298
Views
4
CrossRef citations to date
0
Altmetric
Review

Ultrasound as a Techno-Functional Modifier in Food Frying and Bioactive Compounds Extraction

ORCID Icon, , ORCID Icon &

References

  • Jeong, S.; Lee, S. Elucidation of the Reduced Oil Uptake of Frying Batters Made from Wheat and Brown Rice Flour Blends in Terms of Rheology and Surface Roughness. J. Sci. Food Agric. 2021, 101(14), 6036–6042. DOI: 10.1002/jsfa.11260.
  • Vengu, S.; Ravandran, H. P.; Gannasin, S. P.; Muhammad, K. Effect of Hydrocolloid Addition on Batter Properties and Quality of Deep-Fried Banana (Musaspp.) Fritters. Br. Food J. 2020, 122(10), 3227–3238. DOI: 10.1108/bfj-02-2020-0114.
  • Pedreschi, F.; Ferrera, A.; Bunger, A.; Alvarez, F.; Huaman-Castilla, N. L.; Mariotti-Celis, M. S. Ultrasonic-Assisted Leaching of Glucose and Fructose as an Alternative Mitigation Technology of Acrylamide and 5-Hydroxymethylfurfural in Potato Chips. Innovative Food Science & Emerging Technologies. 2021, 73, 102752. DOI: 10.1016/j.ifset.2021.102752.
  • Shabbir, M. A.; Ahmed, W.; Latif, S.; Inam-Ur-Raheem, M.; Manzoor, M. F.; Khan, M. R.; Bilal, R. M.; Aadil, R. M. The Quality Behavior of Ultrasound Extracted Sunflower Oil and Structural Computation of Potato Strips Appertaining to Deep-Frying with Thermic Variations. J. Food Process. Preserv. 2020, 44(10), 10. DOI: 10.1111/jfpp.14809.
  • Devi, S.; Zhang, M.; Ju, R. H.; Bhandari, B. Recent Development of Innovative Methods for Efficient Frying Technology. Crit. Rev. Food Sci. Nutr. 2021, 61(22), 3709–3724. DOI: 10.1080/10408398.2020.1804319.
  • Asadi, Y.; Farahmandfar, R. Frying Stability of Canola Oil Supplemented with Ultrasound-Assisted Extraction of Teucrium Polium. Food Science & Nutrition. 2020, 8(2), 1187–1196. DOI: 10.1002/fsn3.1405.
  • Devi, S.; Zhang, M.; Mujumdar, A. S. Influence of Ultrasound and Microwave-Assisted Vacuum Frying on Quality Parameters of Fried Product and the Stability of Frying Oil. Drying Technol. 2021, 39(5), 655–668. DOI: 10.1080/07373937.2019.1702995.
  • Islam, M.; Zhang, M.; Mujumdar, A. S. Low Temperature Vacuum Frying of Edamame Assisted by Ultrasound and Microwave: Effects on the Kinetics of Oil and Product Storage Properties. Drying Technol. 2021, 39(5), 608–619. DOI: 10.1080/07373937.2019.1700272.
  • Munoz-Almagro, N.; Morales-Soriano, E.; Villamiel, M.; Condezo-Hoyos, L. Hybrid High-Intensity Ultrasound and Microwave Treatment: A Review on Its Effect on Quality and Bioactivity of Foods. Ultrason. Sonochem. 2021, 80, 105835. DOI: 10.1016/j.ultsonch.2021.105835.
  • Sun, Y. N.; Zhang, M.; Fan, D. C. Effect of Ultrasonic on Deterioration of Oil in Microwave Vacuum Frying and Prediction of Frying Oil Quality Based on Low Field Nuclear Magnetic Resonance (LF-NMR). Ultrason. Sonochem. 2019, 51, 77–89. DOI: 10.1016/j.ultsonch.2018.10.015.
  • Zhang, J.; Zhang, Y. Q.; Wang, Y.; Xing, L. J.; Zhang, W. G. Influences of Ultrasonic-Assisted Frying on the Flavor Characteristics of Fried Meatballs. Innovative Food Science & Emerging Technologies. 2020, 62, 102365. DOI: 10.1016/j.ifset.2020.102365.
  • Deng, Y.; Wang, W. J.; Zhao, S. N.; Yang, X. L.; Xu, W. D.; Guo, M. M.; Xu, E. B.; Ding, T.; Ye, X. Q.; Liu, D. H. Ultrasound-Assisted Extraction of Lipids as Food Components: Mechanism, Solvent, Feedstock, Quality Evaluation and Coupled Technologies-A Review. Trends in Food Science & Technology. 2022, 122, 83–96. DOI: 10.1016/j.tifs.2022.01.034.
  • Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods. 2018, 7(10), 10. DOI: 10.3390/foods7100164.
  • Yildiz, G. Ultrasonic Cutting of Cheese and Apples–Effect on Quality Attributes During Storage; M. S., University of Illinois at Urbana-Champaign: Urbana, Illinois, 2013.
  • Pan, Y. Y.; Zhang, Y.; Cheng, J. H.; Sun, D. W. Inactivation of Listeria Monocytogenes at Various Growth Temperatures by Ultrasound Pretreatment and Cold Plasma. LWT Food Sci. Technol. 2020, 118, 108635. DOI: 10.1016/j.lwt.2019.108635.
  • Hu, J. M.; Ge, S. H.; Huang, C. Y.; Cheung, P. C. K.; Lin, L.; Zhang, Y.; Zheng, B. D.; Lin, S. L.; Huang, X. J. Tenderization Effect of Whelk Meat Using Ultrasonic Treatment. Food Science & Nutrition. 2018, 6(7), 1848–1857. DOI: 10.1002/fsn3.686.
  • Chemat, F.; Zill e, H.; Khan, M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18(4), 813–835. DOI: 10.1016/j.ultsonch.2010.11.023.
  • Gavahian, M.; Chen, Y. M.; Khaneghah, A. M.; Barba, F. J.; Yang, B. B. In-Pack Sonication Technique for Edible Emulsions: Understanding the Impact of Acacia Gum and Lecithin Emulsifiers and Ultrasound Homogenization on Salad Dressing Emulsions Stability. Food Hydrocolloids. 2018, 83, 79–87. DOI: 10.1016/j.foodhyd.2018.04.039.
  • Contreras-Lopez, G.; Carnero-Hernandez, A.; Huerta-Jimenez, M.; Alarcon-Rojo, A. D.; Garcia-Galicia, I.; Carrillo-Lopez, L. M. High-Intensity Ultrasound Applied on Cured Pork: Sensory and Physicochemical Characteristics. Food Science & Nutrition. 2020, 8(2), 786–795. DOI: 10.1002/fsn3.1321.
  • Selvamuthukumaran, M.; Shi, J. Recent Advances in Extraction of Antioxidants from Plant By-Products Processing Industries. Food Qual. Saf. 2017, 1(1), 61–81. DOI: 10.1093/fqs/fyx004.
  • Islam, M. M.; Zhang, M.; Bhandari, B.; Guo, Z. M. A Hybrid Vacuum Frying Process Assisted by Ultrasound and Microwave to Enhance the Kinetics of Moisture Loss and Quality of Fried Edamame. Food Bioprod. Process. 2019, 118, 326–335. DOI: 10.1016/j.fbp.2019.10.004.
  • Sosa-Morales, M. E.; Solares-Alvarado, A. P.; Aguilera-Bocanegra, S. P.; Munoz-Roa, J. F.; Cardoso-Ugarte, G. A. Reviewing the Effects of Vacuum Frying on Frying Medium and Fried Foods Properties. Int. J. Food Sci. Technol. 2022, 57(6), 3278–3291. DOI: 10.1111/ijfs.15572.
  • Su, Y.; Zhang, M.; Bhandari, B.; Zhang, W. Enhancement of Water Removing and the Quality of Fried Purple-Fleshed Sweet Potato in the Vacuum Frying by Combined Power Ultrasound and Microwave Technology. Ultrason. Sonochem. 2018, 44, 368–379. DOI: 10.1016/j.ultsonch.2018.02.049.
  • Su, Y.; Zhang, M.; Zhang, W. M.; Liu, C. Q.; Adhikari, B. Ultrasonic Microwave-Assisted Vacuum Frying Technique as a Novel Frying Method for Potato Chips at Low Frying Temperature. Food Bioprod. Process. 2018, 108, 95–104. DOI: 10.1016/j.fbp.2018.02.001.
  • Su, Y.; Zhang, M.; Adhikari, B.; Mujumdar, A.; Zhang, W. Improving the Energy Efficiency and the Quality of Fried Products Using a Novel Vacuum Frying Assisted by Combined Ultrasound and Microwave Technology. Innov Food Sci Emerg.Technol. 2018, 50, 148–159. DOI: 10.1016/j.ifset.2018.10.011.
  • Huang, M. S.; Zhang, M.; Bhandari, B. Synergistic Effects of Ultrasound and Microwave on the Pumpkin Slices Qualities During Ultrasound-Assisted Microwave Vacuum Frying. J. Food Process Eng. 2018, 41(6), 6. DOI: 10.1111/jfpe.12835.
  • Devi, S.; Zhang, M.; Law, C. L. Effect of Ultrasound and Microwave Assisted Vacuum Frying on Mushroom (Agaricus Bisporus) Chips Quality. Food Biosci. 2018, 25, 111–117. DOI: 10.1016/j.fbio.2018.08.004.
  • Al Faruq, A.; Zhang, M.; Adhikari, B. A Novel Vacuum Frying Technology of Apple Slices Combined with Ultrasound and Microwave. Ultrason. Sonochem. 2019, 52, 522–529. DOI: 10.1016/j.ultsonch.2018.12.033.
  • Devi, S.; Zhang, M.; Ju, R. H.; Bhandari, B. Water Loss and Partitioning of the Oil Fraction of Mushroom Chips Using Ultrasound-Assisted Vacuum Frying. Food Biosci. 2020, 38, 100753. DOI: 10.1016/j.fbio.2020.100753.
  • Wang, Y.; Zhang, W. G.; Zhou, G. H. Effects of Ultrasound-Assisted Frying on the Physiochemical Properties and Microstructure of Fried Meatballs. Int. J. Food Sci. Technol. 2019, 54(10), 2915–2926. DOI: 10.1111/ijfs.14159.
  • Devi, S.; Zhang, M.; Ju, R. H.; Mujumdar, A. S. Co-Influence of Ultrasound and Microwave in Vacuum Frying on the Frying Kinetics and Nutrient Retention Properties of Mushroom Chips. Drying Technol. 2020, 38(15), 2102–2113. DOI: 10.1080/07373937.2019.1604542.
  • Delfanian, M.; Kenari, R. E.; Sahari, M. A. Utilization of Jujube Fruit (Ziziphus Mauritiana Lam.) Extracts as Natural Antioxidants in Stability of Frying Oil. Int. J. Food Prop. 2016, 19(4), 789–801. DOI: 10.1080/10942912.2015.1043638.
  • Doosti, A.; Jafarinaimi, K.; Balvardi, M.; Mortezapour, H. Parameters Optimization of Ultrasound-Assisted Deodorization of Sheep Tail Fat Using Response Surface Technique. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2021, 40(3), 815–831. DOI: 10.30492/ijcce.2020.38998.
  • Saha, R.; Goud, V. V. Ultrasound Assisted Transesterification of High Free Fatty Acids Karanja Oil Using Heterogeneous Base Catalysts. Biomass Conversion and Biorefinery. 2015, 5(2), 195–207. DOI: 10.1007/s13399-014-0133-7.
  • Poppe, J. K.; Matte, C. R.; Fernandez-Lafuente, R.; Rodrigues, R. C.; Ayub, M. A. Z. Transesterification of Waste Frying Oil and Soybean Oil by Combi-Lipases Under Ultrasound-Assisted Reactions. Appl. Biochem. Biotechnol. 2018, 186(3), 576–589. DOI: 10.1007/s12010-018-2763-x.
  • Maceiras, R.; Alfonsin, V.; Cancela, A.; Sanchez, A. Biodiesel Production from Waste Frying Oil by Ultrasound-Assisted Transesterification. Chem. Eng. Technol. 2017, 40(9), 1713–1719. DOI: 10.1002/ceat.201600112.
  • Sarion, C.; Codina, G. G.; Dabija, A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. Int. J. Environ. Res. Public Health. 2021, 18(8), 8. DOI: 10.3390/ijerph18084332.
  • Antunes-Rohling, A.; Ciudad-Hidalgo, S.; Mir-Bel, J.; Raso, J.; Cebrian, G.; Alvarez, I. Ultrasound as a Pretreatment to Reduce Acrylamide Formation in Fried Potatoes. Innovative Food Science & Emerging Technologies. 2018, 49, 158–169. DOI: 10.1016/j.ifset.2018.08.010.
  • Ghalebi, M.; Hamidi, S.; Nemati, M. High-Performance Liquid Chromatography Determination of Acrylamide After Its Extraction from Potato Chips. Pharm. Sci. 2019, 25(4), 338–344. DOI: 10.15171/ps.2019.42.
  • Qiu, L. Q.; Zhang, M.; Wang, Y. C.; Bhandari, B. Effects of Ultrasound Pretreatments on the Quality of Fried Sweet Potato (Ipomea Batatas) Chips During Microwave-Assisted Vacuum Frying. J. Food Process Eng. 2018, 41(8), 8. DOI: 10.1111/jfpe.12879.
  • Su, Y.; Zhang, M.; Chitrakar, B.; Zhang, W. M. Effects of Low-Frequency Ultrasonic Pre-Treatment in Water/Oil Medium Simulated System on the Improved Processing Efficiency and Quality of Microwave-Assisted Vacuum Fried Potato Chips. Ultrason. Sonochem. 2020, 63, 104958. DOI: 10.1016/j.ultsonch.2020.104958.
  • Piyalungka, P.; Sadiq, M. B.; Assavarachan, R.; Nguyen, L. T. Effects of Osmotic Pretreatment and Frying Conditions on Quality and Storage Stability of Vacuum-Fried Pumpkin Chips. Int. J. Food Sci. Technol. 2019, 54(10), 2963–2972. DOI: 10.1111/ijfs.14209.
  • Oladejo, A. O.; Ma, H. L.; Qu, W. J.; Zhou, C. S.; Wu, B. G.; Yang, X.; Onwude, D. I. Effects of Ultrasound Pretreatments on the Kinetics of Moisture Loss and Oil Uptake During Deep Fat Frying of Sweet Potato (Ipomea Batatas). Innovative Food Science & Emerging Technologies. 2017, 43, 7–17. DOI: 10.1016/j.ifset.2017.07.019.
  • Mohammadalinejhad, S.; Dehghannya, J. Effects of Ultrasound Frequency and Application Time Prior to Deep-Fat Frying on Quality Aspects of Fried Potato Strips. Innovative Food Science & Emerging Technologies. 2018, 47, 493–503. DOI: 10.1016/j.ifset.2018.05.001.
  • Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sanchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy-Basel. 2017, 7(3), 3. DOI: 10.3390/agronomy7030047.
  • Yeasmen, N.; Orsat, V.;Green Extraction and Characterization of Leaves Phenolic Compounds: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2021, 1–39. DOI: 10.1080/10408398.2021.2013771.
  • Wang, P. X.; Cheng, C. X.; Ma, Y. Q.; Jia, M. Degradation Behavior of Polyphenols in Model Aqueous Extraction System Based on Mechanical and Sonochemical Effects Induced by Ultrasound. Sep. Purif. Techn. 2020, 247, 116967. DOI: 10.1016/j.seppur.2020.116967.
  • Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A. G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M. A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health. 2021, 18(17), 17. DOI: 10.3390/ijerph18179153.
  • Khursheed, N.; Osama, K.; Eldesoky, G. E.; Wabaidur, S. M.; Islam, M. A.; Younis, K. Ultrasound-Assisted Protein Extraction from Mosambi Peel Support Vector Regression and Genetic Algorithm-Based Modeling and Optimization. J. Food Process. Preserv. 2022, 46(11), 11. DOI: 10.1111/jfpp.16979.
  • Naik, M.; Natarajan, V.; Modupalli, N.; Thangaraj, S.; Rawson, A. Pulsed Ultrasound Assisted Extraction of Protein from Defatted Bitter Melon Seeds (Momardica Charantia L.) Meal: Kinetics and Quality Measurements. LWT Food Sci. Technol. 2022, 155, 112997. DOI: 10.1016/j.lwt.2021.112997.
  • Ozyurt, V. H.; Tetik, I.; Otles, S. Influence of Process Conditions on Ultrasound-Assisted Protein Extraction from Cold Pressed Tomato Seed Waste. J. Food Process. Preserv. 2021, 45(12), 12. DOI: 10.1111/jfpp.16079.
  • Wang, H.; Chen, K. R.; Cheng, J.; Jiang, L. Z.; Yu, D. Y.; Dai, Y. J.; Wang, L. Q. Ultrasound-Assisted Three Phase Partitioning for Simultaneous Extraction of Oil, Protein and Polysaccharide from Pumpkin Seeds. LWT Food Sci. Technol. 2021, 151, 112200. DOI: 10.1016/j.lwt.2021.112200.
  • Gadalkar, S. M.; Rathod, V. K. Extraction of Watermelon Seed Proteins with Enhanced Functional Properties Using Ultrasound. Preparative Biochemistry & Biotechnology. 2020, 50(2), 133–140. DOI: 10.1080/10826068.2019.1679173.
  • Sanwal, N.; Mishra, S.; Sahu, J. K.; Naik, S. N. Effect of Ultrasound-Assisted Extraction on Efficiency, Antioxidant Activity, and Physicochemical Properties of Sea Buckthorn (Hippophae Salicipholia) Seed Oil. LWT Food Sci. Technol. 2022, 153, 112386. DOI: 10.1016/j.lwt.2021.112386.
  • Komartin, R. S.; Stroescu, M.; Chira, N.; Stan, R.; Stoica-Guzun, A. Optimization of Oil Extraction from Lallemantia Iberica Seeds Using Ultrasound-Assisted Extraction. J. Food Meas. Charact. 2021, 15(2), 2010–2020. DOI: 10.1007/s11694-020-00790-w.
  • Li, M.; Zhao, G. H.; Liu, J.; Liang, X. P.; Zhang, M.; Zhou, G. C.; Tang, X.; Wang, Y. L. Optimization of Ultrasound-Assisted Extraction of Peony Seed Oil with Response Surface Methodology and Analysis of Fatty Acid. Agric. Res. 2021, 10(4), 543–555. DOI: 10.1007/s40003-021-00554-y.
  • Ribeiro, D. N.; Alves, F. M. S.; Ramos, V. H. D.; Alves, P.; Narain, N.; Vedoy, D. R. L.; Cardozo, L.; de Jesus, E. Extraction of Passion Fruit (Passiflora Cincinnata Mast.) Pulp Oil Using Pressurized Ethanol and Ultrasound: Antioxidant Activity and Kinetics. J. Supercrit. Fluids. 2020, 165, 104944. DOI: 10.1016/j.supflu.2020.104944.
  • Li, Y. Y.; Ye, Z. M.; Wang, W. T.; Yang, C.; Liu, J. Y.; Zhou, L. T.; Shen, Y. Z.; Wang, Z. H.; Chen, J. J.; Wu, S. H., et al. Composition Analysis of Essential Oil from Melaleuca Bracteata Leaves Using Ultrasound-Assisted Extraction and Its Antioxidative and Antimicrobial Activities. BioResources. 2018, 13(4), Article, 8488–8504. doi:10.15376/biores.13.4.8488-8504.
  • Gueffai, A.; Gonzalez-Serrano, D. J.; Christodoulou, M. C.; Orellana-Palacios, J. C.; Ortega, M. L. S.; Ouldmoumna, A.; Kiari, F. Z.; Ioannou, G. D.; Kapnissi-Christodoulou, C. P.; Moreno, A., et al. Phenolics from Defatted Black Cumin Seeds (Nigella Sativa L.): Ultrasound-Assisted Extraction Optimization, Comparison, and Antioxidant Activity. Biomolecules. 2022, 12(9), 9.
  • Gonzalez-Silva, N.; Nolasco-Gonzalez, Y.; Aguilar-Hernandez, G.; Sayago-Ayerdi, S. G.; Villagran, Z.; Acosta, J. L.; Montalvo-Gonzalez, E.; Anaya-Esparza, L. M. Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium Cattleianum Leaves: Optimization Using the Response Surface Methodology. Molecules. 2022, 27(11), 11. DOI: 10.3390/molecules27113557.
  • Mazza, K. E. L.; Santiago, M.; Do Nascimento, L. S. M.; Godoy, R. L. O.; Souza, E. F.; Brigida, A. I. S.; Borguini, R. G.; Tonon, R. V. Syrah Grape Skin Valorisation Using Ultrasound-Assisted Extraction: Phenolic Compounds Recovery, Antioxidant Capacity and Phenolic Profile. Int. J. Food Sci. Technol. 2019, 54(3), 641–650. DOI: 10.1111/ijfs.13883.
  • Kaur, B.; Venkatrao, K. B.; Panesar, P. S.; Chopra, H. K.; Anal, A. K. Optimization of Ultrasound-Assisted Enzymatic Extraction of Resistant Starch from Green Banana Peels and Its Structural Characterization. J. Food Sci. Technol. Mysore. 2022, 59(12), 4663–4672. DOI: 10.1007/s13197-022-05546-6.
  • Almeida, R. L. J.; Santos, N. C.; Pereira, T. D.; Monteiro, S. S.; da Silva, L. R. I.; Eduardo, R. D.; Alves, I. L.; dos Santos, E. S. Extraction and Modification of Achachairu’s Seed (Garcinia Humilis) Starch Using High-Intensity Low-Frequency Ultrasound. J. Food Process Eng. 2022, 45(5), 5. DOI: 10.1111/jfpe.14022.
  • Kadam, S. U.; Tiwari, B. K.; Alvarez, C.; O’Donnell, C. P. Ultrasound Applications for the Extraction, Identification and Delivery of Food Proteins and Bioactive Peptides. Trends in Food Science & Technology. 2015, 46(1), 60–67. DOI: 10.1016/j.tifs.2015.07.012.
  • da Rosa, G. S.; Vanga, S. K.; Gariepy, Y.; Raghavan, V. Comparison of Microwave, Ultrasonic and Conventional Techniques for Extraction of Bioactive Compounds from Olive Leaves (Olea Europaea L.). Innovative Food Science & Emerging Technologies. 2019, 58, 102234. DOI: 10.1016/j.ifset.2019.102234.
  • Chemat, F.; Tomao, V.; Virot, M. Ultrasound-assisted extraction in food analysis. In Handbook of Fod Analysis Iinstruments, Ötles, S. Eds.; Boca Raton, FL: CRC Press, Taylor & Francis Group, 2008; pp 85–103.
  • Zhao, F.; Liu, X. M.; Ding, X. Z.; Dong, H. Z.; Wang, W. T. Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Soy Protein Isolate. Molecules. 2019, 24(20), 20. DOI: 10.3390/molecules24203637.
  • Rahman, M. M.; Byanju, B.; Grewell, D.; Lamsal, B. P. High-Power Sonication of Soy Proteins: Hydroxyl Radicals and Their Effects on Protein Structure. Ultrason. Sonochem. 2020, 64, 105019. DOI: 10.1016/j.ultsonch.2020.105019.
  • O’Sullivan, J.; Murray, B.; Flynn, C.; Norton, I. The Effect of Ultrasound Treatment on the Structural, Physical and Emulsifying Properties of Animal and Vegetable Proteins. Food Hydrocolloids. 2016, 53, 141–154. DOI: 10.1016/j.foodhyd.2015.02.009.
  • O’Sullivan, J.; Park, M.; Beevers, J. The Effect of Ultrasound Upon the Physicochemical and Emulsifying Properties of Wheat and Soy Protein Isolates. J. Cereal Sci. 2016, 69, 77–84. DOI: 10.1016/j.jcs.2016.02.013.
  • Chen, N. N.; Zhao, M. M.; Sun, W. Z.; Ren, J. Y.; Cui, C. Effect of Oxidation on the Emulsifying Properties of Soy Protein Isolate. Food Res. Int. 2013, 52(1), 26–32. DOI: 10.1016/j.foodres.2013.02.028.
  • Nazari, B.; Mohammadifar, M. A.; Shojaee-Aliabadi, S.; Feizollahi, E.; Mirmoghtadaie, L. Effect of Ultrasound Treatments on Functional Properties and Structure of Millet Protein Concentrate. Ultrason. Sonochem. 2018, 41, 382–388. DOI: 10.1016/j.ultsonch.2017.10.002.
  • Malik, M. A.; Sharma, H. K.; Saini, C. S. High Intensity Ultrasound Treatment of Protein Isolate Extracted from Dephenolized Sunflower Meal: Effect on Physicochemical and Functional Properties. Ultrason. Sonochem. 2017, 39, 511–519. DOI: 10.1016/j.ultsonch.2017.05.026.
  • Morales, R.; Martinez, K. D.; Ruiz-Henestrosa, V. M. P.; Pilosof, A. M. R. Modification of Foaming Properties of Soy Protein Isolate by High Ultrasound Intensity: Particle Size Effect. Ultrason. Sonochem. 2015, 26, 48–55. DOI: 10.1016/j.ultsonch.2015.01.011.
  • Mir, N. A.; Riar, C. S.; Singh, S. Physicochemical, Molecular and Thermal Properties of High-Intensity Ultrasound (HIUS) Treated Protein Isolates from Album (Chenopodium album) Seed. Food Hydrocolloids. 2019, 96, 433–441. DOI: 10.1016/j.foodhyd.2019.05.052.
  • Li, K. X.; Ma, H. L.; Li, S. J.; Zhang, C. S.; Dai, C. H. Effect of Ultrasound on Alkali Extraction Protein from Rice Dreg Flour. J. Food Process Eng. 2017, 40(2), 2. DOI: 10.1111/jfpe.12377.
  • Li, S. Y.; Yang, X.; Zhang, Y. Y.; Ma, H. L.; Liang, Q. F.; Qu, W. J.; He, R. H.; Zhou, C. S.; Mahunu, G. K. Effects of Ultrasound and Ultrasound Assisted Alkaline Pretreatments on the Enzymolysis and Structural Characteristics of Rice Protein. Ultrason. Sonochem. 2016, 31, 20–28. DOI: 10.1016/j.ultsonch.2015.11.019.
  • Maruyama, J. M.; Wagh, A.; Gioielli, L. A.; da Silva, R. C.; Martini, S. Effects of High Intensity Ultrasound and Emulsifiers on Crystallization Behavior of Coconut Oil and Palm Olein. Food Res. Int. 2016, 86, 54–63. DOI: 10.1016/j.foodres.2016.05.009.
  • Ye, Y. B.; Martini, S. Application of High-Intensity Ultrasound to Palm Oil in a Continuous System. J. Agric. Food Chem. 2015, 63(1), 319–327. DOI: 10.1021/jf505041s.
  • Soria, A. C.; Villamiel, M.; Montilla, A. Ultrasound Effects on Processes and Reactions Involving Carbohydrates. In Ultrasound in Food Processing: Recent Advances, Villamiel, M., Montilla, A., GarciaPerez, J. V., Carcel, J. A., Benedito, J., Eds.; Chichester, West Sussex, United Kingdom: John Wiley & Sons Ltd, 2017; pp 437–463.
  • Pingret, D.; Fabiano-Tixier, A. S.; Chemat, F. Degradation During Application of Ultrasound in Food Processing: A Review. Food Control. 2013, 31(2), 593–606. DOI: 10.1016/j.foodcont.2012.11.039.
  • Zhang, Z. S.; Wang, L. J.; Li, D.; Jiao, S. S.; Chen, X. D.; Mao, Z. H. Ultrasound-Assisted Extraction of Oil from Flaxseed. Sep. Purif. Techn. 2008, 62(1), 192–198. DOI: 10.1016/j.seppur.2008.01.014.
  • Adam, F.; Abert-Vian, M.; Peltier, G.; Chemat, F. “Solvent-free” Ultrasound-Assisted Extraction of Lipids from Fresh Microalgae Cells: A Green, Clean and Scalable Process. Bioresour. Technol. 2012, 114, 457–465. DOI: 10.1016/j.biortech.2012.02.096.
  • Li, H. Z.; Pordesimo, L.; Weiss, J. High Intensity Ultrasound-Assisted Extraction of Oil from Soybeans. Food Res. Int. 2004, 37(7), 731–738. DOI: 10.1016/j.foodres.2004.02.016.
  • Xu, G. L.; Liang, C. G.; Huang, P.; Liu, Q.; Xu, Y. J.; Ding, C. B.; Li, T. Optimization of Rice Lipid Production from Ultrasound-Assisted Extraction by Response Surface Methodology. J. Cereal Sci. 2016, 70, 23–28. DOI: 10.1016/j.jcs.2016.05.007.
  • Cui, R. B.; Zhu, F. Ultrasound Modified Polysaccharides: A Review of Structure, Physicochemical Properties, Biological Activities and Food Applications. Trends in Food Science & Technology. 2021, 107, 491–508. DOI: 10.1016/j.tifs.2020.11.018.
  • Czechowska-Biskup, R.; Rokita, B.; Lotfy, S.; Ulanski, P.; Rosiak, J. M. Degradation of Chitosan and Starch by 360-kHz Ultrasound. Carbohydr. Polym. 2005, 60(2), 175–184. DOI: 10.1016/j.carbpol.2004.12.001.
  • Awad, T. S.; Moharram, H. A.; Shaltout, O. E.; Asker, D.; Youssef, M. M. Applications of Ultrasound in Analysis, Processing and Quality Control of Food: A Review. Food Res. Int. 2012, 48(2), 410–427. DOI: 10.1016/j.foodres.2012.05.004.
  • Ogutu, F. O.; Mu, T.; Elahi, R.; Zhang, M.; Sun, H. Ultrasonic Modification of Selected Polysaccharides-Review. Journal of Food Processing & Technology. 2015, 06(05), 05. DOI: 10.4172/2157-7110.1000446.
  • Ansari, S. A.; Matricardi, P.; Cencetti, C.; Di Meo, C.; Carafa, M.; Mazzuca, C.; Palleschi, A.; Capitani, D.; Alhaique, F.; Coviello, T. Sonication-Based Improvement of the Physicochemical Properties of Guar Gum as a Potential Substrate for Modified Drug Delivery Systems. Biomed Res. Int. 2013, 2013, 1–11. DOI: 10.1155/2013/985259.
  • Iida, Y.; Tuziuti, T.; Yasui, K.; Towata, A.; Kozuka, T. Control of Viscosity in Starch and Polysaccharide Solutions with Ultrasound After Gelatinization. Innovative Food Science & Emerging Technologies. 2008, 9(2), 140–146. DOI: 10.1016/j.ifset.2007.03.029.
  • Haaj, S. B.; Magnin, A.; Petrier, C.; Boufi, S. Starch Nanoparticles Formation via High Power Ultrasonication. Carbohydr. Polym. 2013, 92(2), 1625–1632. DOI: 10.1016/j.carbpol.2012.11.022.
  • Di Caprio, F.; Altimari, P.; Pagnanelli, F. Ultrasound-Assisted Extraction of Carbohydrates from Microalgae. Chem. Eng. Trans. 2021, 86, 25–30. DOI: 10.3303/CET2186005.
  • Zhao, G. L.; Chen, X.; Wang, L.; Zhou, S. X.; Feng, H. X.; Chen, W. N.; Lau, R. Ultrasound Assisted Extraction of Carbohydrates from Microalgae as Feedstock for Yeast Fermentation. Bioresour. Technol. 2013, 128, 337–344. DOI: 10.1016/j.biortech.2012.10.038.
  • Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs. 2020, 18(3), 3. DOI: 10.3390/md18030172.
  • Eldalatony, M. M.; Kabra, A. N.; Hwang, J. H.; Govindwar, S. P.; Kim, K. H.; Kim, H.; Jeon, B. H. Pretreatment of Microalgal Biomass for Enhanced Recovery/Extraction of Reducing Sugars and Proteins. Bioprocess Biosyst. Eng. 2016, 39(1), 95–103. DOI: 10.1007/s00449-015-1493-5.
  • Bagade, S. B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51(2), 138–149. DOI: 10.1080/10408347.2019.1686966.
  • Wang, Z. Y.; Li, S. Y.; Ge, S. H.; Lin, S. L. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. J. Agric. Food Chem. 2020, 68(11), 3330–3343. DOI: 10.1021/acs.jafc.9b06574.
  • Das, P. R.; Islam, M. T.; Lee, S. H.; Lee, M. K.; Kim, J. B.; Eun, J. B. UPLC-DAD-QToF/ms Analysis of Green Tea Phenolic Metabolites in Their Free, Esterified, Glycosylated, and Cell Wall-Bound Forms by Ultra-Sonication, Agitation, and Conventional Extraction Techniques. LWT Food Sci. Technol. 2020, 127, 109440. DOI: 10.1016/j.lwt.2020.109440.
  • Sharma, R.; Rawat, P.; Singh, P.; Kanojiya, S.; Gupta, P. Statistical Optimization of Ultrasound Assisted Extraction of Free and Bound Phenolic Acids, Antioxidant and Antibacterial Activities and UPLC-MS/MS Characterization from Two Varieties of Eleusine Coracana. J. Food Meas. Charact. 2022, 16(3), 2086–2103. DOI: 10.1007/s11694-022-01336-y.
  • Ismail, B. B.; Guo, M. M.; Pu, Y. F.; Wang, W. J.; Ye, X. Q.; Liu, D. H. Valorisation of Baobab (Adansonia Digitata) Seeds by Ultrasound Assisted Extraction of Polyphenolics. Optimisation and Comparison with Conventional Methods. Ultrason. Sonochem. 2019, 52, 257–267. DOI: 10.1016/j.ultsonch.2018.11.023.
  • Awad, A. M.; Kumar, P.; Ismail-Fitry, M. R.; Jusoh, S.; Ab Aziz, M. F.; Sazili, A. Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants. 2021, 10(9), 1465. DOI: 10.3390/antiox10091465.
  • Mason, T. J.; Cobley, A. J.; Graves, J. E.; Morgan; Morgan, D. D. New Evidence for the Inverse Dependence of Mechanical and Chemical Effects on the Frequency of Ultrasound. Ultrason. Sonochem. 2011, 18(1), 226–230. DOI: 10.1016/j.ultsonch.2010.05.008.
  • Pingret, D.; Fabiano-Tixier, A. S.; Chemat, F. Ultrasound-Assisted Extraction. In Natural Product Extraction: Principles and Applications; Rostagno, M.A. and Prado, J.M., Eds.; Thomas Graham House, Science Park: Cambridge Cb4 4wf, Cambs, England, 2013; Vol. 21, pp. 89–112.
  • Bermudez-Aguirre, D. Sonochemistry of foods. In Ultrasound: Advances for Food Processing and Preservation, Bermudez-Aguirre, D., Ed.; London: Elsevier, 2017; pp 131–143.
  • Merouani, S.; Ferkous, H.; Hamdaoui, O.; Rezgui, Y.; Guemini, M. A Method for Predicting the Number of Active Bubbles in Sonochemical Reactors. Ultrason. Sonochem. 2015, 22, 51–58. DOI: 10.1016/j.ultsonch.2014.07.015.
  • SUSlick, K. S. Kirk-Othmer Encyclopedia of Chemical Technology. J. Wiley & Sons: New York. 1998, 26, 517–541.
  • Al-Dhabi, N. A.; Ponmurugan, K.; Jeganathan, P. M. Development and Validation of Ultrasound-Assisted Solid-Liquid Extraction of Phenolic Compounds from Waste Spent Coffee Grounds. Ultrason. Sonochem. 2017, 34, 206–213. DOI: 10.1016/j.ultsonch.2016.05.005.
  • Qiao, L. P.; Ye, X. Q.; Sun, Y. J.; Ying, J. Q.; Shen, Y.; Chen, J. C. Sonochemical Effects on Free Phenolic Acids Under Ultrasound Treatment in a Model System. Ultrason. Sonochem. 2013, 20(4), 1017–1025. DOI: 10.1016/j.ultsonch.2012.12.007.
  • Katsampa, P.; Valsamedou, E.; Grigorakis, S.; Makris, D. P. A Green Ultrasound-Assisted Extraction Process for the Recovery of Antioxidant Polyphenols and Pigments from Onion Solid Wastes Using Box-Behnken Experimental Design and Kinetics. Ind. Crops Prod. 2015, 77, 535–543. DOI: 10.1016/j.indcrop.2015.09.039.
  • Rawson, A.; Tiwari, B. K.; Patras, A.; Brunton, N.; Brennan, C.; Cullen, P. J.; O’Donnell, C. Effect of Thermosonication on Bioactive Compounds in Watermelon Juice. Food Res. Int. 2011, 44(5), 1168–1173. DOI: 10.1016/j.foodres.2010.07.005.
  • Che-Galicia, G.; Vaquiro-Herrera, H. A.; Sampieri, A.; Corona-Jimenez, E. Ultrasound-Assisted Extraction of Phenolic Compounds from Avocado Leaves (Persea Americana Mill. Var. Drymifolia): Optimization and Modeling. Int. J. Chem. Reactor Eng. 2020, 18, 7. DOI: 10.1515/ijcre-2020-0023.
  • Prasse, C.; Ford, B.; Nomura, D. K.; Sedlak, D. L. Unexpected Transformation of Dissolved Phenols to Toxic Dicarbonyls by Hydroxyl Radicals and UV Light. Proc. Natl. Acad. Sci. U. S. A. 2018, 115(10), 2311–2316. DOI: 10.1073/pnas.1715821115.
  • Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Role of Quinones in Toxicology. Chem. Res. Toxicol. 2000, 13(3), 135–160. DOI: 10.1021/tx9902082.
  • Wang, H. -Y.; Qian, H.; Yao, W. -R. Melanoidins Produced by the Maillard Reaction: Structure and Biological Activity. Food Chem. 2011, 128(3), 573–584. DOI: 10.1016/j.foodchem.2011.03.075.
  • Wang, J.; Ma, H.; Pan, Z.; Qu, W. Sonochemical Effect of Flat Sweep Frequency and Pulsed Ultrasound (FSFP) Treatment on Stability of Phenolic Acids in a Model System. Ultrason. Sonochem. 2017, 39, 707–715. DOI: 10.1016/j.ultsonch.2017.05.034.
  • Whittaker, M. H. Risk Assessment and Alternatives Assessment: Comparing Two Methodologies. Risk Anal. 2015, 35(12), 2129–2136. DOI: 10.1111/risa.12549.
  • St Flour, P. O.; Bokhoree, C. Sustainability Assessment Methodologies: Implications and Challenges for SIDS. Ecologies. 2021, 2(3), 285–304. DOI: 10.3390/ecologies2030016.
  • Balaman, Ş. Y. Sustainability issues in biomass-based production chains. In Decision-making for biomass-based production chains, Balaman, Ş. Y., Ed.; London: Academic Press Ltd-Elsevier Science Ltd, 2019; pp 77–112.
  • Stevens, C. SUSTAINABILITY ASSESSMENT METHODOLOGIES. OECD iLibrary, 2014. https://www.oecd.org/greengrowth/39925248.pdf ( accessed.
  • UNSDGs. 2030 Agenda for Sustainable Development. UNITED NATIONS, 2015. https://www.un.org/sustainabledevelopment/development-agenda/ ( accessed 2023 02/01/2023).
  • Rossi, M.; Tickner, J.; Geiser, K. Alternatives Assessment Framework. Lowell Center for Sustainable Production, Version. 2006, 1, 1–21.
  • Tickner, J. A.; Simon, R. V.; Jacobs, M.; Pollard, L. D.; van Bergen, S. K. The Nexus Between Alternatives Assessment and Green Chemistry: Supporting the Development and Adoption of Safer Chemicals. Green Chem. Lett. Rev. 2021, 14(1), 21–42. Review. DOI: 10.1080/17518253.2020.1856427.
  • Yeasmen, N.; Orsat, V.;Maximization of the Recovery of Phenolic Compounds from Sugar Maple Leaves. Biomass Conversion and Biorefinery. 2022, 1–16. DOI: 10.1007/s13399-022-02904-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.