442
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Cellulose-Based Coating for Tropical Fruits: Method, Characteristic and Functionality

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Ali, S.; Ullah, M. A.; Nawaz, A.; Naz, S.; Shah, A. A.; Gohari, G.; Razavi, F.; Khaliq, G.; Razzaq, K. Carboxymethyl Cellulose Coating Regulates Cell Wall Polysaccharides Disassembly and Delays Ripening of Harvested Banana Fruit. Postharvest. Biol. Technol. 2022, 191, 111978. DOI: 10.1016/J.POSTHARVBIO.2022.111978.
  • Md nor, S.; Ding, P. Trends and Advances in Edible Biopolymer Coating for Tropical Fruit: A Review. Food Res. Int. 2020, 134, 109208. DOI: 10.1016/J.FOODRES.2020.109208.
  • Flores-López, M. L.; Cerqueira, M. A.; Jasso De Rodríguez, D.; Vicente, A. A. Perspectives on Utilization of Edible Coatings and Nano-Laminate Coatings for Extension of Postharvest Storage of Fruits and Vegetables. Food Eng. Rev. 2016, 8(3), 292–305. DOI: https://doi.org/10.1007/s12393-015-9135-x.
  • Pham, T. T.; Nguyen, L. L. P.; Dam, M. S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering. 2023, 5(1), 520–536. DOI: 10.3390/AGRIENGINEERING5010034.
  • Chen, H.; Wang, J.; Cheng, Y.; Wang, C.; Liu, H.; Bian, H.; Pan, Y.; Sun, J.; Han, W. Polymers Application of Protein-Based Films and Coatings for Food Packaging: A Review. DOI:10.3390/polym11122039.
  • Bravin, B.; Peressini, D.; Sensidoni, A. Influence of Emulsifier Type and Content on Functional Properties of Polysaccharide Lipid-Based Edible Films. J. Agric. Food. Chem. 2004, 52(21), 6448–6455. DOI: 10.1021/JF040065B.
  • Cazón, P.; Velazquez, G.; Ramírez, J. A.; Vázquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. DOI: 10.1016/J.FOODHYD.2016.09.009.
  • Fernandes, S. C. M.; Freire, C. S. R.; Silvestre, A. J. D.; Pascoal Neto, C.; Gandini, A. Novel Materials Based on Chitosan and Cellulose. Polym. Int. 2011, 60(6), 875–882. DOI: 10.1002/PI.3024.
  • Nechita, P.; Iana-Roman, M. R. Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings. 2020, 10(6), 566. DOI: 10.3390/COATINGS10060566.
  • Merino, D.; Mansilla, A. Y.; Gutiérrez, T. J.; Casalongué, C. A.; Alvarez, V. A. Chitosan Coated-Phosphorylated Starch Films: Water Interaction, Transparency and Antibacterial Properties. React. Funct. Polym. 2018, 131, 445–453. DOI: 10.1016/J.REACTFUNCTPOLYM.2018.08.012.
  • Kamel, S.; Khattab, T. A. Recent Advances in Cellulose Supported Metal Nanoparticles as Green and Sustainable Catalysis for Organic Synthesis. Cellulose. 2021, 28(8), 4545–4574. DOI: 10.1007/s10570-021-03839-1.
  • Wang, Y.; Zhang, J.; Wang, D.; Wang, X.; Zhang, F.; Chang, D.; You, C.; Zhang, S.; Wang, X. Effects of Cellulose Nanofibrils Treatment on Antioxidant Properties and Aroma of Fresh-Cut Apples. Food Chem. 2023, 415, 415. DOI: 10.1016/J.FOODCHEM.2023.135797.
  • Ali, S.; Anjum, M. A.; Ejaz, S.; Hussain, S.; Ercisli, S.; Saleem, M. S.; Sardar, H. Carboxymethyl Cellulose Coating Delays Chilling Injury Development and Maintains Eating Quality of ‘Kinnow’ Mandarin Fruits During Low Temperature Storage. Int. J. Biol. Macromol. 2021, 168, 77–85. DOI: 10.1016/J.IJBIOMAC.2020.12.028.
  • Saowakon, K.; Deewatthanawong, R.; Khurnpoon, L. Effect of Carboxymethyl Cellulose as Edible Coating on Postharvest Quality of Rambutan Fruit Under Ambient Temperature. International Journal of Agricultural Technology. 2017, 13(1), 1449–1457.
  • Sousa, F. F.; Pinsetta Junior, J. S.; Oliveira, K. T. E. F.; Rodrigues, E. C. N.; Andrade, J. P.; Mattiuz, B. H. Conservation of ‘Palmer’ Mango with an Edible Coating of Hydroxypropyl Methylcellulose and Beeswax. Food Chem. 2021, 346, 128925. DOI: 10.1016/J.FOODCHEM.2020.128925.
  • Pham, T. T.; Le, L.; Nguyen, P.; Dam, M. S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering. 2023, 5(1), 520–536. DOI: 10.3390/AGRIENGINEERING5010034.
  • Bahmid, N. A.; Syamsu, K.; Maddu, A. Pengaruh Ukuran Serat Selulosa Asetat Dan Penambahan Dietilen Glikol (DEG) Terhadap Sifat Fisik Dan Mekanik Bioplastik. Jurnal Teknologi Industri Pertanian. 2014, 24(3), 226–234.
  • Sapper, M.; Chiralt, A. Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings. 2018, 8(5), 152. DOI: 10.3390/COATINGS8050152.
  • Parreidt, T. S.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods. 2018, 7(10), 170. DOI: 10.3390/FOODS7100170.
  • Formiga, A. S.; Pinsetta, J. S.; Pereira, E. M.; Cordeiro, I. N. F.; Mattiuz, B. H. Use of Edible Coatings Based on Hydroxypropyl Methylcellulose and Beeswax in the Conservation of Red Guava ‘Pedro Sato. Food Chem. 2019, 290, 144–151. DOI: 10.1016/J.FOODCHEM.2019.03.142.
  • Bahmid, N.A.; Syamsu, K.; Maddu, A. Production of Cellulose Acetate from Oil Palm Empty Fruit Bunches Cellulose. Chemical and Process Engineering Research. 2013, 17. https://www.iiste.org/Journals/index.php/CPER/article/view/9396
  • Xu, Y.; Li, Q.; Man, L. Bamboo-Derived Carboxymethyl Cellulose for Liquid Film as Renewable and Biodegradable Agriculture Mulching. Int. J. Biol. Macromol. 2021, 192, 611–617. DOI: 10.1016/J.IJBIOMAC.2021.09.152.
  • Kassab, Z.; Kassem, I.; Hannache, H.; Bouhfid, R.; Qaiss, A. E. K.; el Achaby, M. Tomato Plant Residue as New Renewable Source for Cellulose Production: Extraction of Cellulose Nanocrystals with Different Surface Functionalities. Cellulose. 2020, 27(8), 4287–4303. DOI: 10.1007/s10570-020-03097-7.
  • Windarsih, A.; Indrianingsih, A. W.; Maryana, R.; Apriyana, W.; Rosyida, V. T.; Nurhayati, S.; Jatmiko, T. H.; Ratih, D.; Suwanto, A. Gold Modified Bacterial Cellulose from Coconut Water Waste and Its Antibacterial Activity. Waste Biomass Valorization. 2022, 1(10), 1–8. DOI: 10.1007/S12649-022-01769-Y/TABLES/2.
  • Benito-González, I.; López-Rubio, A.; Gómez-Mascaraque, L. G.; Martínez-Sanz, M. PLA Coating Improves the Performance of Renewable Adsorbent Pads Based on Cellulosic Aerogels from Aquatic Waste Biomass. Chem. Eng. J. 2020, 390, 124607. DOI: 10.1016/J.CEJ.2020.124607.
  • Vincent, S.; Kandasubramanian, B. Cellulose Nanocrystals from Agricultural Resources: Extraction and Functionalisation. Eur. Polym. J. 2021, 160, 110789. DOI: 10.1016/J.EURPOLYMJ.2021.110789.
  • Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends Food Sci. Technol. 2021, 112, 532–546. DOI: 10.1016/J.TIFS.2021.04.016.
  • Shokri, J.; Adibkia, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. Cellulose - Medical, Pharmaceutical and Electronic Applications. 2013. DOI: 10.5772/55178.
  • Zhao, X.; Anwar, I.; Zhang, X.; Pellicciotti, A.; Storts, S.; Nagib, D. A.; Vodovotz, Y. Thermal and Barrier Characterizations of Cellulose Esters with Variable Side-Chain Lengths and Their Effect on PHBV and PLA Bioplastic Film Properties. ACS Omega. 2021, 6(38), 24700–24708. DOI: 10.1021/acsomega.1c03446.
  • Li, T.; Liu, R.; Zhang, C.; Meng, F.; Wang, L. Developing a Green Film from Locust Bean Gum/Carboxycellulose Nanocrystal for Fruit Preservation. Future Foods. 2021, 4, 100072. DOI: 10.1016/J.FUFO.2021.100072.
  • Das, S. K.; Vishakha, K.; Das, S.; Chakraborty, D.; Ganguli, A. Carboxymethyl Cellulose and Cardamom Oil in a Nanoemulsion Edible Coating Inhibit the Growth of Foodborne Pathogens and Extend the Shelf Life of Tomatoes. Biocatal Agric. Biotechnol. 2022, 42, 102369. DOI: 10.1016/J.BCAB.2022.102369.
  • Deng, Z.; Jung, J.; Simonsen, J.; Zhao, Y. Cellulose Nanocrystals Pickering Emulsion Incorporated Chitosan Coatings for Improving Storability of Postharvest Bartlett Pears (Pyrus Communis) During Long-Term Cold Storage. Food Hydrocoll. 2018, 84, 229–237. DOI: 10.1016/J.FOODHYD.2018.06.012.
  • Menezes, D. B.; Diz, F. M.; Romanholo Ferreira, L. F.; Corrales, Y.; Baudrit, J. R. V.; Costa, L. P.; Hernández-Macedo, M. L. Starch-Based Biocomposite Membrane Reinforced by Orange Bagasse Cellulose Nanofibers Extracted from Ionic Liquid Treatment. Cellulose. 2021, 28(7), 4137–4149. DOI: 10.1007/s10570-021-03814-w.
  • Ahenkorah, C. K.; Zaitoon, A.; Apalangya, V. A.; Afrane, G.; Lim, L. T. Moisture-Activated Release of Hexanal from Imidazolidine Precursor Encapsulated in Ethylcellulose/Poly(ethylene Oxide) Nonwoven for Shelf-Life Extension of Papaya. Food Packag. Shelf Life. 2020, 25, 100532. DOI: 10.1016/J.FPSL.2020.100532.
  • Sun, N.; Wang, T.; Yan, X. Synthesis and Investigation of a Self-Assembled Hydrogel Based on Hydroxyethyl Cellulose and Its in vitro Ibuprofen Drug Release Characteristics. R.S.C. Adv. 2017, 7(16), 9500–9511. DOI: 10.1039/C6RA25355E.
  • Suma, S. B.; Sangappa, Y. Optical, Mechanical and Electrical Properties of HPMC-AuNPs Nanocomposite Films. Mater. Today Proc. 2022, 66, 2075–2079. DOI: 10.1016/J.MATPR.2022.05.499.
  • Moslehi, Z.; Garmakhany, A. D.; Araghi, M.; Moslehi, M. Effect of Methyl Cellulose Coating on Physicochemical Properties, Porosity, and Surface Diameter of Pistachio Hull. Food Sci. Nutr. 2015, 3(4), 355–361. DOI: 10.1002/FSN3.227.
  • Shankar, S.; Rhim, J. W. Preparation of Nanocellulose from Micro-Crystalline Cellulose: The Effect on the Performance and Properties of Agar-Based Composite Films. Carbohydr. Polym. 2016, 135, 18–26. DOI: 10.1016/J.CARBPOL.2015.08.082.
  • Ghosh, T.; Hazarika, D.; Katiyar, V. Cellulose-Based Nanostructured Materials in Edible Food Packaging. 2021, pp. 65–100. doi:10.1007/978-981-33-6169-0_3
  • Pradhan, D.; Jaiswal, A. K.; Jaiswal, S. Emerging Technologies for the Production of Nanocellulose from Lignocellulosic Biomass. Carbohydr. Polym. 2022, 285, 119258. DOI: 10.1016/J.CARBPOL.2022.119258.
  • Prasetyo, D. J.; Fitriana, N. E.; Rizal, W. A.; Hernawan; Jatmiko, T. H.; Pratiwi, D.; Praharasti, A. S.; Maryana, R.; Anwar, M.; Suryani, R., et al. Utilization of Peroxide Bleached Sugar Palm (Arenga Pinnata) Fibre Waste into Cellulose Nano Crystal. Jurnal Riset Teknologi Pencegahan Pencemaran Industri. 2022, 13(1), 35–42.
  • Yu, K.; Zhou, L.; Xu, J.; Jiang, F.; Zhong, Z.; Zou, L.; Liu, W. Carboxymethyl Cellulose-Based Water Barrier Coating Regulated Postharvest Quality and ROS Metabolism of Pakchoi (Brassica Chinensis L.). Postharvest. Biol. Technol. 2022, 185, 111804. DOI: 10.1016/J.POSTHARVBIO.2021.111804.
  • Liu, C.; Jin, T.; Liu, W.; Hao, W.; Yan, L.; Zheng, L. Effects of Hydroxyethyl Cellulose and Sodium Alginate Edible Coating Containing Asparagus Waste Extract on Postharvest Quality of Strawberry Fruit. LWT. 2021, 148, 111770. DOI: 10.1016/J.LWT.2021.111770.
  • Arnon, H.; Zaitsev, Y.; Porat, R.; Poverenov, E. Effects of Carboxymethyl Cellulose and Chitosan Bilayer Edible Coating on Postharvest Quality of Citrus Fruit. Postharvest. Biol. Technol. 2014, 87, 21–26. DOI: 10.1016/J.POSTHARVBIO.2013.08.007.
  • Osorio, F. A.; Molina, P.; Matiacevich, S.; Enrione, J.; Skurtys, O. Characteristics of Hydroxy Propyl Methyl Cellulose (HPMC) Based Edible Film Developed for Blueberry Coatings. Procedia Food Sci. 2011, 1, 287–293. DOI: 10.1016/j.profoo.2011.09.045.
  • Hussain, P. R.; Meena, R. S.; Dar, M. A.; Wani, A. M. Carboxymethyl Cellulose Coating and Low-Dose Gamma Irradiation Improves Storage Quality and Shelf Life of Pear (Pyrus Communis L., Cv. Bartlett/William). J. Food Sci. 2010, 75(9), M586–596. DOI: 10.1111/J.1750-3841.2010.01868.X.
  • de Aquino, A. B.; Blank, A. F.; de Aquino Santana, L. C. L. Impact of Edible Chitosan-Cassava Starch Coatings Enriched with Lippia Gracilis Schauer Genotype Mixtures on the Shelf Life of Guavas (Psidium Guajava L.) During Storage at Room Temperature. Food Chem. 2015, 171, 108–116. DOI: 10.1016/J.FOODCHEM.2014.08.077.
  • Mousavi Khaneghah, A.; Hashemi, S. M. B.; Limbo, S. Antimicrobial Agents and Packaging Systems in Antimicrobial Active Food Packaging: An Overview of Approaches and Interactions. Food Bioprod. Process. 2018, 111, 1–19. DOI: 10.1016/J.FBP.2018.05.001.
  • Cherian, R. M.; Tharayil, A.; Varghese, R. T.; Antony, T.; Kargarzadeh, H.; Chirayil, C. J.; Thomas, S. A Review on the Emerging Applications of Nano-Cellulose as Advanced Coatings. Carbohydr. Polym. 2022, 282, 119123. DOI: 10.1016/J.CARBPOL.2022.119123.
  • Xie, Y.; Pan, Y.; Cai, P. Cellulose-Based Antimicrobial Films Incroporated with ZnO Nanopillars on Surface as Biodegradable and Antimicrobial Packaging. Food Chem. 2022, 368, 130784. DOI: 10.1016/J.FOODCHEM.2021.130784.
  • Zhang, C.; Chi, W.; Meng, F.; Wang, L. Fabricating an Anti-Shrinking κ-Carrageenan/sodium Carboxymethyl Starch Film by Incorporating Carboxylated Cellulose Nanofibrils for Fruit Preservation. Int. J. Biol. Macromol. 2021, 191, 706–713. DOI: 10.1016/J.IJBIOMAC.2021.09.134.
  • Cui, K.; Shu, C.; Zhao, H.; Fan, X.; Cao, J.; Jiang, W. Preharvest Chitosan Oligochitosan and Salicylic Acid Treatments Enhance Phenol Metabolism and Maintain the Postharvest Quality of Apricots (Prunus Armeniaca L.). Sci. Hortic. 2020, 267, 267. DOI: 10.1016/J.SCIENTA.2020.109334.
  • Ozturk, B.; Bektas, E.; Aglar, E.; Karakaya, O.; Gun, S. Cracking and Quality Attributes of Jujube Fruits as Affected by Covering and Pre-Harvest Parka and GA3 Treatments. Sci. Hortic. 2018, 240, 65–71. DOI: 10.1016/J.SCIENTA.2018.06.004.
  • Li, Z.; Xu, X.; Xue, S.; Gong, D.; Wang, B.; Zheng, X.; Xie, P.; Bi, Y.; Prusky, D. Preharvest Multiple Sprays with Chitosan Promotes the Synthesis and Deposition of Lignin at Wounds of Harvested Muskmelons. Int. J. Biol. Macromol. 2022, 206, 167–174. DOI: 10.1016/J.IJBIOMAC.2022.02.130.
  • Tagele, A.; Woldetsadik, K.; Gedamu, F.; Rafi, M. M. Effects of Preharvest Applications of Chemicals and Storage Conditions on the Physico-Chemical Characteristics and Shelf Life of Tomato (Solanum Lycopersicum L.) Fruit. Heliyon. 2022, 8(6), e09494. DOI: 10.1016/J.HELIYON.2022.E09494.
  • Tezotto-Uliana, J. V.; Fargoni, G. P.; Geerdink, G. M.; Kluge, R. A. Chitosan Applications Pre- or Postharvest Prolong Raspberry Shelf-Life Quality. Postharvest. Biol. Technol. 2014, 91, 72–77. DOI: 10.1016/J.POSTHARVBIO.2013.12.023.
  • Saavedra, G. M.; Figueroa, N. E.; Poblete, L. A.; Cherian, S.; Figueroa, C. R. Effects of Preharvest Applications of Methyl Jasmonate and Chitosan on Postharvest Decay, Quality and Chemical Attributes of Fragaria Chiloensis Fruit. Food Chem. 2016, 190, 448–453. DOI: 10.1016/J.FOODCHEM.2015.05.107.
  • Jose, A.; Pareek, S.; Radhakrishnan, E. K. Advances in Edible Fruit Coating Materials. Advances in Agri-Food Biotechnology. 2020, 391–408. DOI:10.1007/978-981-15-2874-3_15.
  • Du, Y.; Yang, F.; Yu, H.; Yao, W.; Xie, Y. Controllable Fabrication of Edible Coatings to Improve the Match Between Barrier and Fruits Respiration Through Layer-By-Layer Assembly. Food Bioproc. Tech. 2022, 15(8), 1778–1793. DOI: 10.1007/s11947-022-02848-7.
  • Kwak, H.; Shin, S.; Kim, J.; Kim, J.; Lee, D.; Lee, H.; Lee, E. J.; Hyun, J. Protective Coating of Strawberries with Cellulose Nanofibers. Carbohydr. Polym. 2021, 258, 117688. DOI: 10.1016/J.CARBPOL.2021.117688.
  • Cisneros-Zevallos, L.; Krochta, J. M. Dependence of Coating Thickness on Viscosity of Coating Solution Applied to Fruits and Vegetables by Dipping Method. J. Food Sci. 2003, 68(2), 503–510. DOI: 10.1111/J.1365-2621.2003.TB05702.X.
  • Goksen, G.; Nisha, P.; Ibrahim Ekiz, H. Electrospinning Technology: Its Process Conditions and Food Packaging Applications. 2022, 447–468. 10.1007/978-3-030-92415-7_12.
  • Khan, M. K. I.; Cakmak, H.; Tavman, Ş.; Schutyser, M.; Schroën, K. Anti-Browning and Barrier Properties of Edible Coatings Prepared with Electrospraying. Innovative Food Science & Emerging Technologies. 2014, 25(C), 9–13. DOI: 10.1016/J.IFSET.2013.10.006.
  • Panahirad, S.; Dadpour, M.; Peighambardoust, S. H.; Soltanzadeh, M.; Gullón, B.; Alirezalu, K.; Lorenzo, J. M. Applications of Carboxymethyl Cellulose- and Pectin-Based Active Edible Coatings in Preservation of Fruits and Vegetables: A Review. Trends Food Sci. Technol. 2021, 110, 663–673. DOI: 10.1016/J.TIFS.2021.02.025.
  • Salama, H. E.; Abdel Aziz, M. S.; Alsehli, M. Carboxymethyl Cellulose/Sodium Alginate/Chitosan Biguanidine Hydrochloride Ternary System for Edible Coatings. Int. J. Biol. Macromol. 2019, 139, 614–620. DOI: 10.1016/J.IJBIOMAC.2019.08.008.
  • Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R. R.; Hashemi, M.; Coma, V. Preparation and Characterization of Active Emulsified Films Based on Chitosan-Carboxymethyl Cellulose Containing Zinc Oxide Nano Particles. Int. J. Biol. Macromol. 2017, 99, 530–538. DOI: 10.1016/J.IJBIOMAC.2017.03.007.
  • El-Sayed, H. S.; El-Sayed, S. M.; Mabrouk, A. M. M.; Nawwar, G. A.; Youssef, A. M. Development of Eco-Friendly Probiotic Edible Coatings Based on Chitosan, Alginate and Carboxymethyl Cellulose for Improving the Shelf Life of UF Soft Cheese. J Polym. Environ. 2021, 29(6), 1941–1953. DOI: 10.1007/s10924-020-02003-3.
  • Francisco, C. B.; Pellá, M. G.; Silva, O. A.; Raimundo, K. F.; Caetano, J.; Linde, G. A.; Colauto, N. B.; Dragunski, D. C. Shelf-Life of Guavas Coated with Biodegradable Starch and Cellulose-Based Films. Int. J. Biol. Macromol. 2020, 152, 272–279. DOI: 10.1016/J.IJBIOMAC.2020.02.249.
  • López de Dicastillo, C.; Bustos, F.; Guarda, A.; Galotto, M. J. Crosslinked Methyl Cellulose Films with Murta Fruit Extract for Antioxidant and Antimicrobial Active Food Packaging. Food Hydrocoll. 2016, 60, 335–344. DOI: 10.1016/J.FOODHYD.2016.03.020.
  • Moreira, B. R.; Pereira-Júnior, M. A.; Fernandes, K. F.; Batista, K. A. An Ecofriendly Edible Coating Using Cashew Gum Polysaccharide and Polyvinyl Alcohol. Food Biosci. 2020, 37, 100722. DOI: 10.1016/J.FBIO.2020.100722.
  • Xie, Y.; Niu, X.; Yang, J.; Fan, R.; Shi, J.; Ullah, N.; Feng, X.; Chen, L. Active Biodegradable Films Based on the Whole Potato Peel Incorporated with Bacterial Cellulose and Curcumin. Int. J. Biol. Macromol. 2020, 150, 480–491. DOI: 10.1016/j.ijbiomac.2020.01.291.
  • Dashipour, A.; Razavilar, V.; Hosseini, H.; Shojaee-Aliabadi, S.; German, J. B.; Ghanati, K.; Khakpour, M.; Khaksar, R. Antioxidant and Antimicrobial Carboxymethyl Cellulose Films Containing Zataria Multiflora Essential Oil. Int. J. Biol. Macromol. 2015, 72, 606–613. DOI: 10.1016/J.IJBIOMAC.2014.09.006.
  • Mir, S. A.; Dar, B. N.; Wani, A. A.; Shah, M. A. Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends Food Sci. Technol. 2018, 80, 141–154. DOI: 10.1016/J.TIFS.2018.08.004.
  • Seyedi, S.; Koocheki, A.; Mohebbi, M.; Zahedi, Y. Lepidium Perfoliatum Seed Gum: A New Source of Carbohydrate to Make a Biodegradable Film. Carbohydr. Polym. 2014, 101(1), 349–358. DOI: 10.1016/J.CARBPOL.2013.09.072.
  • Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Kandasamy, S. Modeling and Analysis of Film Composition on Mechanical Properties of Maize Starch Based Edible Films. Int. J. Biol. Macromol. 2013, 62, 565–573. DOI: 10.1016/J.IJBIOMAC.2013.09.027.
  • Ma, Q.; Hu, D.; Wang, L. Preparation and Physical Properties of Tara Gum Film Reinforced with Cellulose Nanocrystals. Int. J. Biol. Macromol. 2016, 86, 606–612. DOI: 10.1016/J.IJBIOMAC.2016.01.104.
  • Harnkarnsujarit, N.; Li, Y. Structure–Property Modification of Microcrystalline Cellulose Film Using Agar and Propylene Glycol Alginate. J. Appl. Polym. Sci. 2017, 134(47), 45533. DOI: 10.1002/APP.45533.
  • Martins, J. T.; Cerqueira, M. A.; Vicente, A. A. Influence of α-Tocopherol on Physicochemical Properties of Chitosan-Based Films. Food Hydrocoll. 2012, 27(1), 220–227. DOI: 10.1016/J.FOODHYD.2011.06.011.
  • Fakhouri, F. M.; Tanada-Palmu, P. S.; Grosso, C. R. F. Characterization of Composite Biofilms of Wheat Gluten and Cellulose Acetate Phthalate. Braz. J. Chem. Eng. 2004, 21(2), 261–264. DOI: 10.1590/S0104-66322004000200016.
  • Thakhiew, W.; Devahastin, S.; Soponronnarit, S. Physical and Mechanical Properties of Chitosan Films as Affected by Drying Methods and Addition of Antimicrobial Agent. J. Food Eng. 2013, 119(1), 140–149. DOI: 10.1016/j.jfoodeng.2013.05.020.
  • Ezati, P.; Rhim, J. W.; Molaei, R.; Priyadarshi, R.; Han, S. Cellulose Nanofiber-Based Coating Film Integrated with Nitrogen-Functionalized Carbon Dots for Active Packaging Applications of Fresh Fruit. Postharvest. Biol. Technol. 2022, 186, 111845. DOI: 10.1016/J.POSTHARVBIO.2022.111845.
  • Indrianingsih, A. W.; Rosyida, V. T.; Jatmiko, T. H.; Prasetyo, D. J.; Poeloengasih, C. D.; Apriyana, W.; Nisa, K.; Nurhayati, S.; Hernawan; Darsih, C., et al. Preliminary Study on Biosynthesis and Characterization of Bacteria Cellulose Films from Coconut Water. IOP Conf. Ser. Earth Environ. Sci. 2017, 101(1), 012010.
  • Suntini; Indrianingsih, A. W.; Suntini, S.; Harjono, H. Harjono. NOVEL COMPOSITE of SILVER-BACTERIAL CELLULOSE (Ag-BC) from SIWALAN SAP (Borassus Flabellifer) and ITS ANTIBACTERIAL ACTIVITY. J Teknol. 2020, 83(1), 19–25. DOI: 10.11113/JURNALTEKNOLOGI.V83.14363.
  • Choi, I.; Chang, Y.; Shin, S. H.; Joo, E.; Song, H. J.; Eom, H.; Han, J. Development of Biopolymer Composite Films Using a Microfluidization Technique for Carboxymethylcellulose and Apple Skin Particles. Int. J. Mol. Sci. 2017, 18(6), 1278. DOI: 10.3390/IJMS18061278.
  • Xie, B.; Zhang, X.; Luo, X.; Wang, Y.; Li, Y.; Li, B.; Liu, S. Edible Coating Based on Beeswax-In-Water Pickering Emulsion Stabilized by Cellulose Nanofibrils and Carboxymethyl Chitosan. Food Chem. 2020, 331, 127108. DOI: 10.1016/J.FOODCHEM.2020.127108.
  • Bahmid, N. A.; Dekker, M.; Fogliano, V.; Heising, J. Development of a Moisture-Activated Antimicrobial Film Containing Ground Mustard Seeds and Its Application on Meat in Active Packaging System. Food Packag. Shelf Life. 2021, 30, 100753. DOI: 10.1016/J.FPSL.2021.100753.
  • Siddiqui, S. A.; Bahmid, N. A.; Taha, A.; Khalifa, I.; Khan, S.; Rostamabadi, H.; Jafari, S. M.;Recent Advances in Food Applications of Phenolic-Loaded Micro/Nanodelivery Systems. Crit. Rev. Food Sci. Nutr. 2022, 1–21. DOI: 10.1080/10408398.2022.2056870.
  • Zaitoon, A.; Luo, X.; Lim, L. -T. Triggered and Controlled Release of Active Gaseous/Volatile Compounds for Active Packaging Applications of Agri-Food Products: A Review. Compr. Rev. Food Sci. Food Saf. 2021, n/a(1), 541–579. DOI: 10.1111/1541-4337.12874.
  • Greenblatt, H. C.; Dombroski, M.; Klishevich, W.; Kirkpatrick, J.; Bajwa, I.; Garrison, W.; Redding, B. K. Encapsulation and Controlled Release of Flavours and Fragrances. In Encapsulation and Controlled Release; Karsa, D.R. and Stephenson, R.A., Eds.; Woodhead Publishing, 2005; pp. 148–162. DOI: 10.1533/9781845698218.148.
  • Zaitoon, A.; Lim, L. T. Triggered and Controlled Release of Bioactives in Food Applications. Adv. Food Nutr. Res. 2022, 100, 49–107. DOI: 10.1016/BS.AFNR.2022.03.002.
  • Zillo, R. R.; da Silva, P. P. M.; de Oliveira, J.; da Glória, E. M.; Spoto, M. H. F. Carboxymethylcellulose Coating Associated with Essential Oil Can Increase Papaya Shelf Life. Sci. Hortic. 2018, 239, 70–77. DOI: 10.1016/J.SCIENTA.2018.05.025.
  • Shahbazi, Y. Application of Carboxymethyl Cellulose and Chitosan Coatings Containing Mentha Spicata Essential Oil in Fresh Strawberries. Int. J. Biol. Macromol. 2018, 112, 264–272. DOI: 10.1016/J.IJBIOMAC.2018.01.186.
  • Tesfay, S. Z.; Magwaza, L. S. Evaluating the Efficacy of Moringa Leaf Extract, Chitosan and Carboxymethyl Cellulose as Edible Coatings for Enhancing Quality and Extending Postharvest Life of Avocado (Persea Americana Mill.) Fruit. Food Packag. Shelf Life. 2017, 11, 40–48. DOI: 10.1016/J.FPSL.2016.12.001.
  • Kim, J.; Choi, J. Y.; Kim, J.; Moon, K. D. Effect of Edible Coating with Morus Alba Root Extract and Carboxymethyl Cellulose for Enhancing the Quality and Preventing the Browning of Banana (Musa Acuminata Cavendish) During Storage. Food Packag. Shelf Life. 2022, 31, 100809. DOI: 10.1016/J.FPSL.2022.100809.
  • Dong, F.; Wang, X. Effects of Carboxymethyl Cellulose Incorporated with Garlic Essential Oil Composite Coatings for Improving Quality of Strawberries. Int. J. Biol. Macromol. 2017, 104, 821–826. DOI: 10.1016/J.IJBIOMAC.2017.06.091.
  • Wardana, A. A.; Koga, A.; Tanaka, F.; Tanaka, F. Antifungal Features and Properties of Chitosan/Sandalwood Oil Pickering Emulsion Coating Stabilized by Appropriate Cellulose Nanofiber Dosage for Fresh Fruit Application. Sci. Rep. 2021, 11(1), 1–15. DOI: 10.1038/s41598-021-98074-w.
  • Miranda, M.; Sun, X.; Marín, A.; dos Santos, L. C.; Plotto, A.; Bai, J.; Benedito Garrido Assis, O.; David Ferreira, M.; Baldwin, E. Nano- and Micro-Sized Carnauba Wax Emulsions-Based Coatings Incorporated with Ginger Essential Oil and Hydroxypropyl Methylcellulose on Papaya: Preservation of Quality and Delay of Postharvest Fruit Decay. Food Chem X. 2022, 13, 100249. DOI: 10.1016/J.FOCHX.2022.100249.
  • Klangmuang, P.; Sothornvit, R. Active Coating from Hydroxypropyl Methylcellulose-Based Nanocomposite Incorporated with Thai Essential Oils on Mango (Cv. Namdokmai Sithong). Food Biosci. 2018, 23, 9–15. DOI: 10.1016/J.FBIO.2018.02.012.
  • Zhang, D. Y.; Yang, J. X.; Liu, E. J.; Hu, R. Z.; Yao, X. H.; Chen, T.; Zhao, W. G.; Liu, L.; Fu, Y. J. Soft and Elastic Silver Nanoparticle-Cellulose Sponge as Fresh-Keeping Packaging to Protect Strawberries from Physical Damage and Microbial Invasion. Int. J. Biol. Macromol. 2022, 211, 470–480. DOI: 10.1016/J.IJBIOMAC.2022.05.092.
  • Potma da Silva, E. L.; de Carvalho, T. C.; Antonio Ayub, R.; Menezes de Almeida, M. C. Blackberry Extend Shelf Life by Nanocellulose and Vegetable Oil Coating. Horticulture International Journal. 2020, 4(Issue 2), 54–60. DOI: 10.15406/HIJ.2020.04.00158.
  • Ariyanto, H. D.; Chiba, M.; Oguma, K.; Tatsuki, M.; Yoshii, H. Release Behavior of 1-Methylcylopropene Coated Paper-Based Shellac Solution in Response to Stepwise Humidity Changes to Develop Novel Functional Packaging for Fruit. Packag. Technol. Sci. 2019, 32(10), 523–533. DOI: 10.1002/PTS.2468.
  • Malekjani, N.; Jafari, S. M. Modeling the Release of Food Bioactive Ingredients from Carriers/Nanocarriers by the Empirical, Semiempirical, and Mechanistic Models. Compr. Rev. Food Sci. Food Saf. 2021, 20(1), 3–47. DOI: 10.1111/1541-4337.12660.
  • Bahmid, N. A.; Pepping, L.; Dekker, M.; Fogliano, V.; Heising, J. Using Particle Size and Fat Content to Control the Release of Allyl Isothiocyanate from Ground Mustard Seeds for Its Application in Antimicrobial Packaging. Food Chem. 2020, 308, 125573. DOI: 10.1016/j.foodchem.2019.125573.
  • Bahmid, N. A.; Heising, J.; Fogliano, V.; Dekker, M. Packaging Design Using Mustard Seeds as a Natural Antimicrobial: A Study on Inhibition of Pseudomonas Fragi in Liquid Medium. Foods. 2020, 9(6), 6. DOI: https://doi.org/10.3390/foods9060789.
  • Sharma, S.; Barkauskaite, S.; Jaiswal, A. K.; Jaiswal, S. Essential Oils as Additives in Active Food Packaging. Food Chem. 2021, 343, 128403. DOI: 10.1016/J.FOODCHEM.2020.128403.
  • Kulangara, N.; Sukumaran, S. T. Cellulose. Biomass, Biofuels, Biochemicals: Biodegradable Polymers and Composites - Process Engineering to Commercialization. 2021, 53–73. 10.1016/B978-0-12-821888-4.00017-4.
  • Lazim, N. A. M.; Salehudin, M. H.; Muhamad, I. I. Cellulose Nanofibers/Polylactic Acid Based Biocomposites for Packaging Applications. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications. 2021, 101–112. DOI:10.1016/B978-0-12-819953-4.00011-2.
  • Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G. M.; Kenny, J. M.; Puglia, D. Synergic Effect of Cellulose and Lignin Nanostructures in PLA Based Systems for Food Antibacterial Packaging. Eur. Polym. J. 2016, 79, 1–12. DOI: 10.1016/J.EURPOLYMJ.2016.04.003.
  • Toǧrul, H.; Arslan, N. Extending Shelf-Life of Peach and Pear by Using CMC from Sugar Beet Pulp Cellulose as a Hydrophilic Polymer in Emulsions. Food Hydrocoll. 2004, 18(2), 215–226. DOI: 10.1016/S0268-005X(03)00066-3.
  • Senna, M. M. H.; Al-Shamrani, K. M.; Al-Arifi, A. S. Edible Coating for Shelf-Life Extension of Fresh Banana Fruit Based on Gamma Irradiated Plasticized Poly(vinyl Alcohol)/Carboxymethyl Cellulose/Tannin Composites. Mater. Sci. Appl. 2014, 05(06), 395–415. DOI: 10.4236/msa.2014.56045.
  • da Silva, I. S. V.; Prado, N. S.; de Melo, P. G.; Arantes, D. C.; Andrade, M. Z.; Otaguro, H.; Pasquini, D. Edible Coatings Based on Apple Pectin, Cellulose Nanocrystals, and Essential Oil of Lemongrass: Improving the Quality and Shelf Life of Strawberries (Fragaria Ananassa). J Renew Mater. 2019, 7(1), 73–87. DOI: 10.32604/jrm.2019.00042.
  • Karaca, H.; Pérez-Gago, M. B.; Taberner, V.; Palou, L. Evaluating Food Additives as Antifungal Agents Against Monilinia Fructicola in vitro and in Hydroxypropyl Methylcellulose–Lipid Composite Edible Coatings for Plums. Int. J. Food Microbiol. 2014, 179, 72–79. DOI: 10.1016/J.IJFOODMICRO.2014.03.027.
  • Ranjha, M. M. A. N.; Irfan, S.; Nadeem, M.; Mahmood, S. A Comprehensive Review on Nutritional Value, Medicinal Uses, and Processing of Banana. Food Reviews International. 2020, 38(2), 199–225. DOI: 10.1080/87559129.2020.1725890.
  • Vicente, A. R.; Manganaris, G. A.; Darre, M.; Ortiz, C. M.; Sozzi, G. O.; Crisosto, C. H. Compositional Determinants of Fruit and Vegetable Quality and Nutritional Value. Postharvest Handling: A Systems Approach. 2022, 565–619. DOI:10.1016/B978-0-12-822845-6.00019-1.
  • Karasawa, M. M. G.; Mohan, C. Fruits as Prospective Reserves of Bioactive Compounds: A Review. Nat Prod Bioprospect. 2018, 8(5), 335–346. DOI: 10.1007/s13659-018-0186-6.
  • Lebaka, V. R.; Wee, Y. J.; Ye, W.; Korivi, M. Nutritional Composition and Bioactive Compounds in Three Different Parts of Mango Fruit. International Journal of Environmental Research and Public Health 2021. 2021, 18(2), 741. DOI: 10.3390/IJERPH18020741.
  • Zhao, P.; Ndayambaje, J. P.; Liu, X.; Xia, X. Microbial Spoilage of Fruits: A Review on Causes and Prevention Methods. Food Reviews International. 2020. DOI: 10.1080/87559129.2020.1858859.
  • Saidi, L.; Duanis-Assaf, D.; Galsarker, O.; Maurer, D.; Alkan, N.; Poverenov, E. Elicitation of Fruit Defense Response by Active Edible Coatings Embedded with Phenylalanine to Improve Quality and Storability of Avocado Fruit. Postharvest. Biol. Technol. 2021, 174, 111442. DOI: 10.1016/J.POSTHARVBIO.2020.111442.
  • Tesfay, S. Z.; Magwaza, L. S.; Mbili, N.; Mditshwa, A. Carboxyl Methylcellulose (CMC) Containing Moringa Plant Extracts as New Postharvest Organic Edible Coating for Avocado (Persea Americana Mill.) Fruit. Sci. Hortic. 2017, 226, 201–207. DOI: 10.1016/J.SCIENTA.2017.08.047.
  • Deng, Z.; Jung, J.; Simonsen, J.; Zhao, Y. Cellulose Nanomaterials Emulsion Coatings for Controlling Physiological Activity, Modifying Surface Morphology, and Enhancing Storability of Postharvest Bananas (Musa Acuminate). Food Chem. 2017, 232, 359–368. DOI: 10.1016/J.FOODCHEM.2017.04.028.
  • Ali, S.; Akbar Anjum, M.; Sattar Khan, A.; Nawaz, A.; Ejaz, S.; Khaliq, G.; Iqbal, S.; Ullah, S.; Naveed Ur Rehman, R.; Moaaz Ali, M., et al. Carboxymethyl Cellulose Coating Delays Ripening of Harvested Mango Fruits by Regulating Softening Enzymes Activities. Food Chem. 2022, 380, 131804. DOI: 10.1016/J.FOODCHEM.2021.131804.
  • Shakir, M. S.; Ejaz, S.; Hussain, S.; Ali, S.; Sardar, H.; Azam, M.; Ullah, S.; Khaliq, G.; Saleem, M. S.; Nawaz, A., et al. Synergistic Effect of Gum Arabic and Carboxymethyl Cellulose as Biocomposite Coating Delays Senescence in Stored Tomatoes by Regulating Antioxidants and Cell Wall Degradation. Int. J. Biol. Macromol. 2022, 201, 641–652. DOI: 10.1016/J.IJBIOMAC.2022.01.073.
  • Kumar, N.; Pratibha; Neeraj; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of Active Chitosan-Pullulan Composite Edible Coating Enrich with Pomegranate Peel Extract on the Storage Quality of Green Bell Pepper. LWT. 2021, 138, 110435. DOI: 10.1016/J.LWT.2020.110435.
  • Zhang, L.; Zhao, S.; Lai, S.; Chen, F.; Yang, H. Combined Effects of Ultrasound and Calcium on the Chelate-Soluble Pectin and Quality of Strawberries during Storage. Carbohydr. Polym. 2018, 200, 427–435. DOI: 10.1016/J.CARBPOL.2018.08.013.
  • Fundo, J. F.; Galvis-Sanchez, A.; Madureira, A. R.; Carvalho, A.; Feio, G.; Silva, C. L. M.; Quintas, M. A. C. NMR Water Transverse Relaxation Time Approach to Understand Storage Stability of Fresh-Cut ‘Rocha’ Pear. LWT. 2016, 74, 280–285. DOI: 10.1016/J.LWT.2016.07.050.
  • Dulta, K.; Koşarsoy Ağçeli, G.; Thakur, A.; Singh, S.; Chauhan, P.; Chauhan, P. K. Development of Alginate-Chitosan Based Coating Enriched with ZnO Nanoparticles for Increasing the Shelf Life of Orange Fruits (Citrus Sinensis L.). J Polym. Environ. 2022, 30(8), 3293–3306. DOI: 10.1007/s10924-022-02411-7.
  • Selcuk, N.; Erkan, M. Changes in Antioxidant Activity and Postharvest Quality of Sweet Pomegranates Cv. Hicrannar under Modified Atmosphere Packaging. Postharvest. Biol. Technol. 2014, 92, 29–36. DOI: 10.1016/J.POSTHARVBIO.2014.01.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.