. 2018, 73(7), 1359–1368. DOI: 10.1111/all.13354.
  • Pillon, R.; Ziberna, F.; Badina, L.; Ventura, A.; Longo, G.; Quaglia, S.; De Leo, L.; Vatta, S.; Martelossi, S.; Patano, G., et al. Prevalence of Celiac Disease in Patients with Severe Food Allergy. Allergy. 2015, 70(10), 1346–1349. DOI: 10.1111/all.12692.
  • Hommeida, S.; Alsawas, M.; Murad, M. H.; Katzka, D. A.; Grothe, R. M.; Absah, I. The Association Between Celiac Disease and Eosinophilic Esophagitis: Mayo Experience and Meta-Analysis of the Literature. J. Pediatr. Gastroenterol. Nutr. 2017, 65(1), 58–63. DOI: 10.1097/MPG.0000000000001499.
  • Jensen, E. T.; Eluri, S.; Lebwohl, B.; Genta, R. M.; Dellon, E. S. Increased Risk of Esophageal Eosinophilia and Eosinophilic Esophagitis in Patients with Active Celiac Disease on Biopsy. Clinical Gastroenterology and Hepatology. 2015, 13(8), 1426–1431. DOI: 10.1016/j.cgh.2015.02.018.
  • Johnson, J.; Boynton, K.; Peterson, K. Co-Occurrence of Eosinophilic Esophagitis and Potential/Probable Celiac Disease in an Adult Cohort: A Possible Association with Implications for Clinical Practice. Diseases of the Esophagus. 2016, 29(8), 977–982. DOI: 10.1111/dote.12419.
  • Ari, A.; Morgenstern, S.; Chodick, G.; Matar, M.; Silbermintz, A.; Assa, A.; Mozer-Glassberg, Y.; Rinawi, F.; Nachmias-Friedler, V.; Shamir, R., et al. Oesophageal Eosinophilia in Children with Coeliac Disease. Arch. Dis. Childhood. 2017, 102(9), 825–829. DOI: 10.1136/archdischild-2016-311944.
  • Denham, J. M.; Hill, I. D. Celiac Disease and Autoimmunity: Review and Controversies. Current Allergy and Asthma Reports. 2013, 13(4), 347–353. DOI: 10.1007/s11882-013-0352-1.
  • Ress, K.; Annus, T.; Putnik, U.; Luts, K.; Uibo, R.; Uibo, O. Celiac Disease in Children with Atopic Dermatitis. Pediatric Dermatology. 2014, 31(4), 483–488. DOI: 10.1111/pde.12372.
  • Enroth, S.; Dahlbom, I.; Hansson, T.; Johansson, Å.; Gyllensten, U. Prevalence and Sensitization of Atopic Allergy and Coeliac Disease in the Northern Sweden Population Health Study. International Journal of Circumpolar Health. 2013, 72(1), 21403. DOI: 10.3402/ijch.v72i0.21403.
  • Ciacci, C.; Cavallaro, R.; Iovino, P.; Sabbatini, F.; Palumbo, A.; Amoruso, D.; Tortora, R.; Mazzacca, G. Allergy Prevalence in Adult Celiac Disease. J. Allergy Clin. Immunol. 2004, 113(6), 1199–1203. DOI: 10.1016/j.jaci.2004.03.012.
  • Assa, A.; Frenkel‐nir, Y.; Tzur, D.; Katz, L. H.; Shamir, R. Large Population Study Shows That Adolescents with Celiac Disease Have an Increased Risk of Multiple Autoimmune and Nonautoimmune Comorbidities. Acta Paediatrica. 2017, 106(6), 967–972. DOI: 10.1111/apa.13808.
  • Ludvigsson, J. F.; Hemminki, K.; Wahlström, J.; Almqvist, C. Celiac Disease Confers a 1.6-Fold Increased Risk of Asthma: A Nationwide Population-Based Cohort Study. J. Allergy Clin. Immunol. 2011, 127(4), 1071–1073. e1074. DOI: 10.1016/j.jaci.2010.12.1076.
  • Smedby, K.; Åkerman, M.; Hildebrand, H.; Glimelius, B.; Ekbom, A.; Askling, J. Malignant Lymphomas in Coeliac Disease: Evidence of Increased Risks for Lymphoma Types Other Than Enteropathy-Type T Cell Lymphoma. Gut. 2005, 54(1), 54–59. DOI: 10.1136/gut.2003.032094.
  • Ilus, T.; Kaukinen, K.; Virta, L. J.; Pukkala, E.; Collin, P. Incidence of Malignancies in Diagnosed Celiac Patients: A Population-Based Estimate. Official Journal of the American College of Gastroenterology| ACG. 2014, 109(9), 1471–1477. DOI: 10.1038/ajg.2014.194.
  • Lebwohl, B.; Granath, F.; Ekbom, A.; Smedby, K. E.; Murray, J. A.; Neugut, A. I.; Green, P. H.; Ludvigsson, J. F. Mucosal Healing and Risk for Lymphoproliferative Malignancy in Celiac Disease: A Population-Based Cohort Study. Ann. Internal Med. 2013, 159(3), 169–175. DOI: 10.7326/0003-4819-159-3-201308060-00006.
  • Dhalwani, N. N.; West, J.; Sultan, A. A.; Ban, L.; Tata, L. J. Women with Celiac Disease Present with Fertility Problems No More Often Than Women in the General Population. Gastroenterol. 2014, 147(6), 1267–1274. e1261. DOI: 10.1053/j.gastro.2014.08.025.
  • Zugna, D.; Richiardi, L.; Akre, O.; Stephansson, O.; Ludvigsson, J. F. A Nationwide Population-Based Study to Determine Whether Coeliac Disease is Associated with Infertility. Gut. 2010, 59(11), 1471–1475. DOI: 10.1136/gut.2010.219030.
  • Tata, L.; Card, T.; Logan, R.; Hubbard, R.; Smith, C.; West, J. Fertility and Pregnancy-Related Events in Women with Celiac Disease: A Population-Based Cohort Study. Gastroenterol. 2005, 128(4), 849–855. DOI: 10.1053/j.gastro.2005.02.017.
  • Zanini, B.; Lanzarotto, F.; Mora, A.; Bertolazzi, S.; Turini, D.; Cesana, B.; Donato, F.; Ricci, C.; Lonati, F.; Vassallo, F., et al. Five Year Time Course of Celiac Disease Serology During Gluten Free Diet: Results of a Community Based “CD-Watch” Program. Digestive Liver Dis. 2010, 42(12), 865–870. DOI: 10.1016/j.dld.2010.05.009.
  • Rubio-Tapia, A.; Rahim, M. W.; See, J. A.; Lahr, B. D.; Wu, T. -T.; Murray, J. A. Mucosal Recovery and Mortality in Adults with Celiac Disease After Treatment with a Gluten-Free Diet. Official Journal of the American College of Gastroenterology| ACG. 2010, 105(6), 1412–1420. DOI: 10.1038/ajg.2010.10.
  • Wahab, P. J.; Meijer, J. W.; Mulder, C. J. Histologic Follow-Up of People with Celiac Disease on a Gluten-Free Diet: Slow and Incomplete Recovery. Am. J. Clin. Pathol. 2002, 118(3), 459–463. DOI: 10.1309/EVXT-851X-WHLC-RLX9.
  • Kalayci, A. G.; Kansu, A.; Girgin, N.; Kucuk, O.; Aras, G. Bone Mineral Density and Importance of a Gluten-Free Diet in Patients with Celiac Disease in Childhood. Pediatrics. 2001, 108(5), e89-e89. DOI: 10.1542/peds.108.5.e89.
  • Kemppainen, T.; Heikkinen, M.; Ristikankare, M.; Kosma, V.; Julkunen, R. Nutrient Intakes During Diets Including Unkilned and Large Amounts of Oats in Celiac Disease. Eur. J. Clin. Nutr. 2010, 64(1), 62–67. DOI: 10.1038/ejcn.2009.113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.