1,925
Views
1
CrossRef citations to date
0
Altmetric
Review

Development of Low-Calorie Food Products with Resistant Starch-Rich Sources. – a Review

, , , , &

References

  • Bojarczuk, A.; Skąpska, S.; Mousavi Khaneghah, A.; Marszałek, K. Health Benefits of Resistant Starch: A Review of the Literature. J. Funct. Foods. 2022, 93, 105094. DOI: 10.1016/j.jff.2022.105094.
  • Lunn, J.; Buttriss, J. L. Carbohydrates and Dietary Fibre. Nutr. Bull. 2007, 32(1), 21–64. DOI: 10.1111/j.1467-3010.2007.00616.x.
  • Ashwar, B. A.; Gani, A.; Shah, A.; Wani, I. A.; Masoodi, F. A. Preparation, Health Benefits and Applications of Resistant Starch—A Review. Starke. 2016, 68(3–4), 287–301. DOI: 10.1002/star.201500064.
  • Nugent, A. P. Health Properties of Resistant Starch. Nutr. Bull. 2005, 30(1), 27–54. DOI: 10.1111/j.1467-3010.2005.00481.x.
  • Slavin, J. Whole Grains and Human Health. Nutr. Res. Rev. 2004, 17(1), 99–110. DOI: 10.1079/NRR200374.
  • Giuberti, G.; Gallo, A.; Masoero, F.; Ferraretto, L. F.; Hoffman, P. C.; Shaver, R. D. Factors Affecting Starch Utilization in Large Animal Food Production System: A Review. Starke. 2014, 66(1–2), 72–90. DOI: 10.1002/star.201300177.
  • Olatona, F. A.; Onabanjo, O. O.; Ugbaja, R. N.; Nnoaham, K. E.; Adelekan, D. A. Dietary Habits and Metabolic Risk Factors for Non-Communicable Diseases in a University Undergraduate Population. J Health Popul. Nutr. 2018, 37(1), 1–9. DOI: 10.1186/s41043-018-0152-2.
  • Al-Jawaldeh, A.; Abbass, M. S. Unhealthy Dietary Habits and Obesity: The Major Risk Factors Beyond Non-Communicable Diseases in the Eastern Mediterranean Region. Front Nutr. 2022, 9, 9. DOI: 10.3389/fnut.2022.817808.
  • Amini Sarteshnizi, R.; Hosseini, H.; Bondarianzadeh, D.; Colmenero, F. J.; Khaksar, R. Optimization of Prebiotic Sausage Formulation: Effect of Using β-Glucan and Resistant Starch by D-Optimal Mixture Design Approach. LWT- Food Sci. Technol. 2015, 62(1), 704–710. DOI: 10.1016/j.lwt.2014.05.014.
  • Cione, E.; Fazio, A.; Curcio, R.; Tucci, P.; Lauria, G.; Cappello, A. R.; Dolce, V. Resistant Starches and Non-Communicable Disease: A Focus on Mediterranean Diet. Foods. 2021, 10(9), 2062. DOI: 10.3390/foods10092062.
  • Foroni, F.; Esmaeilikia, M.; Rumiati, R. I. What Makes a Food Healthy? Sex Differences in What is Associated to Healthiness Evaluations. Food Qual. Prefer. 2022, 96, 104438. DOI: 10.1016/j.foodqual.2021.104438.
  • Cheng, M.; Cui, Y.; Yan, X.; Zhang, R.; Wang, J.; Wang, X. Effect of Dual-Modified Cassava Starches on Intelligent Packaging Films Containing Red Cabbage Extracts. Food Hydrocoll. 2022, 124, 107225. DOI: 10.1016/j.foodhyd.2021.107225.
  • Giuberti, G.; Marti, A.; Gallo, A.; Grassi, S.; Spigno, G. Resistant Starch from Isolated White Sorghum Starch: Functional and Physicochemical Properties and Resistant Starch Retention After Cooking. A Comparative Study. Starch - Stärke. 2019, 71(7–8), 1800194. DOI: 10.1002/star.201800194.
  • Rochfort, S.; Panozzo, J. Phytochemicals for Health, the Role of Pulses. J. Agric. Food. Chem. 2007, 55(20), 7981–7994. DOI: 10.1021/jf071704w.
  • Ng, J. Q.; Siew, C. K.; Mamat, H.; Matanjun, P.; Lee, J. S. Effect of Acid Methanol Treatment and Heat Moisture Treatment on in-Vitro Digestibility and Estimated Glycemic Index of Raw and Gelatinized Sago (Metroxylon sagu) Starch. Starke. 2018, 70(9–10), 1700198. DOI: 10.1002/star.201700198.
  • Simsek, S.; Herken, E. N.; Ovando‐martinez, M. Chemical Composition, Nutritional Value and in-Vitro Starch Digestibility of Roasted Chickpeas. J. Sci. Food Agric. 2016, 96(8), 2896–2905. DOI: 10.1002/jsfa.7461.
  • Kanagaraj, S. P.; Ponnambalam, D.; Antony, U. Effect of Dry Heat Treatment on the Development of Resistant Starch in Rice (Oryza sativa) and Barnyard Millet (Echinochloa furmantacea). J. Food Process Preserv. 2019, 43(7), e13965. DOI: 10.1111/jfpp.13965.
  • Verma, A.; Mahatma, M.; Thawait, L.; Singh, S.; Gangadhar, K.; Kona, P.; Singh, A. Processing Techniques Alter Resistant Starch Content, Sugar Profile and Relative Bioavailability of Iron in Groundnut (Arachis Hypogaea L.) Kernels. J. Food Compost. Anal. 2022, 112, 104653. DOI: 10.1016/j.jfca.2022.104653.
  • Bi, W.; Zhao, W.; Li, D.; Li, X.; Yao, C.; Zhu, Y.; Zhang, Y. Effect of Resistant Starch and Inulin on the Properties of Imitation Mozzarella Cheese. Int. J. Food. Prop. 2016, 19(1), 159–171. DOI: 10.1080/10942912.2015.1013634.
  • Homayouni, A.; Amini, A.; Keshtiban, A. K.; Mortazavian, A. M.; Esazadeh, K.; Pourmoradian, S. Resistant Starch in Food Industry: A Changing Outlook for Consumer and Producer. Starke. 2014, 66(1–2), 102–114. DOI: 10.1002/star.201300110.
  • Walsh, S. K.; Lucey, A.; Walter, J.; Zannini, E.; Arendt, E. K. Resistant Starch—An Accessible Fiber Ingredient Acceptable to the Western Palate. Compr. Rev. Food Sci. Food Saf. 2022, 21(3), 2930–2955. DOI: 10.1111/1541-4337.12955.
  • Li, C.; Hu, Y. New Definition of Resistant Starch Types from the Gut Microbiota Perspectives–A Review. Crit. Rev. Food Sci. Nutr. 2022, 1–11. DOI: 10.1080/10408398.2022.2031101.
  • Sanz, T.; Salvador, A.; Baixauli, R.; Fiszman, S. M. Evaluation of Four Types of Resistant Starch in Muffins. Effects in Texture, Colour and Consumer Response. Eur. Food Res. Technol. 2009, 229(2), 197–204. DOI: 10.1007/s00217-009-1040-1.
  • Mikulíková, D.; Benková, M.; Kraic, J. The Potential of Common Cereals to Form Retrograded Resistant Starch. Czech. J. Genet. Plant Breed. 2006, 42(3), 95. DOI: 10.17221/3648-cjgpb.
  • Patterson, M. A.; Maiya, M.; Stewart, M. L. Resistant Starch Content in Foods Commonly Consumed in the United States: A Narrative Review. J. Acad. Nutr. Diet. 2020, 120(2), 230–244. DOI: 10.1016/j.jand.2019.10.019.
  • Gill, S. K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary Fibre in Gastrointestinal Health and Disease. Nature Reviews Gastroenterology & Hepatology. 2021, 18(2), 101–116. DOI: 10.1038/s41575-020-00375-4.
  • Dhital, S.; Brennan, C.; Gidley, M. J. Location and Interactions of Starches in Planta: Effects on Food and Nutritional Functionality. Trends Food Sci. Technol. 2019, 93, 158–166. DOI: 10.1016/j.tifs.2019.09.011.
  • Fuentes‐zaragoza, E.; Sánchez‐zapata, E.; Sendra, E.; Sayas, E.; Navarro, C.; Fernández‐lópez, J.; Pérez‐alvarez, J. A. Resistant Starch as Prebiotic: A Review. Starke. 2011, 63(7), 406–415. DOI: 10.1002/star.201000099.
  • Sanz, T.; Salvador, A.; Fiszman, S. M. Evaluation of Four Types of Resistant Starch in Muffin Baking Performance and Relationship with Batter Rheology. Eur. Food Res. Technol. 2008, 227(3), 813–819. DOI: 10.1007/s00217-007-0791-9.
  • Matignon, A.; Tecante, A. Starch Retrogradation: From Starch Components to Cereal Products. Food Hydrocoll. 2017, 68, 43–52. DOI:10.1016/j.foodhyd.2016.10.032.
  • Roman, L.; Martinez, M. M. Structural Basis of Resistant Starch (RS) in Bread: Natural and Commercial Alternatives. Foods. 2019, 8(7), 267. DOI: 10.3390/foods8070267.
  • Tribess, T.; Hernández-Uribe, J.; Méndez-Montealvo, M.; Menezes, E.; Bello-Perez, L.; Tadini, C. Thermal Properties and Resistant Starch Content of Green Banana Flour (Musa cavendishii) Produced at Different Drying Conditions. LWT - Food Sci. Technol. 2009, 42(5), 1022–1025. DOI: 10.1016/j.lwt.2008.12.017.
  • Das, M.; Rajan, N.; Biswas, P.; Banerjee, R. A Novel Approach for Resistant Starch Production from Green Banana Flour Using Amylopullulanase. LWT - Food Sci. Technol. 2022, 153, 112391. DOI: 10.1016/j.lwt.2021.112391.
  • Sarawong, C.; Schoenlechner, R.; Sekiguchi, K.; Berghofer, E.; Ng, P. K. Effect of Extrusion Cooking on the Physicochemical Properties, Resistant Starch, Phenolic Content and Antioxidant Capacities of Green Banana Flour. Food Chem. 2014, 143, 33–39. DOI: 10.1016/j.foodchem.2013.07.081.
  • Rodríguez-Ambriz, S.; Islas-Hernández, J.; Agama-Acevedo, E.; Tovar, J.; Bello-Pérez, L. Characterization of a Fibre-Rich Powder Prepared by Liquefaction of Unripe Banana Flour. Food Chem. 2008, 107(4), 1515–1521. DOI: 10.1016/j.foodchem.2007.10.007.
  • Yang, J.; Bi, Y.; Liang, S.; Gu, Z.; Cheng, L.; Li, C.; Hong, Y.; Zhang, Y.; Hong, Y. The in vivo Digestibility Study of Banana Flour with High Content of Resistant Starch at Different Ripening Stages. Food Funct. 2020, 11(12), 10945–10953. DOI: 10.1039/D0FO02494E.
  • Jiranuntakul, W.; Puttanlek, C.; Rungsardthong, V.; Puncha-Arnon, S.; Uttapap, D. Microstructural and Physicochemical Properties of Heat-Moisture Treated Waxy and Normal Starches. J. Food Eng. 2011, 104(2), 246–258. DOI: 10.1016/j.jfoodeng.2010.12.016.
  • Bednar, G. E.; Patil, A. R.; Murray, S. M.; Grieshop, C. M.; Merchen, N. R.; Fahey, G. C., Jr. Starch and Fiber Fractions in Selected Food and Feed Ingredients Affect Their Small Intestinal Digestibility and Fermentability and Their Large Bowel Fermentability in-Vitro in a Canine Mode. Nutr. J. 2001, 131(2), 276–286. DOI: 10.1093/jn/131.2.276.
  • Seal, C. J.; Courtin, C. M.; Venema, K.; de Vries, J. Health Benefits of Whole Grain: Effects on Dietary Carbohydrate Quality, the Gut Microbiome, and Consequences of Processing. Compr. Rev. Food Sci. Food Saf. 2021, 20(3), 2742–2768. DOI: 10.1111/1541-4337.12728.
  • Nguyen, S. N.; Drawbridge, P.; Beta, T. Resistant Starch in Wheat, Barley, Rye, and Oat‐based Foods: A Review. Starke. 2022, 2100251. DOI: 10.1002/star.202100251.
  • Mikulíková, D.; Masár, Š.; Kraic, J. Biodiversity of Legume Health‐promoting Starch. Starke. 2008, 60(8), 426–432. DOI: 10.1002/star.200700693.
  • Giczewska, A.; Borowska, J. Nutritional Value of Broad Bean Seeds. Part 1: Starch and Fibre. Food/Nahrung. 2003, 47(2), 95–97. DOI: 10.1002/food.200390033.
  • Palavecino, P. M.; Curti, M. I.; Bustos, M. C.; Penci, M. C.; Ribotta, P. D. Sorghum Pasta and Noodles: Technological and Nutritional Aspects. Plant Foods Hum. Nutr. 2020, 75(3), 326–336. DOI: 10.1007/s11130-020-00829-9.
  • Tharanathan, R.; Mahadevamma, S. Grain Legumes—A Boon to Human Nutrition. Trends Food Sci. Technol. 2003, 14(12), 507–518. DOI: 10.1016/j.tifs.2003.07.002.
  • Vijayakumar, V.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Recent Advancements in Biopolymer and Metal Nanoparticle-Based Materials in Diabetic Wound Healing Management. Int. J. Biol. Macromol. 2019, 122, 137–148. DOI: 10.1016/j.ijbiomac.2018.10.120.
  • Kim, M. J.; Oh, S. G.; Chung, H. J. Impact of Heat Moisture Treatment Applied to Brown Rice Flour on the Quality and Digestibility Characteristics of Korean Rice Cake. Food Sci. Biotechnol. 2017, 26(6), 1579–1586. DOI: 10.1007/s10068-017-0151-x.
  • Chen, X.; He, X.; Fu, X.; Huang, Q. In Vitro Digestion and Physicochemical Properties of Wheat Starch/Flour Modified by Heat-Moisture Treatment. J. Cereal Sci. 2015, 63, 109–115. DOI: 10.1016/j.jcs.2015.03.003.
  • Goel, C.; Semwal, A. D.; Khan, A.; Kumar, S.; Sharma, G. K. Physical Modification of Starch: Changes in Glycemic Index, Starch Fractions, Physicochemical and Functional Properties of Heat Moisture Treated Buckwheat Starch. J. Food Sci. Technol. 2020, 57(8), 2941–2948. DOI: 10.1007/s13197-020-04326-4.
  • Amadou, I.; Gounga, M. E.; Shi, Y.; Le, G. Fermentation and Heat-Moisture Treatment Induced Changes on the Physicochemical Properties of Foxtail Millet (Setaria italica) Flour. Food Bioprod. Process. 2014, 92(1), 38–45. DOI: 10.1016/j.fbp.2013.07.009.
  • Chung, H.; Liu, Q.; Hoover, R. Effect of Single and Dual Hydrothermal Treatments on the Crystalline Structure, Thermal Properties, and Nutritional Fractions of Pea, Lentil, and Navy Bean Starches. Food. Res. Int. 2010, 43(2), 501–508. DOI: 10.1016/j.foodres.2009.07.030.
  • Van Hung, P.; Huong, N. T. M.; Phi, N. T. L.; Tien, N. N. T. Physicochemical Characteristics and in-Vitro Digestibility of Potato and Cassava Starches Under Organic Acid and Heat-Moisture Treatments. Int. J. Biol. Macromol. 2017, 95, 299–305. DOI: 10.1016/j.ijbiomac.2016.11.074.
  • Trung, P. T. B.; Ngoc, L. B. B.; Hoa, P. N.; Tien, N. N. T.; Hung, P. V. Impact of Heat-Moisture and Annealing Treatments on Physicochemical Properties and Digestibility of Starches from Different Colored Sweet Potato Varieties. Int. J. Biol. Macromol. 2017, 105, 1071–1078. DOI: 10.1016/j.ijbiomac.2017.07.131.
  • Li, H.; Wang, R.; Liu, J.; Zhang, Q.; Li, G.; Shan, Y.; Ding, S. Effects of Heat-Moisture and Acid Treatments on the Structural, Physicochemical, and in-Vitro Digestibility Properties of Lily Starch. Int. J. Biol. Macromol. 2020, 148, 956–968. DOI: 10.1016/j.ijbiomac.2020.01.181.
  • Wu, Z.; Lu, J.; Wang, X.; Hu, B.; Ye, H.; Fan, J.; Abid, M.; Zeng, X. Optimization for Production of Exopolysaccharides with Antitumor Activity in-Vitro from Paecilomyces Hepiali. Carbohydr. Polym. 2014, 99, 226–234. DOI: 10.1016/j.carbpol.2013.08.010.
  • Brown, I. L.; Yotsuzuka, M.; Birkett, A.; Henriksson, A. P. Synbiotics and Resistant Starch. Journal of Japanese Association for Dietary Fiber Research. 2006, 10(1), 1–10. DOI: 10.11217/jjdf2004.10.1.
  • Shamloo, M.; Mollard, R.; Wang, H.; Kingra, K.; Tangri, N.; MacKay, D. A Randomized Double-Blind Cross-Over Trial to Study the Effects of Resistant Starch Prebiotic in Chronic Kidney Disease (ReSpeckd). Trials. 2022, 23(1), 1–12. DOI: 10.1186/s13063-022-06009-1.
  • Scholz-Ahrens, K. E.; Ade, P.; Marten, B.; Weber, P.; Timm, W.; Aςil, Y.; Schrezenmeir, J. P.; Schrezenmeir, J. Prebiotics, Probiotics, and Synbiotics Affect Mineral Absorption, Bone Mineral Content, and Bone Structure1. J. Nutr. 2007, 137(3), 838S–846S. DOI: 10.1093/jn/137.3.838S.
  • Cummings, J. H.; Macfarlane, G. T. Gastrointestinal Effects of Prebiotics. Br. J. Nutr. 2002, 87(S2), S145–151. DOI: 10.1079/BJN/2002530.
  • Zaman, S. A.; Sarbini, S. R. The Potential of Resistant Starch as a Prebiotic. Crit. Rev. Biotechnol. 2016, 36(3), 578–584. DOI: 10.3109/07388551.2014.993590.
  • Roberfroid, M. B. Prebiotics and Probiotics: Are They Functional Foods? Am. J. Clin. Nutr. 2000, 71(6), 1682S–1687S. DOI: 10.1093/ajcn/71.6.1682S.
  • Liang, D.; Li, N.; Dai, X.; Zhang, H.; Hu, H. Effects of Different Types of Potato Resistant Starches on Intestinal Microbiota and Short‐chain Fatty Acids Under in-Vitro Fermentation. Int. J. Food Sci. Technol. 2021, 56(5), 2432–2442. DOI: 10.1111/ijfs.14873.
  • Tiwari, U. P.; Singh, A. K.; Jha, R. Fermentation Characteristics of Resistant Starch, Arabinoxylan, and β-Glucan and Their Effects on the Gut Microbial Ecology of Pigs: A Review. Anim. Nutr. 2019, 5(3), 217–226. DOI: 10.1016/j.aninu.2019.04.003.
  • Wang, C.; McClements, D. J.; Jiao, A.; Wang, J.; Jin, Z.; Qiu, C. Resistant Starch and Its Nanoparticles: Recent Advances in Their Green Synthesis and Application as Functional Food Ingredients and Bioactive Delivery Systems. Trends Food Sci. Technol. 2022, 119, 90–100. DOI: 10.1016/j.tifs.2021.11.025.
  • Cui, W.; Ma, Z.; Li, X.; Hu, X. Structural Rearrangement of Native and Processed Pea Starches Following Simulated Digestion in-Vitro and Fermentation Characteristics of Their Resistant Starch Residues Using Human Fecal Inoculum. Int. J. Biol. Macromol. 2021, 172, 490–502. DOI: 10.1016/j.ijbiomac.2021.01.092.
  • Bede, D.; Zaixiang, L. Recent Developments in Resistant Starch as a Functional Food. Starke. 2021, 73(3–4), 2000139. DOI: 10.1002/star.202000139.
  • Nelson, B.; Cray, N.; Ai, Y.; Fang, Y.; Liu, P.; Whitley, E. M.; Birt, D. Effect of Dietary-Resistant Starch on Inhibition of Colonic Preneoplasia and Wnt Signaling in Azoxymethane-Induced Rodent Models. Nutr. Cancer. 2016, 68(6), 1052–1063. DOI: 10.1080/01635581.2016.1192203.
  • Le Leu, R. K.; Hu, Y.; Brown, I. L.; Woodman, R. J.; Young, G. P. Synbiotic Intervention of Bifidobacterium Lactis and Resistant Starch Protects Against Colorectal Cancer Development in Rats. Carcinogenesis. 2010, 31(2), 246–251. DOI: 10.1093/carcin/bgp197.
  • Ge, Y. F.; Wei, C. H.; Wang, W. H.; Cao, L. K. The Resistant Starch from Sorghum Regulates Lipid Metabolism in Menopausal Rats via Equol. J. Food Biochem. 2020, 44(8), e13295. DOI: 10.1111/jfbc.13295.
  • Lopez, H. W.; Levrat-Verny, M. A.; Coudray, C.; Besson, C.; Krespine, V.; Messager, A.; Rémésy, C.; Rémésy, C. Class 2 Resistant Starches Lower Plasma and Liver Lipids and Improve Mineral Retention in Rats. J. Nutr. 2001, 131(4), 1283–1289. DOI: 10.1093/jn/131.4.1283.
  • Sajilata, M. G.; Singhal, R. S.; Kulkarni, P. R. Resistant Starch– a Review. Compr. Rev. Food Sci. Food Saf. 2006, 5(1), 1–17. DOI: 10.1111/j.1541-4337.2006.tb00076.x.
  • Martinez-Flores, H. E.; Kil Chang, Y.; Martinez-Bustos, F.; Sgarbieri, V. Effect of High Fiber Products on Blood Lipids and Lipoproteins in Hamsters. Nutr. Res. 2004, 24(1), 85–93. DOI: 10.1016/j.nutres.2003.08.016.
  • Hashimoto, N.; Ito, Y.; Han, K. H.; Shimada, K. I.; Sekikawa, M.; Topping, D. L.; Fukushima, M.; NODA, T.; CHIJI, H.; FUKUSHIMA, M. Potato Pulps Lowered the Serum Cholesterol and Triglyceride Levels in Rats. J. Nutr. Sci. Vitaminol. 2006, 52(6), 445–450. DOI: 10.3177/jnsv.52.445.
  • McKevith, B. Nutritional Aspects of Cereals. Nutr. Bull. 2004, 29(2), 111–142. DOI: 10.1111/j.1467-3010.2004.00418.x.
  • Vlachos, D.; Malisova, S.; Lindberg, F. A.; Karaniki, G. Glycemic Index (GI) or Glycemic Load (GL) and Dietary Interventions for Optimizing Postprandial Hyperglycemia in Patients with T2 Diabetes: A Review. Nutrients. 2020, 12(6), 1561. DOI: 10.3390/nu12061561.
  • Lal, M. K.; Singh, B.; Sharma, S.; Singh, M. P.; Kumar, A. Glycemic Index of Starchy Crops and Factors Affecting Its Digestibility: A Review. Trends Food Sci. Technol. 2021, 111, 741–755. DOI: 10.1016/j.tifs.2021.02.067.
  • Jenkins, D. J.; Kendall, C. W.; Augustin, L. S.; Vuksan, V. High–Complex Carbohydrate or Lente Carbohydrate Foods? Am. j. med. 2002, 113(9), 30–37. DOI: 10.1016/S0002-9343(01)00989-5.
  • Al-Tamimi, E. K.; Seib, P. A.; Snyder, B. S.; Haub, M. D. Consumption of Cross-Linked Resistant Starch (RS4XL) on Glucose and Insulin Responses in Humans. J Nutr Metab. 2010, 2010, 1–6. DOI: 10.1155/2010/651063.
  • Yamada, Y.; Hosoya, S.; Nishimura, S.; Tanaka, T.; Kajimoto, Y.; Nishimura, A.; KAJIMOTO, O. Kajimoto, Effect of Bread Containing Resistant Starch on Postprandial Blood Glucose Levels in Humans. Biosci. Biotechnol., Biochem. 2005, 69(3), 559–566. DOI: 10.1271/bbb.69.559.
  • Mitra, A.; Bhattacharya, D.; Roy, S. Role of Resistant Starches Particularly Rice Containing Resistant Starches in Type 2 Diabetes. J. Hum. Ecol. 2007, 21(1), 47–51. DOI: 10.1080/09709274.2007.11905950.
  • Raigond, P.; Ezekiel, R.; Raigond, B. Resistant Starch in Food: A Review. J. Sci. Food Agric. 2015, 95(10), 1968–1978. DOI: 10.1002/jsfa.6966.
  • Birkett, A. M.; Mathers, J. C.; Jones, G. P.; Walker, K. Z.; Roth, M. J.; Muir, J. G. Changes to the Quantity and Processing of Starchy Foods in a Western Diet Can Increase Polysaccharides Escaping Digestion and Improve in-Vitro Fermentation Variables. Br. J. Nutr. 2000, 84(1), 63–72. DOI: 10.1017/S0007114500001240.
  • Younes, H.; Coudray, C.; Bellanger, J.; Demigné, C.; Rayssiguier, Y.; Rémésy, C. Effects of Two Fermentable Carbohydrates (Inulin and Resistant Starch) and Their Combination on Calcium and Magnesium Balance in Rats. Br. J. Nutr. 2001, 86(4), 479–485. DOI: 10.1079/BJN2001430.
  • Whisner, C. M.; Castillo, L. F. Prebiotics, Bone and Mineral Metabolism. Calcif. Tissue Int. 2018, 102(4), 443–479. DOI: 10.1007/s00223-017-0339-3.
  • Tapsell, L. C. Diet and Metabolic Syndrome: Where Does Resistant Starch Fit In? J. AOAC Int. 2004, 87(3), 756–760. DOI: 10.1093/jaoac/87.3.756.
  • Liu, H.; Wang, L.; Shen, M.; Guo, X.; Lv, M.; Wang, M. Changes in Physicochemical Properties and In Vitro Digestibility of Tartary Buckwheat and Sorghum Starches Induced by Annealing. Starke. 2016, 68(7–8), 709–718. DOI: 10.1002/star.201500261.
  • Singh, H.; Chang, Y. H.; Lin, J.; Singh, N.; Singh, N. Influence of Heat–Moisture Treatment and Annealing on Functional Properties of Sorghum Starch. Food. Res. Int. 2011, 44(9), 2949–2954. DOI: 10.1016/j.foodres.2011.07.005.
  • Dundar, A. N.; Gocmen, D. Effects of Autoclaving Temperature and Storing Time on Resistant Starch Formation and Its Functional and Physicochemical Properties. Carbohydr. Polym. 2013, 97(2), 764–771. DOI: 10.1016/j.carbpol.2013.04.083.
  • Sun, Q.; Han, Z.; Wang, L.; Xiong, L. Physicochemical Differences Between Sorghum Starch and Sorghum Flour Modified by Heat-Moisture Treatment. Food Chem. 2014, 145, 756–764. DOI: 10.1016/j.foodchem.2013.08.129.
  • Pratiwi, M.; Faridah, D. N.; Lioe, H. N. Structural Changes to Starch After Acid Hydrolysis, Debranching, Autoclaving‐cooling Cycles, and Heat Moisture Treatment (HMT): A Review. Starke. 2018, 70(1–2), 1700028. DOI: 10.1002/star.201700028.
  • Alsaffar, A. A. Effect of Food Processing on the Resistant Starch Content of Cereals and Cereal Products–A Review. Int. J. Food Sci. Technol. 2011, 46(3), 455–462. DOI: 10.1111/j.1365-2621.2010.02529.x.
  • Faridah, D. N.; Damaiyanti, S.; Indrasti, D.; Jayanegara, A.; Afandi, F. A. Effect of Heat Moisture Treatment on Resistant Starch Content Among Carbohydrate Sources: A Meta‐aalysis. Int. J. Food Sci. Technol. 2022, 57(4), 1965–1974. DOI: 10.1111/ijfs.15276.
  • Li, Z.; Guo, D.; Li, X.; Tang, Z.; Ling, X.; Zhou, T.; Zhang, B. Heat-Moisture Treatment Further Reduces In Vitro Digestibility and Enhances Resistant Starch Content of a High-Resistant Starch and Low-Glutelin Rice. Foods. 2021, 10(11), 2562. DOI: 10.3390/foods10112562.
  • Faridah, D. N.; Anugerah, M. P.; Hunaefi, D.; Afandi, F. A.; Jayanegara, A. The Effect of Annealing on Resistant Starch Content of Different Crop Types: A Systematic Review and Meta‐analysis Study. Int. J. Food Sci. Technol. 2022, 57(4), 2026–2038. DOI: 10.1111/ijfs.15388.
  • Gulzar, B.; Hussain, S. Z.; Naseer, B.; Naik, H. R. Enhancement of Resistant Starch Content in Modified Rice Flour Using Extrusion Technology. Cereal Chem. 2021, 98(3), 634–641. DOI: 10.1002/cche.10407.
  • Hung, P. V.; My, N. T. H.; Phi, N. T. L. Impact of Acid and Heat–Moisture Treatment Combination on Physicochemical Characteristics and Resistant Starch Contents of Sweet Potato and Yam Starches. Starke. 2014, 66(11–12), 1013–1021. DOI: 10.1002/star.201400104.
  • Falodun, A. I.; Ayo-Omogie, H. N.; Awolu, O. O. Effect of Different Drying Techniques on the Resistant Starch, Bioactive Components, Physicochemical and Pasting Properties of Cardaba Banana Flour. Acta Universitatis Cinbinesis, Series E: Food Technology. 2019, 23(1), 35–42. DOI: 10.2478/aucft-2019-0005.
  • Pico, J.; Xu, K.; Guo, M.; Mohamedshah, Z.; Ferruzzi, M. G.; Martinez, M. M. Manufacturing the Ultimate Green Banana Flour: Impact of Drying and Extrusion on Phenolic Profile and Starch Boaccessibility. Food Chem. 2019, 297, 124990. DOI: 10.1016/j.foodchem.2019.124990.
  • Zeng, F.; Zhu, S.; Chen, F.; Gao, Q.; Yu, S. Effect of Different Drying Methods on the Structure and Digestibility of Short Chain Amylose Crystals. Food Hydrocoll. 2016, 52, 721–731. DOI: 10.1016/j.foodhyd.2015.08.012.
  • Rezaei, R.; Khomeiri, M.; Kashaninejad, M.; Mazaheri-Tehrani, M.; Aalami, M. Effect of Resistant Starch and Aging Conditions on the Physicochemical Properties of Frozen Soy Yogurt. J. Food Sci. Technol. 2015, 52(12), 8164–8171. DOI: 10.1007/s13197-015-1895-z.
  • Williams, R. P. W.; Glagovskaia, O.; Augustin, M. A. Properties of Stirred Yogurts with Added Starch: Effects of Blends of Skim Milk Powder and Whey Protein Concentrate on Yogurt Texture. Aust. J. Dairy Technol. 2004, 59(3), 214.
  • Aryana, K.; Greenway, F.; Dhurandhar, N.; Tulley, R.; Finley, J.; Keenan, M.; Martin, R.; Pelkman, C.; Olson, D.; Zheng, J., A Resistant-Starch Enriched Yogurt: Fermentability, Sensory Characteristics, and a Pilot Study in Children. F1000research. 2015, 4, 139–139. DOI:10.12688/f1000research.6451.1.
  • He, J.; Han, Y.; Liu, M.; Wang, Y.; Yang, Y.; Yang, X. Effect of 2 Types of Resistant Starches on the Quality of Yogurt. J. Dairy. Sci. 2019, 102(5), 3956–3964. DOI: 10.3168/jds.2018-15562.
  • Saleh, A.; Mohamed, A. A.; Alamri, M. S.; Hussain, S.; Qasem, A. A.; Ibraheem, M. A. Effect of Different Starches on the Rheological, Sensory and Storage Attributes of Non-Fat Set Yogurt. Foods. 2020, 9(1), 61. DOI: 10.3390/foods9010061.
  • Mwizerwa, H.; Abong, G. O.; Okoth, M. W.; Ongol, M. P.; Onyango, C.; Pushparajah, T. Effect of Resistant Cassava Starch on Quality Parameters and Sensory Attributes of Yoghurt. Curr. Res. Nutr. Food Sci. 2017, 5(3), 353–367. DOI: 10.12944/CRNFSJ.5.3.21.
  • Agyemang, P. N.; Akonor, P. T.; Tortoe, C.; Johnsona, P. T.; Manu-Aduening, J. Effect of the Use of Starches of Three New Ghanaian Cassava Varieties as a Thickener on the Physicochemical, Rheological and Sensory Properties of Yoghurt. Sci. Afr. 2020, 9, e00521. DOI: 10.1016/j.sciaf.2020.e00521.
  • Harmayani, E.; Geraldo, N. F.; Murdiati, A. Physicochemical Nutritional and Sensory Properties of Kluklui Supplemented with Porang Glucomannan and Banana Flour. Indones. Food Nutr. Prog. 2021, 18(1), 9–15. DOI: 10.22146/ifnp.57223.
  • Nikitina, E.; Ahmad Riyanto, R.; Vafina, A.; Yurtaeva, T.; Tsyganov, M.; Ezhkova, G. Effect of Fermented Modified Potato Starches to Low-Fat Yogurt. J. Food Nutr. Res. 2019, 7(7), 549–553. DOI: 10.12691/jfnr-7-7-10.
  • Duggan, E.; Noronha, N.; O’Riordan, E.; O’Sullivan, M. Effect of Resistant Starch on the Water Binding Properties of Imitation Cheese. J. Food Eng. 2008, 84(1), 108–115. DOI: 10.1016/j.jfoodeng.2007.04.028.
  • Noronha, N.; Duggan, E.; Ziegler, G. R.; O’Riordan, E. D.; O’Sullivan, M. Inclusion of Starch in Imitation Cheese: Its Influence on Water Mobility and Cheese Functionality. Food Hydrocoll. 2008, 22(8), 1612–1621. DOI: 10.1016/j.foodhyd.2007.11.007.
  • Montesinos-Herrero, C.; Cottell, D. C.; Dolores O’Riordan, E.; O’Sullivan, M. Partial Replacement of Fat by Functional Fibre in Imitation Cheese: Effects on Rheology and Microstructure. Int. Dairy. J. 2006, 16(8), 910–919. DOI: 10.1016/j.idairyj.2005.08.008.
  • Arimi, J.; Duggan, E.; O’Riordan, E.; O’Sullivan, M.; Lyng, J. Microwave Expansion of Imitation Cheese Containing Resistant Starch. J. Food Eng. 2008, 88(2), 254–262. DOI: 10.1016/j.jfoodeng.2008.02.021.
  • Noronha, N.; O’Riordan, E.; O’Sullivan, M. Replacement of Fat with Functional Fibre in Imitation Cheese. Int. Dairy. J. 2007, 17(9), 1073–1082. DOI: 10.1016/j.idairyj.2007.01.011.
  • Murtaza, M. S.; Sameen, A.; Rafique, S.; Shahbaz, M.; Gulzar, N.; Murtaza, M. A.; Hafiz, I.; Hafiz, I. Impact of Dietary Fiber (Inulin and Resistant Starch) on the Quality Parameters of Low Fat Cheddar Cheese from Buffalo Milk. Curr. Res. Nutr. Food Sci. 2022, 55(2). DOI: 10.17582/journal.pjz/20200630120620.
  • Di Cairano, M.; Caruso, M. C.; Galgano, F.; Favati, F.; Ekere, N.; Tchuenbou-Magaia, F. Effect of Sucrose Replacement and Resistant Starch Addition on Textural Properties of Gluten-Free Doughs and Biscuits. Eur. Food Res. Technol. 2021, 247(3), 707–718. DOI: 10.1007/s00217-020-03659-w.
  • Alcântara, R. G. D.; Fukumasu, H.; Raspantini, P. C. F.; Raspantini, L. E. R.; Steel, C. J.; Oliveira, L. D. C.; Vanin, F. M.; Vanin, F. M. Baking Effect on Resistant Starch Digestion from Composite Bread Produced with Partial Wheat Flour Substitution. J. Food Qual. 2020, 2020, 1–13. DOI: 10.1155/2020/9245035.
  • Liljeberg, H.; Åkerberg, A.; Björck, I. Resistant Starch Formation in Bread as Influenced by Choice of Ingredients or Baking Conditions. Food Chem. 1996, 56(4), 389–394. DOI: 10.1016/0308-8146(95)00199-9.
  • Laguna, L.; Salvador, A.; Sanz, T.; Fiszman, S. M. Performance of a Resistant Starch Rich Ingredient in the Baking and Eating Quality of Short-Dough Biscuits. LWT - Food Sci. Technol. 2011, 44(3), 737–746. DOI: 10.1016/j.lwt.2010.05.034.
  • Kaimal, A. M.; Mujumdar, A. S.; Thorat, B. N. Resistant Starch from Millets: Recent Developments and Applications in Food Industries. Trends Food Sci. Technol. 2021, 111, 563–580. DOI: 10.1016/j.tifs.2021.02.074.
  • Spiller, G. A. Handbook of Dietary Fiber in Human Nutrition; CRC Press: Boca Raton, FL, 2001.
  • Khan, A.; Siddiqui, S.; Rahman, U.; Ali, H.; Saba, M.; Andleeb Azhar, F.; Khan, S.; Ali Shah, A.; Badshah, M.; Hasan, F., et al. Physicochemical Properties of Enzymatically Prepared Resistant Starch from Maize Flour and Its Use in Cookies Formulation. Int. J. Food. Prop. 2020, 23(1), 549–569. DOI: 10.1080/10942912.2020.1742736.
  • Gelencsér, T.; Gál, V.; Hódsági, M.; Salgó, A. Evaluation of Quality and Digestibility Characteristics of Resistant Starch-Enriched Pasta. Food Bioproc. Tech. 2008, 1(2), 171–179. DOI: 10.1007/s11947-007-0040-z.
  • Aravind, N.; Sissons, M.; Fellows, C. M.; Blazek, J.; Gilbert, E. P. Optimisation of Resistant Starch II and III Levels in Durum Wheat Pasta to Reduce in-Vitro Digestibility While Maintaining Processing and Sensory Characteristics. Food Chem. 2013, 136(2), 1100–1109. DOI: 10.1016/j.foodchem.2012.08.035.
  • Vernaza, M. G.; Biasutti, E.; Schmiele, M.; Jaekel, L. Z.; Bannwart, A.; Chang, Y. K. Effect of Supplementation of Wheat Flour with Resistant Starch and Monoglycerides in Pasta Dried at High Temperatures. Int. J. Food Sci. Technol. 2012, 47(6), 1302–1312. DOI: 10.1111/j.1365-2621.2012.02974.x.
  • Foschia, M.; Beraldo, P.; Peressini, D. Evaluation of the Physicochemical Properties of Gluten‐free Pasta Enriched with Resistant Starch. J. Sci. Food Agric. 2017, 97(2), 572–577. DOI: 10.1002/jsfa.7766.
  • Makhlouf, S.; Jones, S.; Ye, S. H.; Sancho-Madriz, M.; Burns-Whitmore, B.; Li, Y. O. Effect of Selected Dietary Fibre Sources and Addition Levels on Physical and Cooking Quality Attributes of Fibre-Enhanced Pasta. Food Qual. Saf. 2019, 3(2), 117–127. DOI: 10.1093/fqsafe/fyz010.
  • Bustos Shmidt, M. C.; Perez, G. T.; Leon, A. E. Effect of Four Types of Dietary Fiber on the Technological Quality of Pasta. Food Sci. Technol. Int. 2011, 17(3), 213–221. DOI: 10.1177/1082013210382303.
  • Menon, R.; Padmaja, G.; Jyothi, A. N.; Asha, V.; Sajeev, M. S. Gluten-Free Starch Noodles from Sweet Potato with Reduced Starch Digestibility and Enhanced Protein Content. J. Food Sci. Technol. 2016, 53(9), 3532–3542. DOI: 10.1007/s13197-016-2330-9.
  • Sharma, S.; Singh, N.; Katyal, M. Effect of Gelatinized-Retrograded and Extruded Starches on Characteristics of Cookies, Muffins and Noodles. J. Food Sci. Technol. 2016, 53(5), 2482–2491. DOI: 10.1007/s13197-016-2234-8.
  • Punia, S.; Siroha, A. K.; Sandhu, K. S.; Kaur, M. Rheological Behavior of Wheat Starch and Barley Resistant Starch (Type IV) Blends and Their Starch Noodles Making Potential. Int. J. Biol. Macromol. 2019, 130, 595–604. DOI: 10.1016/j.ijbiomac.2019.03.009.
  • Li, P. H.; Wang, C. W.; Lu, W. C.; Chan, Y. J.; Wang, C. C. R. Effect of Resistant Starch Sources on the Physical Properties of Dough and on the Eating Quality and Glycemic Index of Salted Noodles. Foods. 2022, 11(6), 814. DOI: 10.3390/foods11060814.
  • Hsieh, C. F.; Wang, L. K.; Xu, B.; Seib, P. A.; Shi, Y. C. Preparation and Textural Properties of White Salted Noodles Made with Hard Red Winter Wheat Flour Partially Replaced by Different Levels of Cross‐linked Phosphorylated RS4 Wheat Starch. J. Sci. Food Agric. 2020, 100(15), 5334–5343.V. DOI: 10.1002/jsfa.10581.
  • Boue, S. M.; Chen, M. H.; Daigle, K. W.; Lea, J. M.; Bett‐garber, K. L. Changes in Fried Rice Batter with Increased Resistant Starch and Effects on Sensory Quality of Battered Fried Onions. Cereal Chem. 2022, 99(3), 454–466. DOI: 10.1002/cche.10502.
  • Garcia-Santos, M. D. S. L.; Conceição, F. S.; Villas Boas, F.; Salotti De Souza, B. M.; Barretto, A. C. D. S. Effect of the Addition of Resistant Starch in Sausage with Fat Reduction on the Physicochemical and Sensory Properties. Food Sci. Technol. 2019, 39(suppl 2), 491–497. DOI: 10.1590/fst.18918.
  • Dos Santos, J. M.; Ignácio, E. O.; Bis-Souza, C. V.; da Silva-Barretto, A. C. Performance of Reduced Fat-Reduced Salt Fermented Sausage with Added Microcrystalline Cellulose, Resistant Starch and Oat Fiber Using the Simplex Design. Meat Sci. 2021, 175, 108433. DOI: 10.1016/j.meatsci.2021.108433.
  • Salazar, D.; Arancibia, M.; Calderón, L.; López-Caballero, M. E.; Montero, M. P. Underutilized Green Banana (Musa Acuminata AAA) Flours to Develop Fiber Enriched Frankfurter-Type Sausages. Foods. 2021, 10(5), 1142. DOI: 10.3390/foods10051142.
  • Geraldo, N. F. Physico-Chemical and Sensory Properties of Kluiklui Supplemented with Porang Glucomannan and Banana Flour. Foods (Basel, Switzerland). 2020, 10(5), 1142. DOI: 10.3390/foods10051142.
  • Liu, T.; Zhou, Y.; Wu, D.; Chen, Q.; Shu, X. Germinated High‐resistant Starch Rice: A Potential Novel Functional Food. Int. J. Food Sci. Technol. 2022, 57(8), 5439–5449. DOI: 10.1111/ijfs.15876.
  • Shen, H.; Xu, M.; Su, C.; Zhang, B.; Ge, X.; Zhang, G.; Li, W. Insights into the Relations Between the Molecular Structures and Physicochemical Properties of Normal and Waxy Wheat B‐starch After Repeated and Continuous Annealing. Int. J. Food Sci. Technol. 2021, 56(12), 6405–6419. DOI: 10.1111/ijfs.15302.
  • Punia Bangar, S.; Sharma, N.; Singh, A.; Phimolsiripol, Y.; Brennan, C. S. Glycaemic Response of Pseudocereal‐based Gluten‐free Food Products: A Review. Int. J. Food Sci. Technol. 2022, 57(8), 4936–4944. DOI: 10.1111/ijfs.15890.