2,806
Views
2
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review on Phytochemical Profiling in Mushrooms: Occurrence, Biological Activities, Applications and Future Prospective

, , , , , & show all

References

  • He, M. Q.; Zhao, R. L.; Liu, D. M.; Denchev, T. T.; Begerow, D.; Yurkov, A.; Kemler, M.; Millanes, A. M.; Wedin, M.; McTaggart, A. R., et al. Species Diversity of Basidiomycota. Fungal Diversity. 2022, 114(1), 281. DOI: 10.1007/s13225-021-00497-3.
  • Li, H.; Tian, Y.; Menolli, N.; Ye, L.; Karunarathna, S. C.; Perez-Moreno, J.; Rahman, M. M.; Rashid, M. H.; Phengsintham, P.; Rizal, L., et al. Reviewing the World’s Edible Mushroom Species: A New Evidence-Based Classification System. Compr. Rev. Food Sci. Food Saf. 2021, 20(2), 1982.
  • Chang, S. -T. Overview of Mushroom Cultivation and Utilization as Functional Foods. In Mushrooms as Functional Foods, 1st ed.; Cheung, P.C.K., Ed.; Wiley; New Jersey, 2008; pp. 1–34.
  • Zhang, Y.; Venkitasamy, C.; Pan, Z.; Wang, W. Recent Developments on Umami Ingredients of Edible Mushrooms – a Review. Trends Food Sci. Technol. 2013, 33(2), 78. DOI: 10.1016/j.tifs.2013.08.002.
  • Kalač, P. A Review of Chemical Composition and Nutritional Value of Wild-Growing and Cultivated Mushrooms. J. Sci. Food Agric. 2013, 93(2), 209. DOI: 10.1002/jsfa.5960.
  • Cateni, F.; Gargano, M. L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in Wild and Cultivated Mushrooms: Nutrition and Health. Phytochem. Rev. 2021, 21(2), 339–383. DOI: 10.1007/s11101-021-09748-2.
  • Djibril, M. B.; Xiang, G.; Laila, A. -S.; Joshua, M.; Vernon, M. C.; Paddy, S.; Xinyuan, Z.; Guodong, L.; Robert, B. B.; John, P. R. Prospective Study of Dietary Mushroom Intake and Risk of Mortality: Results from Continuous National Health and Nutrition Examination Survey (NHANES) 2003-2014 and a Meta-Analysis. Nutr. J. 2021, 20(1), 1. DOI: 10.1186/s12937-021-00738-w.
  • Rizzo, G.; Goggi, S.; Giampieri, F.; Baroni, L. A Review of Mushrooms in Human Nutrition and Health. Trends Food Sci. Technol. 2021, 117, 60. DOI: 10.1016/j.tifs.2020.12.025.
  • Anusiya, G.; Gowthama Prabu, U.; Yamini, N. V.; Sivarajasekar, N.; Rambabu, K.; Bharath, G.; Banat, F. A Review of the Therapeutic and Biological Effects of Edible and Wild Mushrooms. Bioengineered. 2021, 12(2), 11239. DOI: 10.1080/21655979.2021.2001183.
  • Marçal, S.; Sousa, A. S.; Taofiq, O.; Antunes, F.; Morais, A. M. M. B.; Freitas, A. C.; Barros, L.; Ferreira, I. C. F. R.; Pintado, M. Impact of Postharvest Preservation Methods on Nutritional Value and Bioactive Properties of Mushrooms. Trends Food Sci. Technol. 2021, 110, 418. DOI: 10.1016/j.tifs.2021.02.007.
  • Jacinto-Azevedo, B.; Valderrama, N.; Henríquez, K.; Aranda, M.; Aqueveque, P. Nutritional Value and Biological Properties of Chilean Wild and Commercial Edible Mushrooms. Food Chem. 2021, 356, 129651. DOI: 10.1016/j.foodchem.2021.129651.
  • Rotola-Pukkila, M.; Yang, B.; Hopia, A. The Effect of Cooking on Umami Compounds in Wild and Cultivated Mushrooms. Food Chem. 2019, 278, 56. DOI: 10.1016/j.foodchem.2018.11.044.
  • Rathore, H.; Prasad, S.; Sharma, S. Mushroom Nutraceuticals for Improved Nutrition and Better Human Health: A Review. PharmaNutrition. 2017, 5(2), 35. DOI: 10.1016/j.phanu.2017.02.001.
  • Guillamón, E.; García-Lafuente, A.; Lozano, M.; D´arrigo, M.; Rostagno, M. A.; Villares, A.; Martínez, J. A. Edible Mushrooms: Role in the Prevention of Cardiovascular Diseases. Fitoterapia. 2010, 81(7), 715. DOI: 10.1016/j.fitote.2010.06.005.
  • Cheung, P. C. K. The Nutritional and Health Benefits of Mushrooms. Nutr. Bull. 2010, 35(4), 292. DOI: 10.1111/j.1467-3010.2010.01859.x.
  • Maity, P.; Sen, I. K.; Chakraborty, I.; Mondal, S.; Bar, H.; Bhanja, S. K.; Mandal, S.; Maity, G. N. Biologically Active Polysaccharide from Edible Mushrooms: A Review. Int. J. Biol. Macromol. 2021, 172, 408. DOI: 10.1016/j.ijbiomac.2021.01.081.
  • Yu, Z.; Qiang, L.; Yamin, S.; Hongjing, W.; Ziming, Z.; Jinglin, W.; Kaiping, W. Induction of Apoptosis in S180 Tumour Bearing Mice by Polysaccharide from Lentinus Edodes via Mitochondria Apoptotic Pathway. J. Funct. Foods. 2015, 15, 151. DOI: 10.1016/j.jff.2015.03.025.
  • González, A.; Cruz, M.; Losoya, C.; Nobre, C.; Loredo, A.; Rodríguez, R.; Contreras, J.; Belmares, R. Edible Mushrooms as a Novel Protein Source for Functional Foods. Food & Function. 2020, 11(9), 7400. DOI: 10.1039/D0FO01746A.
  • Kato, A.; Yasuko, H.; Goto, H.; Hollinshead, J.; Nash, R. J.; Adachi, I. Inhibitory Effect of Rhetsinine Isolated from Evodia Rutaecarpa on Aldose Reductase Activity. Phytomedicine. 2009, 16(2), 258. DOI: 10.1016/j.phymed.2007.04.008.
  • Manzi, P.; Aguzzi, A.; Pizzoferrato, L. Nutritional Value of Mushrooms Widely Consumed in Italy. Food Chem. 2001, 73(3), 321. DOI: 10.1016/S0308-8146(00)00304-6.
  • Aletor, V. A. Compositional Studies on Edible Tropical Species of Mushrooms. Food Chem. 1995, 54(3), 265. DOI: 10.1016/0308-8146(95)00044-J.
  • Corrêa, R. C. G.; Brugnari, T.; Bracht, A.; Peralta, R. M.; Ferreira, I. C. F. R. Biotechnological, Nutritional and Therapeutic Uses of Pleurotus Spp. (Oyster Mushroom) Related with Its Chemical Composition: A Review on the Past Decade Findings. Trends Food Sci. Technol. 2016, 50, 103. DOI: 10.1016/j.tifs.2016.01.012.
  • Sande, D.; de Oliveira, G. P.; E Moura, M. A. F.; de Almeida Martins, B.; Lima, M. T. N. S.; Takahashi, J. A. Edible Mushrooms as a Ubiquitous Source of Essential Fatty Acids. Food Res. Int. 2019, 125, 108524. DOI: 10.1016/j.foodres.2019.108524.
  • Wang, X. -M.; Zhang, J.; Wu, L. -H.; Zhao, Y. -L.; Li, T.; Li, J. -Q.; Wang, Y. -Z.; Liu, H. -G. A Mini-Review of Chemical Composition and Nutritional Value of Edible Wild-Grown Mushroom from China. Food Chem. 2014, 151, 279. DOI: 10.1016/j.foodchem.2013.11.062.
  • Simon, R. R.; Phillips, K. M.; Horst, R. L.; Munro, I. C. Vitamin D Mushrooms: Comparison of the Composition of Button Mushrooms (Agaricus Bisporus) Treated Postharvest with UVB Light or Sunlight. J. Agric. Food Chem. 2011, 59(16), 8724. DOI: 10.1021/jf201255b.
  • Taofiq, O.; Fernandes, Â.; Barros, L.; Barreiro, M. F.; Ferreira, I. C. F. R. UV-Irradiated Mushrooms as a Source of Vitamin D2: A Review. Trends Food Sci. Technol. 2017, 70, 82. DOI: 10.1016/j.tifs.2017.10.008.
  • Zhang, Y.; Cao, Y. R.; Xu, H. Evaluation of Heavy Metal Contents in Some Wild Edible Mushrooms from Panzhihua; China: SICHUAN UNIVERSITY, 2012Vol. 49. p. 246
  • Wang, X.; Liu, H.; Zhang, J.; Li, T.; Wang, Y. Evaluation of Heavy Metal Concentrations of Edible Wild-Grown Mushrooms from China. J. Environ. Sci. Health Part B. 2017, 52(3), 178. DOI: 10.1080/03601234.2017.1261545.
  • Dowlati, M.; Sobhi, H. R.; Esrafili, A.; FarzadKia, M.; Yeganeh, M. Heavy Metals Content in Edible Mushrooms: A Systematic Review, Meta-Analysis and Health Risk Assessment. Trends Food Sci. Technol. 2021, 109, 527. DOI: 10.1016/j.tifs.2021.01.064.
  • Carvalho, M.; Pimentel, A.; Fernandes, B. Study of Heavy Metals in Wild Edible Mushrooms Under Different Pollution Conditions by X-Ray Fluorescence Spectrometry. Anal. Sci. 2005, 21(7), 747. DOI: 10.2116/analsci.21.747.
  • Campos, J. A.; Tejera, N. A.; Sánchez, C. J. Substrate Role in the Accumulation of Heavy Metals in Sporocarps of Wild Fungi. BioMetals. 2009, 22(5), 835. DOI: 10.1007/s10534-009-9230-7.
  • Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56(11), 317. DOI: 10.1111/j.1753-4887.1998.tb01670.x.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Extraction of Phenolic Compounds: A Review. Curr Res Food Sci. 2021, 4, 200. DOI: 10.1016/j.crfs.2021.03.011.
  • Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M. A.; Martínez, J. A.; García-Lafuente, A.; Guillamón, E.; Villares, A. Antioxidant Properties of Phenolic Compounds Occurring in Edible Mushrooms. Food Chem. 2011, 128(3), 674. DOI: 10.1016/j.foodchem.2011.03.085.
  • Ferreira, C. F. R. I.; Barros, L.; Abreu, M. V. R. Antioxidants in Wild Mushrooms. Curr. Med. Chem. 2009, 16(12), 1543. DOI: 10.2174/092986709787909587.
  • Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radical Biol. Med. 1996, 20(7), 933. DOI: 10.1016/0891-5849(95)02227-9.
  • Hazafa, A.; Iqbal, M. O.; Javaid, U.; Tareen, M. B. K.; Amna, D.; Ramzan, A.; Piracha, S.; Naeem, M. Inhibitory Effect of Polyphenols (Phenolic Acids, Lignans, and Stilbenes) on Cancer by Regulating Signal Transduction Pathways: A Review. Clin. Transl. Oncol. 2021, 24(3), 432–445. DOI: 10.1007/s12094-021-02709-3.
  • Bach, F.; Zielinski, A. A. F.; Helm, C. V.; Maciel, G. M.; Pedro, A. C.; Stafussa, A. P.; Ávila, S.; Haminiuk, C. W. I. Bio Compounds of Edible Mushrooms: In vitro Antioxidant and Antimicrobial Activities. LWT. 2019, 107, 214. DOI: 10.1016/j.lwt.2019.03.017.
  • Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLoS One. 2015, 10(10), 1. DOI: 10.1371/journal.pone.0140355.
  • Lin, S.; Ching, L. T.; Lam, K.; Cheung, P. C. K. Anti-Angiogenic Effect of Water Extract from the Fruiting Body of Agrocybe Aegerita. LWT. 2017, 75, 155. DOI: 10.1016/j.lwt.2016.08.044.
  • Islam, T.; Yu, X.; Xu, B. Phenolic Profiles, Antioxidant Capacities and Metal Chelating Ability of Edible Mushrooms Commonly Consumed in China. LWT - Food Sci. Technol. 2016, 72, 423. DOI: 10.1016/j.lwt.2016.05.005.
  • Çayan, F.; Deveci, E.; Tel-Çayan, G.; Duru, M. E. Identification and Quantification of Phenolic Acid Compounds of Twenty-Six Mushrooms by HPLC–DAD. J. Food Meas. Charact. 2020, 14(3), 1690. DOI: 10.1007/s11694-020-00417-0.
  • Selli, S.; Guclu, G.; Sevindik, O.; Kelebek, H. Variations in the Key Aroma and Phenolic Compounds of Champignon (Agaricus Bisporus) and Oyster (Pleurotus Ostreatus) Mushrooms After Two Cooking Treatments as Elucidated by GC–MS-O and LC-DAD-ESI-MS/ms. Food Chem. 2021, 354, 129576. DOI: 10.1016/j.foodchem.2021.129576.
  • Harborne, J. B.; Baxter, H.; Moss, G. P. Phytochemical Dictionary : A Handbook of Bioactive Compounds from Plants, 2nd ed. ed.; London: Taylor & Francis, 1999.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79(5), 727. DOI: 10.1093/ajcn/79.5.727.
  • Dai, J.; Mumper, R. J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010, 15(10), 7313. DOI: 10.3390/molecules15107313.
  • Gil-Ramírez, A.; Pavo-Caballero, C.; Baeza, E.; Baenas, N.; Garcia-Viguera, C.; Marín, F. R.; Soler-Rivas, C. Mushrooms Do Not Contain Flavonoids. J. Funct. Foods. 2016, 25, 1. DOI: 10.1016/j.jff.2016.05.005.
  • Babak Bahadori, M.; Sarikurkcu, C.; Yalcin, O. U.; Cengiz, M.; Gungor, H. Metal Concentration, Phenolics Profiling, and Antioxidant Activity of Two Wild Edible Melanoleuca Mushrooms (M. Cognata and M. Stridula). Microchem. J. 2019, 150, 104172. DOI: 10.1016/j.microc.2019.104172.
  • Abdelshafy, A. M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A Comprehensive Review on Phenolic Compounds from Edible Mushrooms: Occurrence, Biological Activity, Application and Future Prospective. Crit. Rev. Food Sci. Nutr. 2021, 62(22), 1. DOI: 10.1080/10408398.2021.1898335.
  • Veljovic, S.; Veljovic, M.; Nikicevic, N.; Despotovic, S.; Radulovic, S.; Niksic, M.; Filipovic, L. Chemical Composition, Antiproliferative and Antioxidant Activity of Differently Processed Ganoderma Lucidum Ethanol Extracts. J. Food Sci. Technol. 2017, 54(5), 1312. DOI: 10.1007/s13197-017-2559-y.
  • Hassan, A. I.; Ghoneim, M. A. M.; Mahmoud, M. G.; Asker, M. S. Assessment Role of Total Phenols and Flavonoids Extracted from Pleurotus Columbinus Mushroom on the Premature Ovarian Failure Induced by Chemotherapy in Rats. J. Genet. Eng. Biotechnol. 2021, 19(1), 182. DOI: 10.1186/s43141-021-00278-0.
  • Liu, Y. -T.; Sun, J.; Luo, Z. -Y.; Rao, S. -Q.; Su, Y. -J.; Xu, R. -R.; Yang, Y. -J. Chemical Composition of Five Wild Edible Mushrooms Collected from Southwest China and Their Antihyperglycemic and Antioxidant Activity. Food Chem. Toxicol. 2012, 50(5), 1238. DOI: 10.1016/j.fct.2012.01.023.
  • Yahia, E. M.; Gutierrez-Orozco, F.; Moreno-Perez, M. A. Identification of Phenolic Compounds by Liquid Chromatography-Mass Spectrometry in Seventeen Species of Wild Mushrooms in Central Mexico and Determination of Their Antioxidant Activity and Bioactive Compounds. Food Chem. 2017, 226, 14. DOI: 10.1016/j.foodchem.2017.01.044.
  • Xiaokang, W.; Brunton, N. P.; Lyng, J. G.; Harrison, S. M.; Carpes, S. T.; Papoutsis, K. Volatile and Non-Volatile Compounds of Shiitake Mushrooms Treated with Pulsed Light After Twenty-Four Hour Storage at Different Conditions. Food Biosci. 2020, 36, 100619. DOI: 10.1016/j.fbio.2020.100619.
  • Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Lumyong, S. Phenolic Profile of Various Wild Edible Mushroom Extracts from Thailand and Their Antioxidant Properties, Anti-Tyrosinase and Hyperglycaemic Inhibitory Activities. J. Funct. Foods. 2016, 27, 352. DOI: 10.1016/j.jff.2016.09.008.
  • Gogoi, P.; Chutia, P.; Singh, P.; Mahanta, C. L. Effect of Optimized Ultrasound-Assisted Aqueous and Ethanolic Extraction of Pleurotus Citrinopileatus Mushroom on Total Phenol, Flavonoids and Antioxidant Properties. J. Food Process Eng. 2019, 42(6), e13172. DOI: 10.1111/jfpe.13172.
  • Fogarasi, M.; Socaci, S. A.; Dulf, F. V.; Diaconeasa, Z. M.; Fărcaș, A. C.; Tofană, M.; Semeniuc, C. A. Bioactive Compounds and Volatile Profiles of Five Transylvanian Wild Edible Mushrooms. Molecules. 2018, 23(12), 3272. DOI: 10.3390/molecules23123272.
  • Koutrotsios, G.; Kalogeropoulos, N.; Stathopoulos, P.; Kaliora, A. C.; Zervakis, G. I. Bioactive Compounds and Antioxidant Activity Exhibit High Intraspecific Variability in Pleurotus Ostreatus Mushrooms and Correlate Well with Cultivation Performance Parameters. World J. Microbiol. Biotechnol. 2017, 33(5), 98. DOI: 10.1007/s11274-017-2262-1.
  • Das, A. K.; Islam, M. N.; Faruk, M. O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. South African J. of Bot. 2020, 135, 58. DOI: 10.1016/j.sajb.2020.08.008.
  • Khanbabaee, K.; van Ree, T. Tannins: Classification and Definition. Nat. Prod. Rep. 2001, 18(6), 641.
  • Pizzi, A. Recent Developments in Eco-Efficient Bio-Based Adhesives for Wood Bonding: Opportunities and Issues. J. Adhes. Sci. Technol. 2006, 20(8), 829. DOI: 10.1163/156856106777638635.
  • Akindahunsi, A. A.; Oyetayo, F. L. Nutrient and Antinutrient Distribution of Edible Mushroom, Pleurotus Tuber-Regium (Fries) Singer. LWT - Food Sci. Technol. 2006, 39(5), 548. DOI: 10.1016/j.lwt.2005.04.005.
  • Garrab, M.; Edziri, H.; El Mokni, R.; Mastouri, M.; Mabrouk, H.; Douki, W. Phenolic Composition, Antioxidant and Anticholinesterase Properties of the Three Mushrooms Agaricus Silvaticus Schaeff., Hydnum rufescens Pers. and Meripilus Giganteus (Pers.) Karst. in Tunisia. South African J. of Bot. 2019, 124, 359. DOI: 10.1016/j.sajb.2019.05.033.
  • Pavithra, M.; Sridhar, K. R.; Greeshma, A. A.; Tomita-Yokotani, K. Bioactive Potential of the Wild Mushroom Astraeus hygrometricus in South-West India. Mycology. 2016, 7(4), 191. DOI: 10.1080/21501203.2016.1260663.
  • Karun, N. C.; Sridhar, K. R.; Niveditha, V. R.; Ghate, S. D., Chapter 17 - Bioactive Potential of Two Wild Edible Mushrooms of the Western Ghats of India. In Fruits, Vegetables, and Herbs, Watson, R. R. Chapter 17 - Bioactive Potential of Two Wild Edible Mushrooms of the Western Ghats of India. In Fruits, Vegetables, and Herbs; Preedy, V.R., Ed.; London: Academic Press, 2016; p. 343.
  • Kant Mishra, K.; Singh Pal, R.; Chandra Bhatt, J. Comparison of Antioxidant Properties in Cap and Stipe of Lentinula Edodes - a Medicinal Mushroom. Emir. J. Food Agric. 2015, 27(7), 562. DOI: 10.9755/ejfa.184591.
  • Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J. J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules. 2019, 24(5), 917. DOI: 10.3390/molecules24050917.
  • Li, Y.; Xie, S.; Ying, J.; Wei, W.; Gao, K. Chemical Structures of Lignans and Neolignans Isolated from Lauraceae. Molecules. 2018, 23(12), 12. DOI: 10.3390/molecules23123164.
  • Li, J.; Wu, H.; Wang, L.; Huang, Y.; Wang, L. Key Taste Components in Two Wild Edible Boletus Mushrooms Using Widely Targeted Metabolomics. Biochem. Syst. Ecol. 2021, 96, 104268. DOI: 10.1016/j.bse.2021.104268.
  • Vasdekis, E. P.; Karkabounas, A.; Giannakopoulos, I.; Savvas, D.; Lekka, M. E. Screening of Mushrooms Bioactivity: Piceatannol Was Identified as a Bioactive Ingredient in the Order Cantharellales. Eur. Food Res. Technol. 2018, 244(5), 861. DOI: 10.1007/s00217-017-3007-y.
  • Witkowska, A. M.; Zujko, M. E.; Mirończuk-Chodakowska, I. Comparative Study of Wild Edible Mushrooms as Sources of Antioxidants. Int. J. Med. Mushrooms. 2011, 13(4), 335. DOI: 10.1615/IntJMedMushr.v13.i4.30.
  • Song, J.; Manir, M. M.; Moon, S. -S. Cytotoxic Grifolin Derivatives Isolated from the Wild Mushroom Boletus Pseudocalopus (Basidiomycetes). Chem. Biodivers. 2009, 6(9), 1435. DOI: 10.1002/cbdv.200800217.
  • Malekbala, M. R.; Soltani, S. M.; Hosseini, S.; Eghbali Babadi, F.; Malekbala, R. Current Technologies in the Extraction, Enrichment and Analytical Detection of Tocopherols and Tocotrienols: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57(14), 2935. DOI: 10.1080/10408398.2015.1020532.
  • Sen, C. K.; Khanna, S.; Roy, S. Tocotrienols: Vitamin E Beyond Tocopherols. Life Sci. 2006, 78(18), 2088. DOI: 10.1016/j.lfs.2005.12.001.
  • Mocchegiani, E.; Costarelli, L.; Giacconi, R.; Malavolta, M.; Basso, A.; Piacenza, F.; Ostan, R.; Cevenini, E.; Gonos, E. S.; Franceschi, C., et al. Vitamin E-Gene Interactions in Aging and Inflammatory Age-Related Diseases: Implications for Treatment. A Systematic Review. Ageing Res. Rev. 2014, 14(1), 81. DOI: 10.1016/j.arr.2014.01.001.
  • Minhajuddin, M.; Beg, Z. H.; Iqbal, J. Hypolipidemic and Antioxidant Properties of Tocotrienol Rich Fraction Isolated from Rice Bran Oil in Experimentally Induced Hyperlipidemic Rats. Food Chem. Toxicol. 2005, 43(5), 747. DOI: 10.1016/j.fct.2005.01.015.
  • Barros, L.; Correia, D. M.; Ferreira, I. C. F. R.; Baptista, P.; Santos-Buelga, C. Optimization of the Determination of Tocopherols in Agaricus Sp. Edible Mushrooms by a Normal Phase Liquid Chromatographic Method. Food Chem. 2008, 110(4), 1046. DOI: 10.1016/j.foodchem.2008.03.016.
  • Heleno, S. A.; Barros, L.; Sousa, M. J.; Martins, A.; Ferreira, I. C. F. R. Tocopherols Composition of Portuguese Wild Mushrooms with Antioxidant Capacity. Food Chem. 2010, 119(4), 1443. DOI: 10.1016/j.foodchem.2009.09.025.
  • Quintero-Cabello, K. P.; Palafox-Rivera, P.; Lugo-Flores, M. A.; Gaitán-Hernández, R.; González-Aguilar, G. A.; Silva-Espinoza, B. A.; Tortoledo-Ortiz, O.; Ayala-Zavala, J. F.; Monribot-Villanueva, J. L.; Guerrero-Analco, J. A. Contribution of Bioactive Compounds to the Antioxidant Capacity of the Edible Mushroom Neolentinus Lepideus. Chem. Biodivers. 2021, 18(7), e2100085. DOI: 10.1002/cbdv.202100085.
  • Petrović, J.; Stojković, D.; Reis, F. S.; Barros, L.; Glamočlija, J.; Ćirić, A.; Ferreira, I. C. F. R.; Soković, M. Study on Chemical, Bioactive and Food Preserving Properties of Laetiporus Sulphureus (Bull.: Fr.) Murr. Food Funct. 2014, 5(7), 1441. DOI: 10.1039/C4FO00113C.
  • Wagay, J. A.; Nayik, G. A.; Wani, S. A.; Mir, R. A.; Ahmad, M. A.; Rahman, Q. I.; Vyas, D. Phenolic Profiling and Antioxidant Capacity of Morchella Esculenta L. by Chemical and Electrochemical Methods at Multiwall Carbon Nanotube Paste Electrode. J. Food Meas. Charact. 2019, 13(3), 1805. DOI: 10.1007/s11694-019-00099-3.
  • Ma, G.; Yang, W.; Zhao, L.; Pei, F.; Fang, D.; Hu, Q. A Critical Review on the Health Promoting Effects of Mushrooms Nutraceuticals. Food Sci. Hum. Wellness. 2018, 7(2), 125. DOI: 10.1016/j.fshw.2018.05.002.
  • Ma, J. Q.; Zhang, Y. J.; Tian, Z. K. Anti-Oxidant, Anti-Inflammatory and Anti-Fibrosis Effects of Ganoderic Acid a on Carbon Tetrachloride Induced Nephrotoxicity by Regulating the Trx/TrxR and JAK/ROCK Pathway. Chem.-Biol. Interact. 2021, 344, 109529. DOI: 10.1016/j.cbi.2021.109529.
  • Podkowa, A.; Kryczyk-Poprawa, A.; Opoka, W.; Muszyńska, B. Culinary–Medicinal Mushrooms: A Review of Organic Compounds and Bioelements with Antioxidant Activity. Eur. Food Res. Technol. 2021, 247(3), 513. DOI: 10.1007/s00217-020-03646-1.
  • Nattagh-Eshtivani, E.; Barghchi, H.; Pahlavani, N.; Barati, M.; Amiri, Y.; Fadel, A.; Khosravi, M.; Talebi, S.; Arzhang, P.; Ziaei, R., et al. Biological and Pharmacological Effects and Nutritional Impact of Phytosterols: A Comprehensive Review. Phytotherapy Res. 2022, 36(1), 299. DOI: 10.1002/ptr.7312.
  • Piironen, V.; Lindsay, D. G.; Miettinen, T. A.; Toivo, J.; Lampi, A. -M. Plant Sterols: Biosynthesis, Biological Function and Their Importance to Human Nutrition. J. Sci. Food Agric. 2000, 80(7), 939. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<939:AID-JSFA644>3.0.CO;2-C.
  • Sapozhnikova, Y.; Byrdwell, W. C.; Lobato, A.; Romig, B. Effects of UV-B Radiation Levels on Concentrations of Phytosterols, Ergothioneine, and Polyphenolic Compounds in Mushroom Powders Used as Dietary Supplements. J. Agric. Food Chem. 2014, 62(14), 3034. DOI: 10.1021/jf403852k.
  • Phillips, K. M.; Ruggio, D. M.; Horst, R. L.; Minor, B.; Simon, R. R.; Feeney, M. J.; Byrdwell, W. C.; Haytowitz, D. B. Vitamin D and Sterol Composition of 10 Types of Mushrooms from Retail Suppliers in the United States. J. Agric. Food Chem. 2011, 59(14), 7841. DOI: 10.1021/jf104246z.
  • Association, A. D. Nutrition Recommendations and Interventions for Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2008, 31(Supplement_1), S61.
  • Smith, S. C.; Allen, J.; Blair, S. N.; Bonow, R. O.; Brass, L. M.; Fonarow, G. C.; Grundy, S. M.; Hiratzka, L.; Jones, D.; Krumholz, H. M., et al. AHA/ACC Guidelines for Secondary Prevention for Patients with Coronary and Other Atherosclerotic Vascular Disease: 2006 Update: Endorsed by the National Heart, Lung, and Blood Institute. J. Am. Coll. Cardiol. 2006, 47(10), 2130. DOI: 10.1016/j.jacc.2006.04.026.
  • Talati, R.; Sobieraj, D. M.; Makanji, S. S.; Phung, O. J.; Coleman, C. I. The Comparative Efficacy of Plant Sterols and Stanols on Serum Lipids: A Systematic Review and Meta-Analysis. J. Am. Diet. Assoc. 2010, 110(5), 719. DOI: 10.1016/j.jada.2010.02.011.
  • Lushchak, V. I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem.-Biol. Interact. 2014, 224, 164. DOI: 10.1016/j.cbi.2014.10.016.
  • Mwangi, R. W.; Macharia, J. M.; Wagara, I. N.; Bence, R. L. The Antioxidant Potential of Different Edible and Medicinal Mushrooms. Biomed. Pharmacother. 2022, 147, 112621. DOI: 10.1016/j.biopha.2022.112621.
  • Zielinski, A. A. F.; Haminiuk, C. W. I.; Beta, T. Multi-Response Optimization of Phenolic Antioxidants from White Tea (Camellia Sinensis L. Kuntze) and Their Identification by LC–DAD–Q-TOF–MS/MS. LWT - Food Sci. Technol. 2016, 65, 897. DOI: 10.1016/j.lwt.2015.09.020.
  • Abd Razak, D. L.; Mohd Fadzil, N. H.; Jamaluddin, A.; Abd Rashid, N. Y.; Sani, N. A.; Abdul Manan, M. Effects of Different Extracting Conditions on Anti-Tyrosinase and Antioxidant Activities of Schizophyllum Commune Fruit Bodies. Biocatal. Agric. Biotechnol. 2019, 19, 101116. DOI: 10.1016/j.bcab.2019.101116.
  • Contato, A. G.; Inácio, F. D.; de Araújo, C. A. V.; Brugnari, T.; Maciel, G. M.; Haminiuk, C. W. I.; Bracht, A.; Peralta, R. M.; de Souza, C. G. M. Comparison Between the Aqueous Extracts of Mycelium and Basidioma of the Edible Mushroom Pleurotus Pulmonarius: Chemical Composition and Antioxidant Analysis. J. Food Meas. Charact. 2020, 14(2), 830. DOI: 10.1007/s11694-019-00331-0.
  • Bahadori, M. B.; Sarikurkcu, C.; Yalcin, O. U.; Cengiz, M.; Gungor, H. Metal Concentration, Phenolics Profiling, and Antioxidant Activity of Two Wild Edible Melanoleuca Mushrooms (M. Cognata and M. Stridula). Microchem. J. 2019, 150, 104172. DOI: 10.1016/j.microc.2019.104172.
  • Orhan, I.; Üstün, O. Determination of Total Phenol Content, Antioxidant Activity and Acetylcholinesterase Inhibition in Selected Mushrooms from Turkey. J. Food Compost. Anal. 2011, 24(3), 386. DOI: 10.1016/j.jfca.2010.11.005.
  • Tahidul, I.; Xiaoming, Y.; Baojun, X. Phenolic Profiles, Antioxidant Capacities and Metal Chelating Ability of Edible Mushrooms Commonly Consumed in China. LWT – Food Sci. Technol. 2016, 72, 423. DOI: 10.1016/j.lwt.2016.05.005.
  • Ding, X.; Hou, Y.; Hou, W. Structure Feature and Antitumor Activity of a Novel Polysaccharide Isolated from Lactarius Deliciosus Gray. Carbohydr. Polym. 2012, 89(2), 397. DOI: 10.1016/j.carbpol.2012.03.020.
  • Liu, K.; Xiao, X.; Wang, J.; Chen, C. Y. O.; Hu, H. Polyphenolic Composition and Antioxidant, Antiproliferative, and Antimicrobial Activities of Mushroom Inonotus Sanghuang. LWT - Food Sci. Technol. 2017, 82, 154. DOI: 10.1016/j.lwt.2017.04.041.
  • Nowacka-Jechalke, N.; Olech, M.; Nowak, R. Chapter 11 - Mushroom Polyphenols as Chemopreventive Agents. In Polyphenols: Prevention and Treatment of Human Disease, Second Edition) ed.; Watson, R., Preedy, V.R. and Zibadi, S., Eds.; London: Academic Press, 2018; p. 137.
  • Wu, Z.; Li, Y. Grifolin Exhibits Anti-Cancer Activity by Inhibiting the Development and Invasion of Gastric Tumor Cells. Oncotarget. 2017, 8(13), 13. DOI: 10.18632/oncotarget.15250.
  • Yan, H.; Che, X.; Lv, Q.; Zhang, L.; Dongol, S.; Wang, Y.; Sun, H.; Jiang, J. Grifolin Induces Apoptosis and Promotes Cell Cycle Arrest in the A2780 Human Ovarian Cancer Cell Line via Inactivation of the ERK1/2 and Akt Pathways. Oncol. Lett. 2017, 13(6), 4806. DOI: 10.3892/ol.2017.6092.
  • Arora, S.; Goyal, S.; Balani, J.; Tandon, S. Enhanced Antiproliferative Effects of Aqueous Extracts of Some Medicinal Mushrooms on Colon Cancer Cells. Int. J. Med. Mushrooms. 2013, 15(3), 301. DOI: 10.1615/IntJMedMushr.v15.i3.70.
  • Nakajima, Y.; Nishida, H.; Matsugo, S.; Konishi, T. Cancer Cell Cytotoxicity of Extracts and Small Phenolic Compounds from Chaga [Inonotus Obliquus (Persoon) Pilat]. J. Med. Food. 2009, 12(3), 501. DOI: 10.1089/jmf.2008.1149.
  • Chen, Y.; Lv, J.; Li, K.; Xu, J.; Li, M.; Zhang, W.; Pang, X. Sporoderm-Broken Spores of Ganoderma Lucidum Inhibit the Growth of Lung Cancer: Involvement of the Akt/mTOR Signaling Pathway. Nutr. Cancer. 2016, 68(7), 1151. DOI: 10.1080/01635581.2016.1208832.
  • Khan, A. A.; Gani, A.; Ahmad, M.; Masoodi, F. A.; Amin, F.; Kousar, S. Mushroom Varieties Found in the Himalayan Regions of India: Antioxidant, Antimicrobial, and Antiproliferative Activities. Food Sci. Biotechnol. 2016, 25(4), 1095. DOI: 10.1007/s10068-016-0176-6.
  • Saltarelli, R.; Palma, F.; Gioacchini, A. M.; Calcabrini, C.; Mancini, U.; De Bellis, R.; Stocchi, V.; Potenza, L. Phytochemical Composition, Antioxidant and Antiproliferative Activities and Effects on Nuclear DNA of Ethanolic Extract from an Italian Mycelial Isolate of Ganoderma Lucidum. J. Ethnopharmacol. 2019, 231, 464. DOI: 10.1016/j.jep.2018.11.041.
  • Veljović, S.; Veljović, M.; Nikićević, N.; Despotović, S.; Radulović, S.; Nikšić, M.; Filipović, L. Chemical Composition, Antiproliferative and Antioxidant Activity of Differently Processed Ganoderma Lucidum Ethanol Extracts. J. Food Sci. Technol. 2017, 54(5), 1312. DOI: 10.1007/s13197-017-2559-y.
  • Araújo, J. R.; Gonçalves, P.; Martel, F. Chemopreventive Effect of Dietary Polyphenols in Colorectal Cancer Cell Lines. Nutr. Res. 2011, 31(2), 77. DOI: 10.1016/j.nutres.2011.01.006.
  • Ukaegbu, C. I.; Shah, S. R.; Hamid, H. A.; Alara, O. R.; Sarker, M. Z. I. Phenolic Compounds of Aqueous and Methanol Extracts of Hypsizygus Tessellatus (Brown and White Var.) and Flammulina Velutipes Caps: Antioxidant and Antiproliferative Activities. Pharm. Chem. J. 2020, 54(2), 170. DOI: 10.1007/s11094-020-02174-2.
  • Wang, W.; Wu, Z.; Wang, X.; Li, C.; Zhang, K.; Zhou, J.; Cheng, S.; Lu, F. Enzymatic Hydrolysis Combined with High-Pressure Homogenisation for the Preparation of Polysaccharide-Based Nanoparticles from the By-Product of Flammulina Velutipes. Int. J. Food Sci. Technol. 2018, 53(10), 2422. DOI: 10.1111/ijfs.13836.
  • Sakamoto, J.; Morita, S.; Oba, K.; Matsui, T.; Kobayashi, M.; Nakazato, H.; Ohashi, Y. Efficacy of Adjuvant Immunochemotherapy with Polysaccharide K for Patients with Curatively Resected Colorectal Cancer: A Meta-Analysis of Centrally Randomized Controlled Clinical Trials. Cancer Immunol. Immunother. 2006, 55(4), 404. DOI: 10.1007/s00262-005-0054-1.
  • Trivedi, S.; Patel, K.; Belgamwar, V.; Wadher, K. Functional Polysaccharide Lentinan: Role in Anti-Cancer Therapies and Management of Carcinomas. Pharmacol. Res. Mod. Chin. Med. 2022, 2, 100045. DOI: 10.1016/j.prmcm.2022.100045.
  • Jayasuriya, W. J. A. B. N.; Handunnetti, S. M.; Wanigatunge, C. A.; Fernando, G. H.; Abeytunga, D. T. U.; Suresh, T. S. Anti-Inflammatory Activity Pleurotus Ostreatus , a Culinary Medicinal Mushroom, in Wistar Rats, a Culinary Medicinal Mushroom, in Wistar Rats…18th Congress of the International Society for Mushroom Science, China. Evidence-Based Complementary Altern. Med. (Ecam). 2020, 2020, 1. DOI: 10.1155/2020/6845383.
  • Ruksiriwanich, W.; Khantham, C.; Linsaenkart, P.; Chaitep, T.; Rachtanapun, P.; Jantanasakulwong, K.; Phimolsiripol, Y.; Režek Jambrak, A.; Nazir, Y.; Yooin, W., et al. Anti-Inflammation of Bioactive Compounds from Ethanolic Extracts of Edible Bamboo Mushroom (Dictyophora Indusiata) as Functional Health Promoting Food Ingredients. Int. J. Food Sci. Technol. 2022, 57(1), 110. DOI: 10.1111/ijfs.15338.
  • Elsayed, E. A.; El Enshasy, H.; Wadaan, M. A. M.; Aziz, R. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications. Mediators Inflammation. 2014, 2014, 805841. DOI: 10.1155/2014/805841.
  • Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J. A.; García-Lafuente, A. Anti-Inflammatory Activity of Methanolic Extracts from Edible Mushrooms in LPS Activated RAW 264.7 Macrophages. Food Chem. 2012, 130(2), 350. DOI: 10.1016/j.foodchem.2011.07.049.
  • Hu, Q.; Yuan, B.; Xiao, H.; Zhao, L.; Wu, X.; Rakariyatham, K.; Zhong, L.; Han, Y.; Muinde Kimatu, B.; Yang, W. Polyphenols-Rich Extract from Pleurotus Eryngii with Growth Inhibitory of HCT116 Colon Cancer Cells and Anti-Inflammatory Function in RAW264.7 Cells. Food & Function. 2018, 9(3), 1601. DOI: 10.1039/C7FO01794D.
  • Taofiq, O.; Calhelha, R. C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Queiroz, M. J. R. P.; Ferreira, I. C. F. R. The Contribution of Phenolic Acids to the Anti-Inflammatory Activity of Mushrooms: Screening in Phenolic Extracts, Individual Parent Molecules and Synthesized Glucuronated and Methylated Derivatives. Food Res. Int. 2015, 76, 821–827. DOI: 10.1016/j.foodres.2015.07.044.
  • Therkelsen, S.; Hetland, G.; Lyberg, T.; Lygren, I.; Johnson, E. Cytokine Levels After Consumption of a Medicinal Agaricus Blazei Murill‐based Mushroom Extract, AndoSan™, in Patients with Crohn’s Disease and Ulcerative Colitis in a Randomized Single‐blinded Placebo‐controlled Study. Scand. J. Immunol. 2016, 84(6), 323. DOI: 10.1111/sji.12476.
  • Therkelsen, S. P.; Hetland, G.; Lyberg, T.; Lygren, I.; Johnson, E. Effect of the Medicinal Agaricus Blazei Murill-Based Mushroom Extract, Andosantm, on Symptoms, Fatigue and Quality of Life in Patients with Crohn’s Disease in a Randomized Single-Blinded Placebo Controlled Study. PLoS One. 2016, 11(7), e0159288. DOI: 10.1371/journal.pone.0159288.
  • Therkelsen, S. P.; Hetland, G.; Lyberg, T.; Lygren, I.; Johnson, E. Effect of a Medicinal Agaricus Blazei Murill-Based Mushroom Extract, AndoSan™, on Symptoms, Fatigue and Quality of Life in Patients with Ulcerative Colitis in a Randomized Single-Blinded Placebo Controlled Study. PLoS One. 2016, 11(3), e0150191. DOI: 10.1371/journal.pone.0150191.
  • Shobana, S.; Sreerama, Y. N.; Malleshi, N. G. Composition and Enzyme Inhibitory Properties of Finger Millet (Eleusine Coracana L.) Seed Coat Phenolics: Mode of Inhibition of α-Glucosidase and Pancreatic Amylase. Food Chem. 2009, 115(4), 1268. DOI: 10.1016/j.foodchem.2009.01.042.
  • Koike, D.; Yamadera, K.; DiMagno, E. P. Effect of a Wheat Amylase Inhibitor on Canine Carbohydrate Digestion, Gastrointestinal Function, and Pancreatic Growth. Gastroenterol. 1995, 108(4), 1221. DOI: 10.1016/0016-5085(95)90223-6.
  • Garduño-Diaz, S. D.; Khokhar, S. Prevalence, Risk Factors and Complications Associated with Type 2 Diabetes in Migrant South Asians. Diabetes/metab. res. rev. 2012, 28(1), 6. DOI: 10.1002/dmrr.1219.
  • Wu, T.; Xu, B. Antidiabetic and Antioxidant Activities of Eight Medicinal Mushroom Species from China. Int. J. Med. Mushrooms. 2015, 17(2), 129. DOI: 10.1615/IntJMedMushrooms.v17.i2.40.
  • Akata, I.; Zengin, G.; Picot, C. M. N.; Mahomoodally, M. F. Enzyme Inhibitory and Antioxidant Properties of Six Mushroom Species from the Agaricaceae Family. South African J. of Bot. 2019, 120, 95. DOI: 10.1016/j.sajb.2018.01.008.
  • Jayasuriya, W. B. N.; Wanigatunge, C. A.; Fernando, G. H.; Abeytunga, D. T. U.; Suresh, T. S. Hypoglycaemic Activity of Culinary Pleurotus Ostreatus and P. Cystidiosus Mushrooms in Healthy Volunteers and Type 2 Diabetic Patients on Diet Control and the Possible Mechanisms of Action. Phytotherapy Res. 2015, 29(2), 303. DOI: 10.1002/ptr.5255.
  • Erjavec, J.; Ravnikar, M.; Brzin, J.; Grebenc, T.; Blejec, A.; Gosak, M. Ž.; Sabotič, J.; Kos, J.; Dreo, T. Antibacterial Activity of Wild Mushroom Extracts on Bacterial Wilt Pathogen Ralstonia solanacearum. Plant Dis. 2016, 100(2), 453. DOI: 10.1094/PDIS-08-14-0812-RE.
  • Kosanić, M.; Ranković, B.; Dašić, M. Mushrooms as Possible Antioxidant and Antimicrobial Agents. Iran. J. Pharm. Res. 2012, 11(4), 1095.
  • Nowacka, N.; Nowak, R.; Drozd, M.; Olech, M.; Los, R.; Malm, A. Analysis of Phenolic Constituents, Antiradical and Antimicrobial Activity of Edible Mushrooms Growing Wild in Poland. LWT - Food Sci. Technol. 2014, 59(2), 689. DOI: 10.1016/j.lwt.2014.05.041.
  • Kosanić, M.; Ranković, B.; Rančić, A.; Stanojković, T. Evaluation of Metal Concentration and Antioxidant, Antimicrobial, and Anticancer Potentials of Two Edible Mushrooms Lactarius Deliciosus and Macrolepiota Procera. J. Food Drug Anal. 2016, 24(3), 477. DOI: 10.1016/j.jfda.2016.01.008.
  • Hwang, B. S.; Lee, I. -K.; Choi, H. J.; Yun, B. -S. Anti-Influenza Activities of Polyphenols from the Medicinal Mushroom Phellinus Baumii. Bioorg. Med. Chem. Lett. 2015, 25(16), 3256. DOI: 10.1016/j.bmcl.2015.05.081.
  • Oliveira, D. A.; Angonese, M.; Gomes, C.; Ferreira, S. R. S. Valorization of Passion Fruit (Passiflora Edulis Sp.) By-Products: Sustainable Recovery and Biological Activities. J. Supercrit. Fluids. 2016, 111, 55. DOI: 10.1016/j.supflu.2016.01.010.
  • Choi, H. -G.; Kwon, B. -C.; Yim, S. -H.; Youk, H.; Lee, J. -W. Weight Change is Associated with Osteoporosis: A Cross Sectional Study Using the Korean Community Health Survey. Int. J. Environ. Res. Public Health. 2021, 18(24), 13368.
  • Tanaka, T.; Kawaguchi, N.; Zaima, N.; Moriyama, T.; Fukuta, Y.; Shirasaka, N. Antiosteoporotic Activity of a Syringic Acid Diet in Ovariectomized Mice. J. Nat. Med. 2017, 71(4), 632. DOI: 10.1007/s11418-017-1105-6.
  • Wei, L.; Sang Hyun, L.; Hae Dong, J.; Jin Yeul, M.; Young Ho, K. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium Erinaceum. Molecules. 2017, 22(1), 108. DOI: 10.3390/molecules22010108.
  • Tanaka, T.; Onuma, H.; Shigihara, T.; Kimura, E.; Fukuta, Y.; Shirasaka, N.; Moriyama, T.; Homma, Y. Anti-Osteoporotic Effects of Syringic Acid and Vanilic Acid in the Extracts of Waste Beds After Mushroom Cultivation. J. Biosci. Bioeng. 2019, 128(5), 622. DOI: 10.1016/j.jbiosc.2019.04.021.
  • Carcelli, M.; Rogolino, D.; Bartoli, J.; Pala, N.; Compari, C.; Ronda, N.; Bacciottini, F.; Incerti, M.; Fisicaro, E. Hydroxyphenyl Thiosemicarbazones as Inhibitors of Mushroom Tyrosinase and Antibrowning Agents. Food Chem. 2020, 303, 125310. DOI: 10.1016/j.foodchem.2019.125310.
  • Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Tirillini, B.; Orlando, G.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Di Simone, S. C., et al. Evaluation of Antioxidant, Antimicrobial and Tyrosinase Inhibitory Activities of Extracts from Tricholosporum Goniospermum, an Edible Wild Mushroom. Antibiotics. 2020, 9(8), 513. DOI: 10.3390/antibiotics9080513.
  • Alkan, S.; Uysal, A.; Kasik, G.; Vlaisavljevic, S.; Berežni, S.; Zengin, G. Chemical Characterization, Antioxidant, Enzyme Inhibition and Antimutagenic Properties of Eight Mushroom Species: A Comparative Study. J. Fungi. 2020, 6(3), 166. DOI: 10.3390/jof6030166.
  • Yoon, K. N.; Alam, N.; Lee, K. R.; Shin, P. G.; Cheong, J. C.; Yoo, Y. B.; Lee, T. S. Antioxidant and Antityrosinase Activities of Various Extracts from the Fruiting Bodies of Lentinus Lepideus. Molecules. 2011, 16(3), 2334. DOI: 10.3390/molecules16032334.
  • Ahmad, K.; Singh, N. Evaluation of Nutritional Quality of Developed Functional Bread Fortified with Mushroom and Dates. Clarion Int. Multidiscip. J. 2016, 5(1), 23. DOI: 10.5958/2277-937X.2016.00004.6.
  • Firenzuoli, F.; Gori, L.; Lombardo, G. The Medicinal Mushroom Agaricus Blazei Murrill: Review of Literature and Pharmaco-Toxicological Problems. Evid. Based Complement. Altern. Med. 2008, 5(1), 659263. DOI: 10.1093/ecam/nem007.
  • Liu, Q.; Zhu, M.; Geng, X.; Wang, H.; Ng, T. B. Characterization of Polysaccharides with Antioxidant and Hepatoprotective Activities from the Edible Mushroom Oudemansiella Radicata. Molecules. 2017, 22(2), 234. DOI: 10.3390/molecules22020234.
  • Zhang, Y.; Zeng, Y.; Men, Y.; Zhang, J.; Liu, H.; Sun, Y. Structural Characterization and Immunomodulatory Activity of Exopolysaccharides from Submerged Culture of Auricularia Auricula-Judae. Int. J. Biol. Macromol. 2018, 115, 978. DOI: 10.1016/j.ijbiomac.2018.04.145.
  • Song, G.; Du, Q. Structure Characterization and Antitumor Activity of an α β-Glucan Polysaccharide from Auricularia Polytricha. Food Res. Int. 2012, 45(1), 381. DOI: 10.1016/j.foodres.2011.10.035.
  • Zhao, S.; Rong, C.; Liu, Y.; Xu, F.; Wang, S.; Duan, C.; Chen, J.; Wu, X. Extraction of a Soluble Polysaccharide from Auricularia Polytricha and Evaluation of Its Anti-Hypercholesterolemic Effect in Rats. Carbohydr. Polym. 2015, 122, 39. DOI: 10.1016/j.carbpol.2014.12.041.
  • Bovi, M.; Cenci, L.; Perduca, M.; Capaldi, S.; Carrizo, M. E.; Civiero, L.; Chiarelli, L. R.; Galliano, M.; Monaco, H. L. BEL β-Trefoil: A Novel Lectin with Antineoplastic Properties in King Bolete (Boletus Edulis) Mushrooms. Glycobiology. 2012, 23(5), 578. DOI: 10.1093/glycob/cws164.
  • Sarikurkcu, C.; Tepe, B.; Yamac, M. Evaluation of the Antioxidant Activity of Four Edible Mushrooms from the Central Anatolia, Eskisehir – Turkey: Lactarius Deterrimus, Suillus Collitinus, Boletus Edulis, Xerocomus Chrysenteron. Bioresour. Technol. 2008, 99(14), 6651. DOI: 10.1016/j.biortech.2007.11.062.
  • Badshah, H.; Ullah, F.; Khan, M. U.; Mumtaz, A. S.; Malik, R. N. Pharmacological Activities of Selected Wild Mushrooms in South Waziristan (FATA), Pakistan. South African J. of Bot. 2015, 97, 107. DOI: 10.1016/j.sajb.2014.12.002.
  • Kivrak, I.; Kivrak, S.; Harmandar, M. Bioactive Compounds, Chemical Composition, and Medicinal Value of the Giant Puffball, Calvatia Gigantea (Higher Basidiomycetes), from Turkey. Int. J. Med. Mushrooms. 2016, 18(2), 97. DOI: 10.1615/IntJMedMushrooms.v18.i2.10.
  • Khalili, M.; Ebrahimzadeh, M. A.; Kosaryan, M.; Abbasi, A.; Azadbakht, M. Iron Chelation and Liver Disease Healing Activity of Edible Mushroom (Cantharellus Cibarius), in vitro and in vivo Assays. Rsc. Adv. 2015, 5(7), 4804. DOI: 10.1039/C4RA11561A.
  • Lemieszek, M. K.; Nunes, F. M.; Cardoso, C.; Marques, G.; Rzeski, W. Neuroprotective Properties of Cantharellus Cibarius Polysaccharide Fractions in Different in vitro Models of Neurodegeneration. Carbohydr. Polym. 2018, 197, 598. DOI: 10.1016/j.carbpol.2018.06.038.
  • Ridwan, A. Y.; Wu, J.; Choi, J. -H.; Hirai, H.; Kawagishi, H. Bioactive Compounds from the Edible Mushroom Cortinarius Caperatus. Mycoscience. 2018, 59(2), 172. DOI: 10.1016/j.myc.2017.08.015.
  • Guo, M. Z.; Meng, M.; Feng, C. C.; Wang, X.; Wang, C. L. A Novel Polysaccharide Obtained from Craterellus Cornucopioides Enhances Immunomodulatory Activity in Immunosuppressive Mice Models via Regulation of the TLR4-NF-Κb Pathway. Food & Function. 2019, 10(8), 4792. DOI: 10.1039/C9FO00201D.
  • Pérez-Moreno, J.; Martínez-Reyes, M. Edible Ectomycorrhizal Mushrooms: Biofactories for Sustainable Development. In Biosystems Engineering: Biofactories for Food Production in the Century XXI; Guevara-Gonzalez, R. and Torres-Pacheco, I., Eds.; Springer International Publishing: Cham, 2014; p. 151.
  • Rodríguez-Seoane, P.; González-Muñoz, M. J.; Falqué, E.; Domínguez, H. Pressurized Hot Water Extraction of β-Glucans from Cantharellus Tubaeformis. Electrophoresis. 2018, 39(15), 1892. DOI: 10.1002/elps.201700399.
  • Sánchez, C. Bioactives from Mushroom and Their Application. In Food Bioactives: Extraction and Biotechnology Applications; Puri, M., Ed.; Springer International Publishing: Cham, 2017; p. 23.
  • Pang, X.; Yao, W.; Yang, X.; Xie, C.; Liu, D.; Zhang, J.; Gao, X. Purification, Characterization and Biological Activity on Hepatocytes of a Polysaccharide from Flammulina Velutipes Mycelium. Carbohydr. Polym. 2007, 70(3), 291. DOI: 10.1016/j.carbpol.2007.04.010.
  • Wu, M.; Luo, X.; Xu, X.; Wei, W.; Yu, M.; Jiang, N.; Ye, L.; Yang, Z.; Fei, X. Antioxidant and Immunomodulatory Activities of a Polysaccharide from Flammulina Velutipes. J. Traditional Chin. Med. 2014, 34(6), 733. DOI: 10.1016/S0254-6272(15)30089-3.
  • Ai-Lati, A.; Liu, S.; Ji, Z.; Zhang, H.; Mao, J. Structure and Bioactivities of a Polysaccharide Isolated from Ganoderma Lucidum in Submerged Fermentation. Bioengineered. 2017, 8(5), 565. DOI: 10.1080/21655979.2017.1283459.
  • Wu, S. -J.; Lu, T. -M.; Lai, M. -N.; Ng, L. -T. Immunomodulatory Activities of Medicinal Mushroom Grifola Frondosa Extract and Its Bioactive Constituent. Am. J. Chin. Med. 2013, 41(01), 131. DOI: 10.1142/S0192415X13500109.
  • Kim, S. P.; Nam, S. H.; Friedman, M. Hericium Erinaceus (Lion’s Mane) Mushroom Extracts Inhibit Metastasis of Cancer Cells to the Lung in CT-26 Colon Cancer-Tansplanted Mice. J. Agric. Food Chem. 2013, 61(20), 4898. DOI: 10.1021/jf400916c.
  • Friedman, M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium Erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. J. Agric. Food Chem. 2015, 63(32), 7108. DOI: 10.1021/acs.jafc.5b02914.
  • Chien, R. -C.; Yang, Y. -C.; Lai, E. I.; Mau, J. -L. Anti-Inflammatory Effects of Extracts from the Medicinal Mushrooms Hypsizygus Marmoreus and Pleurotus Eryngii (Agaricomycetes). Int. J. Med. Mushrooms. 2016, 18(6), 477. DOI: 10.1615/IntJMedMushrooms.v18.i6.20.
  • Shah, S. R.; Ukaegbu, C. I.; Hamid, H. A.; Alara, O. R. Evaluation of Antioxidant and Antibacterial Activities of the Stems of Flammulina Velutipes and Hypsizygus Tessellatus (White and Brown Var.) Extracted with Different Solvents. J. Food Meas. Charact. 2018, 12(3), 1947. DOI: 10.1007/s11694-018-9810-8.
  • Finimundy, T. C.; Gambato, G.; Fontana, R.; Camassola, M.; Salvador, M.; Moura, S.; Hess, J.; Henriques, J. A. P.; Dillon, A. J. P.; Roesch-Ely, M. Aqueous Extracts of Lentinula Edodes and Pleurotus Sajor-Caju Exhibit High Antioxidant Capability and Promising in vitro Antitumor Activity. Nutr. Res. 2013, 33(1), 76. DOI: 10.1016/j.nutres.2012.11.005.
  • Hearst, R.; Nelson, D.; McCollum, G.; Millar, B. C.; Maeda, Y.; Goldsmith, C. E.; Rooney, P. J.; Loughrey, A.; Rao, J. R.; Moore, J. E. An Examination of Antibacterial and Antifungal Properties of Constituents of Shiitake (Lentinula Edodes) and Oyster (Pleurotus Ostreatus) Mushrooms. Complementary Ther. Clin. Pract. 2009, 15(1), 5. DOI: 10.1016/j.ctcp.2008.10.002.
  • Cheng, X. -D.; Wu, Q. -X.; Zhao, J.; Su, T.; Lu, Y. -M.; Zhang, W. -N.; Wang, Y.; Chen, Y. Immunomodulatory Effect of a Polysaccharide Fraction on RAW 264.7 Macrophages Extracted from the Wild Lactarius Deliciosus. Int. J. Biol. Macromol. 2019, 128, 732. DOI: 10.1016/j.ijbiomac.2019.01.201.
  • Liu, C.; Sun, Y.; Mao, Q.; Guo, X.; Li, P.; Liu, Y.; Xu, N. Characteristics and Antitumor Activity of Morchella Esculenta Polysaccharide Extracted by Pulsed Electric Field. Int. J. Mol. Sci. 2016, 17(6), 986. DOI: 10.3390/ijms17060986.
  • Nitha, B.; Fijesh, P. V.; Janardhanan, K. K. Hepatoprotective Activity of Cultured Mycelium of Morel Mushroom, Morchella Esculenta. Exp. Toxicol. Pathol. 2013, 65(1), 105. DOI: 10.1016/j.etp.2011.06.007.
  • Hu, T.; Lin, Q.; Guo, T.; Yang, T.; Zhou, W.; Deng, X.; Yan, J. -K.; Luo, Y.; Ju, M.; Luo, F. Polysaccharide Isolated from Phellinus Linteus Mycelia Exerts Anti-Inflammatory Effects via MAPK and PPAR Signaling Pathways. Carbohydr. Polym. 2018, 200, 487. DOI: 10.1016/j.carbpol.2018.08.021.
  • Ajith, T. A.; Janardhanan, K. K. Antioxidant and Antihepatotoxic Activities of Phellinus Rimosus (Berk) Pilat. J. Ethnopharmacol. 2002, 81(3), 387. DOI: 10.1016/S0378-8741(02)00042-9.
  • Teplyakova, T. V.; Psurtseva, N. V.; Kosogova, T. A.; Mazurkova, N. A.; Khanin, V. A.; Vlasenko, V. A. Antiviral Activity of Polyporoid Mushrooms (Higher Basidiomycetes) from Altai Mountains (Russia). Int. J. Med. Mushrooms. 2012, 14(1), 37. DOI: 10.1615/IntJMedMushr.v14.i1.40.
  • Harms, M.; Lindequist, U.; Al-Resly, Z.; Wende, K. Influence of the Mushroom Piptoporus Betulinus on Human Keratinocytes. Planta. med. 2013, 79(13), C4. DOI: 10.1055/s-0033-1351998.
  • Zhang, Y.; Hu, T.; Zhou, H.; Zhang, Y.; Jin, G.; Yang, Y. Antidiabetic Effect of Polysaccharides from Pleurotus Ostreatus in Streptozotocin-Induced Diabetic Rats. Int. J. Biol. Macromol. 2016, 83, 126. DOI: 10.1016/j.ijbiomac.2015.11.045.
  • Zhao, S.; Zhao, Y.; Li, S.; Zhao, J.; Zhang, G.; Wang, H.; Ng, T. B. A Novel Lectin with Highly Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from the Edible Wild Mushroom Russula Delica. Glycoconjugate J. 2010, 27(2), 259. DOI: 10.1007/s10719-009-9274-5.
  • Teoh, Y. P.; Don, M. M.; Ujang, S. Nutrient Improvement Using Statistical Optimization for Growth of Schizophyllum Commune, and Its Antifungal Activity Against Wood Degrading Fungi of Rubberwood. Biotechnol. Prog. 2012, 28(1), 232. DOI: 10.1002/btpr.714.
  • Hobbs, C. The Chemistry, Nutritional Value, Immunopharmacology, and Safety of the Traditional Food of Medicinal Split-Gill Fugus Schizophyllum Commune Fr.: Fr. (Schizophyllaceae). A Literature Review. Int. J. Med. Mushrooms. 2005, 7(1&2), 127. DOI: 10.1615/IntJMedMushr.v7.i12.130.
  • Zhai, X.; Zhao, A.; Geng, L.; Xu, C. Fermentation Characteristics and Hypoglycemic Activity of an Exopolysaccharide Produced by Submerged Culture of Stropharia Rugosoannulata #2. Ann. Microbiol. 2013, 63(3), 1013. DOI: 10.1007/s13213-012-0555-z.
  • Hou, Y.; Ding, X.; Hou, W.; Zhong, J.; Zhu, H.; Ma, B.; Xu, T.; Li, J. Anti-Microorganism, Anti-Tumor, and Immune Activities of a Novel Polysaccharide Isolated from Tricholoma Matsutake. Pharmacogn. Mag. 2013, 9(35), 244. DOI: 10.4103/0973-1296.113278.
  • Yin, X.; You, Q.; Jiang, Z. Immunomodulatory Activities of Different Solvent Extracts from Tricholoma Matsutake (S. Ito Et S. Imai) Singer (Higher Basidiomycetes) on Normal Mice. Int. J. Med. Mushrooms. 2012, 14(6), 549. DOI: 10.1615/IntJMedMushr.v14.i6.20.
  • Li, H.; Lee, H. -S.; Kim, S. -H.; Moon, B.; Lee, C. Antioxidant and Anti-Inflammatory Activities of Methanol Extracts of Tremella Fuciformis and Its Major Phenolic Acids. J. Food Sci. 2014, 79(4), C460. DOI: 10.1111/1750-3841.12393.
  • Liu, J.; Meng, C. -G.; Yan, Y. -H.; Shan, Y. -N.; Kan, J.; Jin, C. -H. Structure, Physical Property and Antioxidant Activity of Catechin Grafted Tremella Fuciformis Polysaccharide. Int. J. Biol. Macromol. 2016, 82, 719. DOI: 10.1016/j.ijbiomac.2015.11.027.
  • Paul, N.; Slathia, P. S.; Vaid, A.; Kumar, R. Traditional Knowledge of Gucchi, Morchella Esculenta (Ascomycetes), in Doda District, Jammu and Kashmir, India. Int. J. Med. Mushrooms. 2018, 20(5), 445. DOI: 10.1615/IntJMedMushrooms.2018025995.
  • Vital, A. C. P.; Croge, C.; Gomes-da-Costa, S. M.; Matumoto-Pintro, P. T. Effect of Addition of Agaricus Blazei Mushroom Residue to Milk Enriched with Omega-3 on the Prevention of Lipid Oxidation and Bioavailability of Bioactive Compounds After in vitro Gastrointestinal Digestion. Int. J. Food Sci. Technol. 2017, 52(6), 1483. DOI: 10.1111/ijfs.13413.
  • Stoffel, F.; Santana, W. D. O.; Fontana, R. C.; Gregolon, J. G. N.; Kist, T. B. L.; De Siqueira, F. G.; Mendonça, S.; Camassola, M. Chemical Features and Bioactivity of Grain Flours Colonized by Macrofungi as a Strategy for Nutritional Enrichment. Food Chem. 2019, 297, 124988. DOI: 10.1016/j.foodchem.2019.124988.
  • Lu, X.; Brennan, M. A.; Narciso, J.; Guan, W.; Zhang, J.; Yuan, L.; Serventi, L.; Brennan, C. S. Correlations Between the Phenolic and Fibre Composition of Mushrooms and the Glycaemic and Textural Characteristics of Mushroom Enriched Extruded Products. LWT. 2020, 118, 108730. DOI: 10.1016/j.lwt.2019.108730.
  • Olawuyi, I. F.; Lee, W. Y. Quality and Antioxidant Properties of Functional Rice Muffins Enriched with Shiitake Mushroom and Carrot Pomace. Int. J. Food Sci. Technol. 2019, 54(7), 2321. DOI: 10.1111/ijfs.14155.
  • Spim, S. R. V.; Castanho, N. R. C. M.; Pistila, A. M. H.; Jozala, A. F.; Oliveira Júnior, J. M.; Grotto, D. Lentinula Edodes Mushroom as an Ingredient to Enhance the Nutritional and Functional Properties of Cereal Bars. J. Food Sci. Technol. 2021, 58(4), 1349. DOI: 10.1007/s13197-020-04646-5.
  • Sabaratnam, V.; Kah-Hui, W.; Naidu, M.; David, P. R. Neuronal Health – Can Culinary and Medicinal Mushrooms Help? J. Traditional Complementary Med. 2013, 3(1), 62. DOI: 10.4103/2225-4110.106549.
  • Chung, D. J.; Yang, M. Y.; Li, Y. R.; Chen, W. J.; Hung, C. Y.; Wang, C. J. Ganoderma Lucidum Repress Injury of Ethanol-Induced Steatohepatitis via Anti-Inflammation, Anti-Oxidation and Reducing Hepatic Lipid in C57BL/6J Mice. J. Funct. Foods. 2017, 33, 314. DOI: 10.1016/j.jff.2017.03.059.
  • Wang, H.; Yu, Q.; Nie, S. P.; Xiang, Q. D.; Zhao, M. M.; Liu, S. Y.; Xie, M. Y.; Wang, S. Q. Polysaccharide Purified from Ganoderma Atrum Induced Activation and Maturation of Murine Myeloid-Derived Dendritic Cells. Food Chem. Toxicol. 2017, 108, 478. DOI: 10.1016/j.fct.2017.02.026.
  • Jin, M.; Zhu, Y.; Shao, D.; Zhao, K.; Xu, C.; Li, Q.; Yang, H.; Huang, Q.; Shi, J. Effects of Polysaccharide from Mycelia of Ganoderma Lucidum on Intestinal Barrier Functions of Rats. Int. J. Biol. Macromol. 2017, 94, 1. DOI: 10.1016/j.ijbiomac.2016.09.099.
  • Wu, Y.; Choi, M. -H.; Li, J.; Yang, H.; Shin, H. -J. Mushroom Cosmetics: The Present and Future. Cosmetics. 2016, 3(3), 22. DOI: 10.3390/cosmetics3030022.
  • Taofiq, O.; González-Paramás, A. M.; Martins, A.; Barreiro, M. F.; Ferreira, I. C. F. R. Mushrooms Extracts and Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics—A Review. Ind. Crops Prod. 2016, 90, 38. DOI: 10.1016/j.indcrop.2016.06.012.
  • Yang, S. -H.; Liu, H. -I.; Tsai, S. -J. Edible Tremella Polysaccharide for Skin Care. Patent US20060222608A1, 2006.
  • Hui, L.; He, L. Comparison of the Moisture Retention Capacity of Tremella Polysaccharides and Hyaluronic Acid. Journal of Anhui Agricultural Sciences. 2012, 40, 13093.
  • Kim, S. Y.; Go, K. C.; Song, Y. S.; Jeong, Y. S.; Kim, E. J.; Kim, B. J. Extract of the Mycelium of T. Matsutake Inhibits Elastase Activity and TPA-Induced MMP-1 Expression in Human Fibroblasts. Int. J. Mol. Med. 2014, 34(6), 1613. DOI: 10.3892/ijmm.2014.1969.
  • Zhang, Y.; Mills, G. L.; Nair, M. G. Cyclooxygenase Inhibitory and Antioxidant Compounds from the Mycelia of the Edible Mushroom Grifola Frondosa. J. Agric. Food Chem. 2002, 50(26), 7581. DOI: 10.1021/jf0257648.
  • Parvez, S.; Kang, M.; Chung, H. -S.; Bae, H. Naturally Occurring Tyrosinase Inhibitors: Mechanism and Applications in Skin Health, Cosmetics and Agriculture Industries. Phytotherapy Res. 2007, 21(9), 805. DOI: 10.1002/ptr.2184.
  • Chang, T. -S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10(6), 2440. DOI: 10.3390/ijms10062440.
  • Nagasaka, R.; Ishikawa, Y.; Inada, T.; Ohshima, T. Depigmenting Effect of Winter Medicinal Mushroom Flammulna Velutipes (Higher Basidiomycetes) on Melanoma Cells. Int. J. Med. Mushrooms. 2015, 17(6), 511. DOI: 10.1615/IntJMedMushrooms.v17.i6.20.
  • Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. Flavonoids as Mushroom Tyrosinase Inhibitors: A Fluorescence Quenching Study. J. Agric. Food Chem. 2006, 54(3), 935. DOI: 10.1021/jf0521855.
  • Chien, C. -C.; Tsai, M. -L.; Chen, C. -C.; Chang, S. -J.; Tseng, C. -H. Effects on Tyrosinase Activity by the Extracts of Ganoderma Lucidum and Related Mushrooms. Mycopathologia. 2008, 166(2), 117. DOI: 10.1007/s11046-008-9128-x.
  • Rai, S. N.; Mishra, D.; Singh, P.; Vamanu, E.; Singh, M. P. Therapeutic Applications of Mushrooms and Their Biomolecules Along with a Glimpse of in silico Approach in Neurodegenerative Diseases. Biomed. Pharmacother. 2021, 137, 111377. DOI: 10.1016/j.biopha.2021.111377.
  • Valverde, M. E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 376387. DOI: 10.1155/2015/376387.
  • Spelman, K.; Sutherland, E.; Bagade, A. Neurological Activity of Lion’s Mane (Hericium Erinaceus). J. Restorative Med. 2017, 6(1), 19. DOI: 10.14200/jrm.2017.6.0108.
  • Panda, S. K.; Luyten, W. Medicinal Mushrooms: Clinical Perspective and Challenges. Drug Discovery Today. 2022, 27(2), 636. DOI: 10.1016/j.drudis.2021.11.017.
  • Tsai, M.; Hung, Y. C.; Chen, Y.; Huang, Y. C.; Kao, C. W.; Su, Y. L.; Chiu, H. E.; Rau, K. M. A Preliminary Randomised Controlled Study of Short-Term Antrodia Cinnamomea Treatment Combined with Chemotherapy for Patients with Advanced Cancer. BMC Complementary Altern. Med. 2016, 16.
  • Sivanesan, I.; Muthu, M.; Gopal, J.; Oh, J. -W. Mushroom Polysaccharide-Assisted Anticarcinogenic Mycotherapy: Reviewing Its Clinical Trials. Molecules. 2022, 27(13), 4090. DOI: 10.3390/molecules27134090.
  • Yu, Y.; Liu, Z.; Song, K.; Li, L.; Chen, M. Medicinal Value of Edible Mushroom Polysaccharides: A Review. J. Future Foods. 2023, 3(1), 16. DOI: 10.1016/j.jfutfo.2022.09.003.
  • Wang, J. -L.; Bi, Z.; Zou, J. -W.; Gu, X. -M. Combination Therapy with Lentinan Improves Outcomes in Patients with Esophageal Carcinoma. Mol. Med. Rep. 2012, 5(3), 745.
  • Zhang, M.; Zhang, Y.; Zhang, L.; Tian, Q. Mushroom Polysaccharide Lentinan for Treating Different Types of Cancers: A Review of 12 Years Clinical Studies in China. Prog. mol. biol. transl. sci. 2019, 163, 297.
  • Kim, H. S.; Hong, J. T.; Kim, Y.; Han, S. -B. Stimulatory Effect of β-Glucans on Immune Cells. Immun. net. 2011, 11(4), 191. DOI: 10.4110/in.2011.11.4.191.
  • Sun, M.; Bu, R.; Zhang, B.; Cao, Y.; Liu, C.; Zhao, W. Lentinan Inhibits Tumor Progression by Immunomodulation in a Mouse Model of Bladder Cancer. Integr. Cancer Ther. 2020, 19, 1534735420946823. DOI: 10.1177/1534735420946823.
  • Zhang, Z.; Zha, Z.; Zhao, Z.; Liu, W.; Li, W. Lentinan Inhibits AGE-Induced Inflammation and the Expression of Matrix-Degrading Enzymes in Human Chondrocytes. Drug Des. Dev. Ther. 2020, Volume 14, 2819. DOI: 10.2147/DDDT.S243311.
  • Landi, N.; Ragucci, S.; Culurciello, R.; Russo, R.; Valletta, M.; Pedone, P. V.; Pizzo, E.; Di Maro, A. Ribotoxin-Like Proteins from Boletus Edulis: Structural Properties, Cytotoxicity and in vitro Digestibility. Food Chem. 2021, 359, 129931. DOI: 10.1016/j.foodchem.2021.129931.
  • Landi, N.; Ragucci, S.; Russo, R.; Valletta, M.; Pizzo, E.; Ferreras, J. M.; Di Maro, A. The Ribotoxin-Like Protein Ostreatin from Pleurotus Ostreatus Fruiting Bodies: Confirmation of a Novel Ribonuclease Family Expressed in Basidiomycetes. Int. J. Biol. Macromol. 2020, 161, 1329. DOI: 10.1016/j.ijbiomac.2020.07.267.
  • Tayyrov, A.; Azevedo, S.; Herzog, R.; Vogt, E.; Arzt, S.; Lüthy, P.; Müller, P.; Rühl, M.; Hennicke, F.; Künzler, M. Heterologous Production and Functional Characterization of Ageritin, a Novel Type of Ribotoxin Highly Expressed During Fruiting of the Edible Mushroom Agrocybe Aegerita. Appl. Environ. Microbiol. 2019, 85(21), e01549. DOI: 10.1128/AEM.01549-19.
  • Landi, N.; Grundner, M.; Ragucci, S.; Pavšič, M.; Mravinec, M.; Pedone, P. V.; Sepčić, K.; Di Maro, A. Characterization and Cytotoxic Activity of Ribotoxin-Like Proteins from the Edible Mushroom Pleurotus Eryngii. Food Chem. 2022, 396, 133655. DOI: 10.1016/j.foodchem.2022.133655.
  • Ragucci, S.; Hussain, H. Z. F.; Bosso, A.; Landi, N.; Clemente, A.; Pedone, P. V.; Pizzo, E.; Di Maro, A. Isolation, Characterization, and Biocompatibility of Bisporitin, a Ribotoxin-Like Protein from White Button Mushroom (Agaricus Bisporus). Biomolecules. 2023, 13(2), 237. DOI: 10.3390/biom13020237.
  • Landi, N.; Pacifico, S.; Ragucci, S.; Iglesias, R.; Piccolella, S.; Amici, A.; Di Giuseppe, A. M.; Di Maro, A. Purification, Characterization and Cytotoxicity Assessment of Ageritin: The First Ribotoxin from the Basidiomycete Mushroom Agrocybe Aegerita. Biochim Et Biophys. Acta (BBA)-General Subj. 2017, 1861(5), 1113. DOI: 10.1016/j.bbagen.2017.02.023.
  • Citores, L.; Ragucci, S.; Ferreras, J. M.; Di Maro, A.; Iglesias, R. Ageritin, a Ribotoxin from Poplar Mushroom (Agrocybe Aegerita) with Defensive and Antiproliferative Activities. ACS Chem. Biol. 2019, 14(6), 1319. DOI: 10.1021/acschembio.9b00291.
  • Ragucci, S.; Pacifico, S.; Ruocco, M. R.; Crescente, G.; Nasso, R.; Simonetti, M.; Masullo, M.; Piccolella, S.; Pedone, P. V.; Landi, N. Ageritin from Poplar Mushrooms: Scale-Up Purification and Cytotoxicity Towards Undifferentiated and Differentiated SH-SY5Y Cells. Food & Function. 2019, 10(10), 6342. DOI: 10.1039/C9FO01483G.
  • Ragucci, S.; Landi, N.; Russo, R.; Valletta, M.; Pedone, P. V.; Chambery, A.; Di Maro, A. Ageritin from Pioppino Mushroom: The Prototype of Ribotoxin-Like Proteins, a Novel Family of Specific Ribonucleases in Edible Mushrooms. Toxins. 2021, 13(4), 263. DOI: 10.3390/toxins13040263.
  • Patinho, I.; Selani, M. M.; Saldaña, E.; Bortoluzzi, A. C. T.; Rios-Mera, J. D.; da Silva, C. M.; Kushida, M. M.; Contreras-Castillo, C. J. Agaricus Bisporus Mushroom as Partial Fat Replacer Improves the Sensory Quality Maintaining the Instrumental Characteristics of Beef Burger. Meat Sci. 2021, 172, 108307. DOI: 10.1016/j.meatsci.2020.108307.
  • Wang, L.; Guo, H.; Liu, X.; Jiang, G.; Li, C.; Li, X.; Li, Y. Roles of Lentinula Edodes as the Pork Lean Meat Replacer in Production of the Sausage. Meat Sci. 2019, 156, 44. DOI: 10.1016/j.meatsci.2019.05.016.
  • Wang, M.; Zhao, R. A Review on Nutritional Advantages of Edible Mushrooms and Its Industrialization Development Situation in Protein Meat Analogues. J. Future Foods. 2023, 3(1), 1. DOI: 10.1016/j.jfutfo.2022.09.001.
  • Kurek, M. A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel Protein Sources for Applications in Meat-Alternative Products—Insight and Challenges. Foods. 2022, 11(7), 957. DOI: 10.3390/foods11070957.
  • Yuan, X.; Jiang, W.; Zhang, D.; Liu, H.; Sun, B. Textural, Sensory and Volatile Compounds Analyses in Formulations of Sausages Analogue Elaborated with Edible Mushrooms and Soy Protein Isolate as Meat Substitute. Foods. 2021, 11(1), 52. DOI: 10.3390/foods11010052.
  • Stephan, A.; Ahlborn, J.; Zajul, M.; Zorn, H. Edible Mushroom Mycelia of Pleurotus Sapidus as Novel Protein Sources in a Vegan Boiled Sausage Analog System: Functionality and Sensory Tests in Comparison to Commercial Proteins and Meat Sausages. Eur. Food Res. Technol. 2018, 244(5), 913. DOI: 10.1007/s00217-017-3012-1.
  • Santos, M. V.; Lespinard, A. R. Numerical Simulation of Mushrooms During Freezing Using the FEM and an Enthalpy: Kirchhoff Formulation. Heat Mass Transfer. 2011, 47(12), 1671. DOI: 10.1007/s00231-011-0831-7.
  • Salehi, F. Characterization of Different Mushrooms Powder and Its Application in Bakery Products: A Review. Int. J. Food Prop. 2019, 22(1), 1375. DOI: 10.1080/10942912.2019.1650765.
  • Cirlincione, F.; Venturella, G.; Gargano, M. L.; Ferraro, V.; Gaglio, R.; Francesca, N.; Rizzo, B. A.; Russo, G.; Moschetti, G.; Settanni, L. Functional Bread Supplemented with Pleurotus Eryngii Powder: A Potential New Food for Human Health. Int. J. Gastronomy Food Sci. 2022, 27, 100449. DOI: 10.1016/j.ijgfs.2021.100449.
  • Amerikanou, C.; Tagkouli, D.; Tsiaka, T.; Lantzouraki, D. Z.; Karavoltsos, S.; Sakellari, A.; Kleftaki, S. -A.; Koutrotsios, G.; Giannou, V.; Zervakis, G. I. Pleurotus Eryngii Chips—Chemical Characterization and Nutritional Value of an Innovative Healthy Snack. Foods. 2023, 12(2), 353. DOI: 10.3390/foods12020353.
  • Khoshnoudi-Nia, S.; Sharif, N.; Jafari, S. M. Loading of Phenolic Compounds into Electrospun Nanofibers and Electrosprayed Nanoparticles. Trends Food Sci. Technol. 2020, 95, 59. DOI: 10.1016/j.tifs.2019.11.013.
  • Singhal, S.; Rasane, P.; Singh, J.; Kaur, S.; Kumar, V.; Dhawan, K.; Gurumayum, S.; Kaur, N.; Gupta, N.; Kaur, D. Effect of Processing on Vital Chemical Components of Button Mushroom. J. Food Process Eng. 2020, 43(1), e13229. DOI: 10.1111/jfpe.13229.
  • Faridi Esfanjani, A.; Jafari, S. M. Biopolymer Nano-Particles and Natural Nano-Carriers for Nano-Encapsulation of Phenolic Compounds. Colloids and Surfaces B: Biointerfaces. 2016, 146, 532. DOI: 10.1016/j.colsurfb.2016.06.053.
  • Soleymani, S.; Iranpanah, A.; Najafi, F.; Belwal, T.; Ramola, S.; Abbasabadi, Z.; Momtaz, S.; Farzaei, M. H. Implications of Grape Extract and Its Nanoformulated Bioactive Agent Resveratrol Against Skin Disorders. Arch. Dermatol. Res. 2019, 311(8), 577. DOI: 10.1007/s00403-019-01930-z.