679
Views
2
CrossRef citations to date
0
Altmetric
Review Article

A Review of the Bioactive Compounds of Kiwifruit: Bioactivity, Extraction, Processing and Challenges

, , , , &

References

  • Wang, K.; Li, M.; Wang, Y.; Liu, Z.; Ni, Y. Effects of Extraction Methods on the Structural Characteristics and Functional Properties of Dietary Fiber Extracted from Kiwifruit (Actinidia Deliciosa). Food Hydrocoll. 2021, 110, 106162. DOI: 10.1016/j.foodhyd.2020.106162.
  • Garcia, C. V.; Quek, S. -Y.; Stevenson, R. J.; Winz, R. A. Kiwifruit Flavour: A Review. Trends Food Sci. Technol. 2012, 24(2), 82–91. DOI: 10.1016/j.tifs.2011.08.012.
  • Wang, Z.; Feng, Y.; Yang, N.; Jiang, T.; Xu, H.; Lei, H. Fermentation of Kiwifruit Juice from Two Cultivars by Probiotic Bacteria: Bioactive Phenolics, Antioxidant Activities and Flavor Volatiles. Food Chem. 2022, 373, 131455. DOI: 10.1016/j.foodchem.2021.131455.
  • Motohashi, N.; Shirataki, Y.; Kawase, M.; Tani, S.; Sakagami, H.; Satoh, K.; Kurihara, T.; Nakashima, H.; Wolfard, K.; Miskolci, C., et al. Biological Activity of Kiwifruit Peel Extracts. Phytother. Res. 2001, 15(4), 337–343.
  • Aires, A.; Carvalho, R. Kiwi Fruit Residues from Industry Processing: Study for a Maximum Phenolic Recovery Yield. J. Food Sci. Technol. 2020, 57(11), 11. 4265–4276. DOI: 10.1007/s13197-020-04466-7.
  • Dias, M.; Caleja, C.; Pereira, C.; Calhelha, R. C.; Kostic, M.; Sokovic, M.; Tavares, D.; Baraldi, I. J.; Barros, L.; Ferreira, I. C. F. R. Chemical Composition and Bioactive Properties of Byproducts from Two Different Kiwi Varieties. Food. Res. Int. 2020, 127, 108753. DOI: 10.1016/j.foodres.2019.108753.
  • Singletary, K. Kiwifruit: Overview of Potential Health Benefits. Nutrition Today. 2012, 47(3), 133–147. DOI: 10.1097/NT.0b013e31825744bc.
  • Carr, A. C.; Bozonet, S. M.; Pullar, J. M.; Vissers, M. C. M. Mood Improvement in Young Adult Males Following Supplementation with Gold Kiwifruit, a High-Vitamin C Food. J. Nutr. Sci. 2013, 2, 1–8. DOI: 10.1017/jns.2013.12.
  • Gammon, C. S.; Kruger, R.; Minihane, A. M.; Conlon, C. A.; Hurst, P. R. V.; Stonehouse, W. Kiwifruit Consumption Favourably Affects Plasma Lipids in a Randomised Controlled Trial in Hypercholesterolaemic Men. Br. J. Nutr. 2013, 109(12), 2208–2218. DOI: 10.1017/S0007114512004400.
  • Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Riaz Rajoka, M. S.; Barba, F. J.; Cao, H.; Xiao, J.; Prieto, M. A.; Simal-Gandara, J. Valorization of Kiwi Agricultural Waste and Industry By-Products by Recovering Bioactive Compounds and Applications as Food Additives: A Circular Economy Model. Food Chem. 2022, 370, 131315. DOI: 10.1016/j.foodchem.2021.131315.
  • Cyboran, S.; Oszmiański, J.; Kleszczyńska, H. Modification of the Properties of Biological Membrane and Its Protection Against Oxidation by Actinidia Arguta Leaf Extract. Chem. Biol. Interact. 2014, 222, 50–59. DOI: 10.1016/j.cbi.2014.08.012.
  • Tyagi, S.; Nanher, A. H.; Sahay, S.; Kumar, V.; Bhamini, K. K. Health Benefits and Medicinal Importance. Rashtriya Krishi. 2015, 10, 98–100.
  • Liu, Y.; Liu, C. Antifatigue and Increasing Exercise Performance of Actinidia Arguta Crude Alkaloids in Mice. J. Food Drug Anal. 2016, 24(4), 738–745. DOI: 10.1016/j.jfda.2016.03.001.
  • Deng, J.; Sun, T.; Cao, W.; Fan, D.; Cheng, N.; Wang, B.; Gao, H.; Yang, H. Extraction Optimization and Functional Properties of Proteins from Kiwi Fruit (Actinidia Chinensis Planch.) Seeds. Int. J. Food. Prop. 2014, 17(7), 1612–1625. DOI: 10.1080/10942912.2013.772197.
  • Lísa, M.; Holcapek, M.; Bohác, M. Statistical Evaluation of Triacylglycerol Composition in Plant Oils Based on High-Performance Liquid Chromatography−atmospheric Pressure Chemical Ionization Mass Spectrometry Data. J. Agric. Food. Chem. 2009, 57(15), 6888–6898. DOI: 10.1021/jf901189u.
  • Satpal, D.; Kaur, J.; Bhadariya, V.; Sharma, K. Actinidia Deliciosa (Kiwi Fruit): A Comprehensive Review on the Nutritional Composition, Health Benefits, Traditional Utilization, and Commercialization. J. Food Process Preserv. 2021, 45(6), 1. DOI: 10.1111/jfpp.15588.
  • Charles Dorni, A. I.; Amalraj, A.; Gopi, S.; Varma, K.; Anjana, S. N. Novel Cosmeceuticals from Plants—An Industry Guided Review. J. Appl. Res. Med. Aromat. Plants. 2017, 7, 1–26. DOI: 10.1016/j.jarmap.2017.05.003.
  • Azmir, J.; Zaidul, I. S. M.; Rahman, M. M.; Sharif, K. M.; Mohamed, A.; Sahena, F.; Jahurul, M. H. A.; Ghafoor, K.; Norulaini, N. A. N.; Omar, A. K. M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117(4), 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014.
  • Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D. G.; Lightfoot, D. A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants. 2017, 6(4), 42. DOI: 10.3390/plants6040042.
  • Nerín, C.; Aznar, M.; Carrizo, D. Food Contamination During Food Process. Trends Food Sci. Technol. 2016, 48, 63–68. DOI: 10.1016/j.tifs.2015.12.004.
  • Okolie, C. L.; Aryee, A. N. A.; Udenigwe, C. C. Detection and Deactivation of Allergens in Food. In Proteins in Food Processing; Elsevier: 2018; pp. 367–387. doi:10.1016/B978-0-08-100722-8.00015-2
  • Hunter, D. C.; Greenwood, J.; Zhang, J.; Skinner M, A. Antioxidant and ‘Natural Protective’ Properties of Kiwifruit. Curr. Top. Med. Chem. 2011, 11(14), 1811–1820. DOI: 10.2174/156802611796235134.
  • Fan, H.; Mazza, G.; Liao, X. P. Composition and Antioxidant Activity of Polysaccharides from Wolfberry, Cherry, Kiwi and Cranberry Fruits. Croatian J. Food Sci. Technol. 2010, 2, 9–17.
  • Zhu, R.; Zhang, X.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, G.; Fan, J.; Jia, Y.; Yan, F.; Ning, C. Characterization of Polysaccharide Fractions from Fruit of Actinidia Arguta and Assessment of Their Antioxidant and Antiglycated Activities. Carbohydr. Polym. 2019, 210, 73–84. DOI: 10.1016/j.carbpol.2019.01.037.
  • Parkar, S. G.; Redgate, E. L.; Wibisono, R.; Luo, X.; Koh, E. T. H.; Schröder, R. Gut Health Benefits of Kiwifruit Pectins: Comparison with Commercial Functional Polysaccharides. J. Funct. Foods. 2010, 2(3), 210–218. DOI: 10.1016/j.jff.2010.04.009.
  • Yuliarti, O.; Goh, K. K. T.; Matia-Merino, L.; Mawson, J.; Brennan, C. Extraction and Characterisation of Pomace Pectin from Gold Kiwifruit (Actinidia Chinensis). Food Chem. 2015, 187, 290–296. DOI: 10.1016/j.foodchem.2015.03.148.
  • Deng, J.; Liu, Q.; Zhang, C.; Cao, W.; Fan, D.; Yang, H. Extraction Optimization of Polyphenols from Waste Kiwi Fruit Seeds (Actinidia Chinensis Planch.) and Evaluation of Its Antioxidant and Anti-Inflammatory Properties. Molecules. 2016, 21(7), 832. DOI: 10.3390/molecules21070832.
  • Zhu, M.; Huang, Y.; Wang, Y.; Shi, T.; Zhang, L.; Chen, Y.; Xie, M. Comparison of (Poly)phenolic Compounds and Antioxidant Properties of Pomace Extracts from Kiwi and Grape Juice. Food Chem. 2019, 271, 425–432. DOI: 10.1016/j.foodchem.2018.07.151.
  • Almeida, D.; Pinto, D.; Santos, J.; Vinha, A. F.; Palmeira, J.; Ferreira, H. N.; Rodrigues, F.; Oliveira, M. B. P. P. Hardy Kiwifruit Leaves (Actinidia Arguta): An Extraordinary Source of Value-Added Compounds for Food Industry. Food Chem. 2018, 259, 113–121. DOI: 10.1016/j.foodchem.2018.03.113.
  • Latocha, P.; Łata, B.; Stasiak, A. P. Ascorbate and the Antioxidant Potential of Kiwiberry Vs. Common Kiwifruit: The Effect of Cultivar and Tissue Type. J. Funct. Foods. 2015, 19, 155–163. DOI: 10.1016/j.jff.2015.09.024.
  • Ma, J. -T.; Du, J. -X.; Zhang, Y.; Liu, J. -K.; Feng, T.; He, J. Natural Imidazole Alkaloids as Antibacterial Agents Against Pseudomonas Syringae Pv. Actinidiae Isolated from Kiwi Endophytic Fungus Fusarium Tricinctum. Fitoterapia. 2022, 156, 105070. DOI: 10.1016/j.fitote.2021.105070.
  • Baranowska-Wójcik, E.; Szwajgier, D. Characteristics and Pro-Health Properties of Mini Kiwi (Actinidia Arguta). Hortic. Environ. Biotechnol. 2019, 60(2), 217–225. DOI: 10.1007/s13580-018-0107-y.
  • Siddique, A.; Idrees, N.; Kashif, M.; Ahmad, R.; Siddiqua, A.; Ali, A.; Javied, M. A.; Javied, M. A. Antibacterial and Antioxidant Activity of Kiwi Fruit. Biol Clin Sci Res J. 2021, 2021(1), 76. DOI: 10.54112/bcsrj.v2021i1.76.
  • Sanz, V.; López-Hortas, L.; Torres, M. D.; Domínguez, H. Trends in Kiwifruit and Byproducts Valorization. Trends Food Sci. Technol. 2021, 107, 401–414. DOI: 10.1016/j.tifs.2020.11.010.
  • Zhang, L.; Zhang, W.; Wang, Q.; Wang, D.; Dong, D.; Mu, H.; Ye, X. -S.; Duan, J. P. Antioxidant and Immunological Activities of Polysaccharides from Actinidia Chinensis Roots. Int. J. Biol. Macromol. 2015, 72, 975–983. DOI: 10.1016/j.ijbiomac.2014.09.056.
  • Wu, D. -T.; Liu, W.; Han, Q. -H.; Du, G.; Li, H. -Y.; Yuan, Q.; Fu, Y.; Zhao, L.; Zhang, Q.; Li, S. -Q., et al. Physicochemical Characteristics and Antioxidant Activities of Non-Starch Polysaccharides from Different Kiwifruits. Int. J. Biol. Macromol. 2019, 136, 891–900. DOI: 10.1016/j.ijbiomac.2019.06.142.
  • Han, Q. -H.; Liu, W.; Li, H. -Y.; He, J. -L.; Guo, H.; Lin, S.; Zhao, L.; Chen, H.; Liu, Y. -W.; Wu, D. -T., et al. Extraction Optimization,Physicochemical Characteristics, and Antioxidant Activities of Polysaccharides from Kiwifruit (Actinidia Chinensis Planch.). Molecules. 2019, 24(3), 3.
  • Zhu, M.; Huang, R.; Wen, P.; Song, Y.; He, B.; Tan, J.; Hao, H.; Wang, H. Structural Characterization and Immunological Activity of Pectin Polysaccharide from Kiwano (Cucumis Metuliferus) Peels. Carbohydr. Polym. 2021, 254, 117371. DOI: 10.1016/j.carbpol.2020.117371.
  • Henriques, J.; Ribeiro, M. J.; Falé, P. L.; Pacheco, R.; Ascensão, L.; Florêncio, M. H.; Serralheiro, M. L. M. Valorization of Kiwifruit Production: Leaves of the Pruning Branches of Actinidia Deliciosa as a Promising Source of Polyphenols. Eur. Food Res. Technol. 2017, 243(8), 1343–1353. DOI: 10.1007/s00217-017-2845-y.
  • Alim, A.; Li, T.; Nisar, T.; Ren, D.; Zhai, X.; Pang, Y.; Yang, X. A. Antimicrobial, and Antiproliferative Activity-Based Comparative Study of Peel and Flesh Polyphenols from Actinidia Chinensis. Food Nutr. Res. 2019, 63(0). DOI: 10.29219/fnr.v63.1577.
  • Liang, J.; Ren, Y.; Wang, Y.; Han, M.; Yue, T.; Wang, Z.; Gao, Z. P. Nutritional, and Bioactive Properties of Pulp and Peel from 15 Kiwifruit Cultivars. Food Biosci. 2021, 42, 101157. DOI: 10.1016/j.fbio.2021.101157.
  • Fiorentino, A.; Mastellone, C.; D’Abrosca, B.; Pacifico, S.; Scognamiglio, M.; Cefarelli, G.; Caputo, R.; Monaco, P. δ-Tocomonoenol: A New Vitamin E from Kiwi (Actinidia Chinensis) Fruits. Food Chem. 2009, 115(1), 1. 187–192. DOI: 10.1016/j.foodchem.2008.11.094.
  • Zhang, D.; Gao, C.; Li, R.; Zhang, L.; Tian, J. T. A Triterpenoid from Actinidia Eriantha, Induces Autophagy in SW620 Cells via Endoplasmic Reticulum Stress and ROS-Dependent Mitophagy. Arch. Pharmacal Res. 2017, 40(5), 579–591. DOI: 10.1007/s12272-017-0899-9.
  • Wei, L. -B.; Ma, S. -Y.; Liu, H. -X.; Huang, C. -S.; Liao, N. Cytotoxic Triterpenoids from Roots of Actinidia Chinensis. Chem. Biodiversity. 2018, 15(2), 2. DOI: 10.1002/cbdv.201700454.
  • Yin, M.; Zhang, Y.; Li, H. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides. Front. Immunol. 2019, 10, 145. DOI: 10.3389/fimmu.2019.00145.
  • Xie, J. -H.; Jin, M. -L.; Morris, G. A.; Zha, X. -Q.; Chen, H. -Q.; Yi, Y.; Li, J. -E.; Wang, Z. -J.; Gao, J.; Nie, S. -P., et al. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit. Rev. Food Sci. Nutr. 2016, 56(Suppl 1), S60–84.
  • Cui, T.; Li, X.; Gao, Z. Determination of Polysaccharide Contents in Chinese Fruit by Gas Chromarography. J. Anim. Plant Sci. 2015, 25, 91–95.
  • Sauvageau, J.; Hinkley, S. F.; Carnachan, S. M.; Sims, I. M. Characterisation of Polysaccharides from Gold Kiwifruit (Actinidia Chinensis Planch. ‘Hort16a’). Carbohydr. Polym. 2010, 82(4), 1110–1115. DOI: 10.1016/j.carbpol.2010.06.039.
  • Liu, J.; Willför, S.; Xu, C. A Review of Bioactive Plant Polysaccharides: Biological Activities, Functionalization, and Biomedical Applications. Bioact. Carbohydr. Diet. Fibre. 2015, 5(1), 31–61. DOI: 10.1016/j.bcdf.2014.12.001.
  • Albuquerque, P. B. S.; Oliveira, W. F. D.; Dos Santos Silva, P. M.; Dos Santos Correia, M. T.; Kennedy, J. F.; Coelho, L. C. B. B. Skincare Application of Medicinal Plant Polysaccharides - a Review. Carbohydr. Polym. 2022, 277, 118824. DOI: 10.1016/j.carbpol.2021.118824.
  • Ji, X.; Peng, Q.; Yuan, Y.; Liu, F.; Wang, M. Extraction and Physicochemical Properties of Polysaccharides from Ziziphus Jujuba Cv. Muzao by Ultrasound-Assisted Aqueous Two-Phase Extraction. Int. J. Biol. Macromol. 2018, 108, 541–549. DOI: 10.1016/j.ijbiomac.2017.12.042.
  • Zhang, M.; Wang, F.; Liu, R.; Tang, X.; Zhang, Q.; Zhang, Z. Effects of Superfine Grinding on Physicochemical and Antioxidant Properties of Lycium Barbarum Polysaccharides. LWT - Food Sci. Technol. 2014, 58(2), 594–601. DOI: 10.1016/j.lwt.2014.04.020.
  • Yuan, Q.; Lin, S.; Fu, Y.; Nie, X. -R.; Liu, W.; Su, Y.; Han, Q. -H.; Zhao, L.; Zhang, Q.; Lin, D. -R., et al. Effects of Extraction Methods on the Physicochemical Characteristics and Biological Activities of Polysaccharides from Okra (Abelmoschus Esculentus). Int. J. Biol. Macromol. 2019, 127, 178–186. DOI: 10.1016/j.ijbiomac.2019.01.042.
  • Geng, Y.; Xing, L.; Sun, M.; Su, F. Immunomodulatory Effects of Sulfated Polysaccharides of Pine Pollen on Mouse Macrophages. Int. J. Biol. Macromol. 2016, 91, 846–855. DOI: 10.1016/j.ijbiomac.2016.06.021.
  • Rasouli, H.; Farzaei, M. H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food. Prop. 2017, 278, 1–42. DOI: 10.1080/10942912.2017.1354017.
  • Pérez-Burillo, S.; Oliveras, M. J.; Quesada, J.; Rufián-Henares, J. A.; Pastoriza, S. Relationship Between Composition and Bioactivity of Persimmon and Kiwifruit. Food Res. Int. (Ottawa, Ont.) Food Res. Int. 2018, 105, 461–472. DOI:10.1016/j.foodres.2017.11.022.
  • Park, Y. S.; Im, M. H.; Ham, K. -S.; Kang, S. -G.; Park, Y. -K.; Namiesnik, J.; Leontowicz, H.; Leontowicz, M.; Katrich, E.; Gorinstein, S. Nutritional and Pharmaceutical Properties of Bioactive Compounds in Organic and Conventional Growing Kiwifruit. Plant Foods Hum. Nutr. 2013, 68(1), 57–64. DOI: 10.1007/s11130-013-0339-z.
  • Kim, J. G.; Beppu, K.; Kataoka, I. Varietal Differences in Phenolic Content and Astringency in Skin and Flesh of Hardy Kiwifruit Resources in Japan. Sci. Hortic. 2009, 120(4), 551–554. DOI: 10.1016/j.scienta.2008.11.032.
  • Pinto, D.; Delerue-Matos, C.; Rodrigues, F. B. Phytochemical Profile and Pro-Healthy Properties of Actinidia Arguta: A Review. Food. Res. Int. 2020, 136, 109449. DOI: 10.1016/j.foodres.2020.109449.
  • Wang, Y.; Li, L.; Liu, H.; Zhao, T.; Meng, C.; Liu, Z.; Liu, X. Bioactive Compounds and in vitro Antioxidant Activities of Peel, Flesh and Seed Powder of Kiwi Fruit. Int. J. Food Sci. Technol. 2018, 53(9), 2239–2245. DOI: 10.1111/ijfs.13812.
  • Madsen, H. L.; Bertelsen, G. Spices as Antioxidants. Trends Food Sci. Technol. 1995, 6(8), 271–277. DOI: 10.1016/S0924-2244(00)89112-8.
  • Ganesan, K.; Xu, B. A Critical Review on Polyphenols and Health Benefits of Black Soybeans. Nutrients. 2017, 9(5), 455. DOI: 10.3390/nu9050455.
  • Iwasawa, H.; Morita, E.; Satoru Yui, S.; Yamazaki, M. Anti-Oxidant Effects of Kiwi Fruit in vitro and in vivo. Biol. Pharm. Bull. 2011, 34(1), 128–134. DOI: 10.1248/bpb.34.128.
  • Zhang, H.; Zhao, Q.; Lan, T.; Geng, T.; Gao, C.; Yuan, Q.; Zhang, Q.; Xu, P.; Sun, X.; Liu, X., et al. Comparative Analysis of Physicochemical Characteristics, Nutritional and Functional Components and Antioxidant Capacity of Fifteen Kiwifruit (Actinidia) Cultivars—Comparative Analysis of Fifteen Kiwifruit (Actinidia) Cultivars. Foods. 2020, 9(9), 1267.
  • Kim, Y. -M.; Abas, F.; Park, Y. -S.; Park, Y. -K.; Ham, K. -S.; Kang, S. -G.; Lubinska-Szczygeł, M.; Ezra, A.; Gorinstein, S. Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon. Molecules. 2021, 26(15), 4405. DOI: 10.3390/molecules26154405.
  • Peng, Y.; Cordiner, S. B.; Sawyer, G. M.; McGhie, T. K.; Espley, R. V.; Allan, A. C.; Hurst, R. D. Kiwifruit with High Anthocyanin Content Modulates NF-Κb Activation and Reduces CCL11 Secretion in Human Alveolar Epithelial Cells. J. Funct. Foods. 2020, 65, 103734. DOI: 10.1016/j.jff.2019.103734.
  • Kennedy, J. F.; Thorley, M. P.Pharmacognosy, Phytochemistry, Medicinal Plants. Carbohydr. Polym. , 2000, 42(4), 42. DOI: 10.1016/S0144-8617(99)00211-8.
  • Seigler, D. S. Plant Secondary Metabolism; Springer: New York, 1998; pp. 506–507.
  • Herraiz, T.; Galisteo, J. Tetrahydro-β-Carboline Alkaloids Occur in Fruits and Fruit Juices. Activity as Antioxidants and Radical Scavengers. J. Agric. Food. Chem. 2003, 51(24), 7156–7161. DOI: 10.1021/jf030324h.
  • Uzor, P. F. Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evid. Based Complement. Alternat. Med. 2020, 2020, 8749083. DOI: 10.1155/2020/8749083.
  • Rajput, A.; Sharma, R.; Bharti, R. Pharmacological Activities and Toxicities of Alkaloids on Human Health. Mater. Today Proc. 2022, 48, 1407–1415. DOI: 10.1016/j.matpr.2021.09.189.
  • Shi, Q.; He, Y.; Chen, J.; Lu, L. Thermally Induced Actinidine Production in Biological Samples. J. Agric. Food. Chem. 2020, 68(44), 12252–12258. DOI: 10.1021/acs.jafc.0c02540.
  • Zuo, F.; Nakamura, N.; Akao, T.; Hattori, M. Pharmacokinetics of Berberine and Its Main Metabolites in Conventional and Pseudo Germ-Free Rats Determined by Liquid Chromatography/Ion Trap Mass Spectrometry. Drug Metab. Dispos. 2006, 34(12), 2064–2072. DOI: 10.1124/dmd.106.011361.
  • Flier, J. S.; Underhill, L. H.; Levine, M. New Concepts in the Biology and Biochemistry of Ascorbic Acid. Biochem of Ascorbic Acid. New England J. of Med. 1986, 314(14), 892–902. DOI: 10.1056/NEJM198604033141407.
  • Schlueter, A.K.; Johnston, C.S.; Fuchs, J. Vitamin C: Overview and Update. J. Evidence- Based Complementary Altern. Med. 2011. 16(1), 49–57. DOI:10.1177/1533210110392951.
  • van Gorkom, G. N. Y.; Klein Wolterink, R. G. J.; van Elssen, C. H. M. J.; Wieten, L.; Germeraad, W. T. V.; Bos, G. M. J. Influence of Vitamin C on Lymphocytes: An Overview. Antioxidants. 2018, 7(3), 3. DOI: 10.3390/antiox7030041.
  • Padayatty, S. J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J. -H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S. K., et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22(1), 18–35.
  • Carr, A. C.; Frei, B. Toward a New Recommended Dietary Allowance for Vitamin C Based on Antioxidant and Health Effects in Humans. Am. J. Clin. Nutr. 1999, 69 6, 1086–1107.
  • Frei, B.; Birlouez-Aragon, I.; Lykkesfeldt, J. Authors’ Perspective: What is the Optimum Intake of Vitamin C in Humans? Crit. Rev. Food Sci. Nutr. 2012, 52(9), 815–829. DOI: 10.1080/10408398.2011.649149.
  • Levine, M.; Eck, P. Vitamin C: Working on the X-Axis. Am. J. Clin. Nutr. 2009, 90(5), 1121–1123. DOI: 10.3945/ajcn.2009.28687.
  • Cho, E.; Hunter, D. J.; Spiegelman, D.; Albanes, D.; Beeson, W. L.; van den Brandt, P. A.; Colditz, G. A.; Feskanich, D.; Folsom, A. R.; Fraser, G. E., et al. Intakes of Vitamins A, C and E and Folate and Multivitamins and Lung Cancer: A Pooled Analysis of 8 Prospective Studies. Int, J, Cancer. 2006, 118(4), 970–978.
  • Nishiyama, I.; Yamashita, Y.; Yamanaka, M.; Shimohashi, A.; Fukuda, T.; Oota, T. Varietal Difference in Vitamin C Content in the Fruit of Kiwifruit and Other Actinidia Species. J. Agric. Food. Chem. 2004, 52(17), 5472–5475. DOI: 10.1021/jf049398z.
  • Lim, S.; Han, S. H.; Kim, J.; Lee, H. J.; Lee, J. G.; Lee, E. J. Inhibition of Hardy Kiwifruit (Actinidia aruguta) Ripening by 1-Methylcyclopropene During Cold Storage and Anticancer Properties of the Fruit Extract. Food Chem. 2016, 190, 150–157. DOI: 10.1016/j.foodchem.2015.05.085.
  • Soquetta, M. B.; Stefanello, F. S.; Huerta, K. D. M.; Monteiro, S. S.; da Rosa, C. S.; Terra, N. N. Characterization of Physiochemical and Microbiological Properties, and Bioactive Compounds, of Flour Made from the Skin and Bagasse of Kiwi Fruit (Actinidia Deliciosa). Food Chem. 2016, 199, 471–478. DOI: 10.1016/j.foodchem.2015.12.022.
  • Zhang, J.; Gao, N.; Shu, C.; Cheng, S.; Sun, X.; Liu, C.; Xin, G.; Li, B.; Tian, J. Phenolics Profile and Antioxidant Activity Analysis of Kiwi Berry (Actinidia Arguta) Flesh and Peel Extracts from Four Regions in China. Front. in Plant Sci. 2021, 12, 689038. DOI: 10.3389/fpls.2021.689038.
  • Stonehouse, W.; Gammon, C. S.; Beck, K. L.; Conlon, C. A.; Hurst, P. R. V.; Kruger, R. Kiwifruit: Our Daily Prescription for Health. Can. J. Physiol. Pharmacol. 2013, 91(6), 442–447. DOI: 10.1139/cjpp-2012-0303.
  • Hemilä, H. Vitamin C and Infections. Nutrients. 2017, 9(4), 339. DOI: 10.3390/nu9040339.
  • Ballaz, S. J.; Rebec, G. V. Neurobiology of Vitamin C: Expanding the Focus from Antioxidant to Endogenous Neuromodulator. Pharmacol. Res., 2019, 146, 104321. doi:10.1016/j.phrs.2019.104321
  • Hemilä, H.; Chalker, E. Vitamin C for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2013, 2013(5), CD000980. DOI: 10.1002/14651858.CD000980.pub4.
  • Vissers, M. C. M.; Carr, A. C.; Pullar, J. M.; Bozonet, S. M. The Bioavailability of Vitamin C from Kiwifruit. Adv. Food Nutr. Res. 2013, 68, 125–147. DOI: 10.1016/B978-0-12-394294-4.00007-9.
  • Carr, A. C.; Bozonet, S. M.; Pullar, J. M.; Simcock, J. W.; Vissers, M. C. M. A Randomized Steady-State Bioavailability Study of Synthetic versus Natural (Kiwifruit-Derived) Vitamin C. Nutrients. 2013, 5, 3684–3695. DOI: 10.3390/nu5093684.
  • Yazaki, K.; Arimura, G. -I.; Ohnishi, T. ‘Hidden’ Terpenoids in Plants: Their Biosynthesis, Localization and Ecological Roles. Plant Cell Physiol. 2017, 58(10), 1615–1621. DOI: 10.1093/pcp/pcx123.
  • Pichersky, E.; Raguso, R. A. Why Do Plants Produce so Many Terpenoid Compounds? New Phytol. 2018, 220(3), 692–702. DOI: 10.1111/nph.14178.
  • Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit Cuticular Waxes as a Source of Biologically Active Triterpenoids. Phytochem Rev. 2012, 11(2–3), 263–284. DOI: 10.1007/s11101-012-9241-9.
  • Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological Activities of Natural Triterpenoids and Their Therapeutic Implications. Nat Prod. Rep. 2006, 23(3), 394–411. DOI: 10.1039/b515312n.
  • Bishayee, A.; Ahmed, S.; Brankov, N.; Peloff, M. Triterpenoids as Potential Agents for the Chemoprevention and Therapy of Breast Cancer. Front. Biosci. 2011, 16(1), 980–996. DOI: 10.2741/3730.
  • Zhao, X.; Wen, F.; Wang, W.; Lu, Z.; Guo, Q. Actinidia Arguta (Hardy Kiwi) Root Extract Exerts Anti-Cancer Effects via Mcl-1-Mediated Apoptosis in Cholangiocarcinoma. Nutr. Cancer. 2019, 71(2), 246–256. DOI: 10.1080/01635581.2018.1557218.
  • Jang, D. S.; Lee, G. Y.; Kim, J.; Lee, Y. M.; Kim, J. M.; Kim, Y. S.; Kim, J. S. A New Pancreatic Lipase Inhibitor Isolated from the Roots of Actinidia Arguta. Arch. Pharm. Res. 2008, 31(5), 666–670. DOI: 10.1007/s12272-001-1210-9.
  • Kim, J.; Jang, D. S.; Kim, H.; Kim, J. S. Anti-Lipase and Lipolytic Activities of Ursolic Acid Isolated from the Roots of Actinidia Arguta. Arch. Pharm. Res. 2009, 32(7), 983–987. DOI: 10.1007/s12272-009-1702-3.
  • Guinda, A.; Rada, M.; Delgado, T.; Gutiérrez-Adánez, P.; Castellano, J. M. Pentacyclic Triterpenoids from Olive Fruit and Leaf. J. Agric. Food. Chem. 2010, 58(17), 9685–9691. DOI: 10.1021/jf102039t.
  • Wang, X.; Sun, W.; Cao, J.; Qu, H.; Bi, X.; Zhao, Y. Structures of New Triterpenoids and Cytotoxicity Activities of the Isolated Major Compounds from the Fruit of Momordica Charantia L. J. Agric. Food. Chem. 2012, 60(15), 3927–3933. DOI: 10.1021/jf204208y.
  • Cargnin, S. T.; Gnoatto, S. B. Ursolic Acid from Apple Pomace and Traditional Plants: A Valuable Triterpenoid with Functional Properties. Food Chem. 2017, 220, 477–489. DOI: 10.1016/j.foodchem.2016.10.029.
  • Leontowicz, H.; Leontowicz, M.; Latocha, P.; Jesion, I.; Park, Y. -S.; Katrich, E.; Barasch, D.; Nemirovski, A.; Gorinstein, S. Bioactivity and Nutritional Properties of Hardy Kiwi Fruit Actinidia Arguta in Comparison with Actinidia Deliciosa ‘Hayward’ and Actinidia Eriantha ‘Bidan’. Food Chem. 2016, 196, 281–291. DOI: 10.1016/j.foodchem.2015.08.127.
  • Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K. M.; Latha, Y. E. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. Afr. J. Tradit., Complementary Altern. Med. 2011, 8(1), 1–10. DOI: 10.4314/ajtcam.v8i1.60483.
  • Norkaew, O.; Boontakham, P.; Dumri, K.; Noenplab, A. N. L.; Sookwong, P.; Mahatheeranont, S. Effect of Post-Harvest Treatment on Bioactive Phytochemicals of Thai Black Rice. Food Chem. 2017, 217, 98–105. DOI: 10.1016/j.foodchem.2016.08.084.
  • El Maaiden, E.; Bouzroud, S.; Nasser, B.; Moustaid, K.; El Mouttaqi, A.; Ibourki, M.; Boukcim, H.; Hirich, A.; Kouisni, L.; El Kharrassi, Y. A Comparative Study Between Conventional and Advanced Extraction Techniques: Pharmaceutical and Cosmetic Properties of Plant Extracts. Molecules. 2022, 27(7), 7. DOI: 10.3390/molecules27072074.
  • Mwaurah, P. W.; Kumar, S.; Kumar, N.; Attkan, A. K.; Panghal, A.; Singh, V. K.; Garg, M. K. Novel Oil Extraction Technologies: Process Conditions, Quality Parameters, and Optimization. Compr. Rev. Food Sci. Food Saf. 2020, 19(1), 3–20. DOI: 10.1111/1541-4337.12507.
  • Picot-Allain, C.; Mahomoodally, M. F.; Ak, G.; Zengin, G. Conventional versus Green Extraction Techniques — a Comparative Perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. DOI: 10.1016/j.cofs.2021.02.009.
  • Pirzadeh, M.; Caporaso, N.; Rauf, A.; Shariati, M. A.; Yessimbekov, Z.; Khan, M. U.; Imran, M.; Mubarak, M. S. Pomegranate as a Source of Bioactive Constituents: Q Review on Their Characterization, Properties and Applications. Crit. Rev. Food Sci. Nutr. 2021, 61(6), 6. 982–999. DOI: 10.1080/10408398.2020.1749825.
  • Heanandez, Y.; Lobo, M. G.; Gonzalez, M. Factors Affecting Sample Extraction in the Liquid Chromatographic Determination of Organic Acids in Papaya and Pineapple. Food Chem. 2009, 114(2), 734–741. DOI: 10.1016/j.foodchem.2008.10.021.
  • Karbuz, P.; Tugrul, N. Microwave and Ultrasound Assisted Extraction of Pectin from Various Fruits Peel. J. Food Sci. Technol. 2021, 58(2), 641–650. DOI: 10.1007/s13197-020-04578-0.
  • Wen, L.; Zhang, Z.; Sun, D. -W.; Sivagnanam, S. P.; Tiwari, B. K. Combination of Emerging Technologies for the Extraction of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2020, 60(11), 1826–1841. DOI: 10.1080/10408398.2019.1602823.
  • López-Bascón, M. A.; Luque de Castro, M. D. Soxhlet Extraction. Liq.-Phase Extr. 2020, 232, 327–354. DOI: 10.1016/B978-0-12-816911-7.00011-6.
  • Cravotto, G.; Bicchi, C.; Mantegna, S.; Binello, A.; Tomao, V.; Chemat, F. Extraction of Kiwi Seed Oil: Soxhlet versus Four Different Non-Conventional Techniques. Nat. Prod. Res. 2011, 25(10), 974–981. DOI: 10.1080/14786419.2010.524162.
  • Khoddami, A.; Wilkes, M. A.; Roberts, T. H. Techniques for Analysis of Plant Phenolic Compounds. Molecules. 2013, 18(2), 2328–2375. DOI: 10.3390/molecules18022328.
  • Garcia-Vaquero, M.; Rajauria, G.; Tiwari, B. Conventional Extraction Techniques: Solvent Extraction. Sustainable Seaweed Technol. 2020, 2, 171–189. DOI: 10.1016/B978-0-12-817943-7.00006-8.
  • Adetunji, L. R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the Pectin Production Process Using Novel Extraction Techniques: A Review. Food Hydrocoll. 2017, 62, 239–250. DOI: 10.1016/j.foodhyd.2016.08.015.
  • Puri, M.; Sharma, D.; Barrow, C. J. Enzyme-Assisted Extraction of Bioactives from Plants. Trends Biotechnol. 2012, 30(1), 37–44. DOI: 10.1016/j.tibtech.2011.06.014.
  • Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J. A.; Ibañez, E. Pressurized Liquid Extraction Liq.-phase Extr . 2020, 1089, 375–398. DOI:10.1016/B978-0-12-816911-7.00013-X.
  • Huang, H. -W.; Hsu, C. -P.; Wang, C. -Y. Healthy Expectations of High Hydrostatic Pressure Treatment in Food Processing Industry. J. Food Drug Anal. 2020, 28(1), 1–13. DOI: 10.1016/j.jfda.2019.10.002.
  • Scepankova, H.; Martins, M.; Estevinho, L.; Delgadillo, I.; Saraiva, J. A. Enhancement of Bioactivity of Natural Extracts by Non-Thermal High Hydrostatic Pressure Extraction. Plant Foods Hum. Nutr. 2018, 73(4), 253–267. DOI: 10.1007/s11130-018-0687-9.
  • Huie, C. W. A Review of Modern Sample-Preparation Techniques for the Extraction and Analysis of Medicinal Plants. Anal. Bioanal. Chem. 2002, 373(1–2), 23–30. DOI: 10.1007/s00216-002-1265-3.
  • Kheirkhah, H.; Baroutian, S.; Quek, S. Y. Evaluation of Bioactive Compounds Extracted from Hayward Kiwifruit Pomace by Subcritical Water Extraction. Food Bioprod. Process. 2019, 115, 143–153. DOI: 10.1016/j.fbp.2019.03.007.
  • Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-By-Products, Algae and microalgaeA Review. Food Chem. 2006, 98(1), 136–148. DOI: 10.1016/j.foodchem.2005.05.058.
  • Khajavi, S. H.; Kimura, Y.; Oomori, T.; Matsuno, R.; Adachi, S. Degradation Kinetics of Monosaccharides in Subcritical Water. J. Food Eng. 2005, 68(3), 309–313. DOI: 10.1016/j.jfoodeng.2004.06.004.
  • Wang, L.; Weller, C. L. Recent Advances in Extraction of Nutraceuticals from Plants. Trends Food Sci. Technol. 2006, 17(6), 300–312. DOI: 10.1016/j.tifs.2005.12.004.
  • Wang, W.; Chen, W.; Zou, M.; Lv, R.; Wang, D.; Hou, F.; Feng, H.; Ma, X.; Zhong, J.; Ding, T., et al. Applications of Power Ultrasound in Oriented Modification and Degradation of Pectin: A Review. J. Food Eng. 2018, 234, 98–107. DOI: 10.1016/j.jfoodeng.2018.04.016.
  • Ridley, B. L.; O’Neill, M. A.; Mohnen, D. Pectins: Structure, Biosynthesis, and Oligogalacturonide-Related Signaling. Phytochemistry. 2001, 57(6), 929–967. DOI: 10.1016/S0031-9422(01)00113-3.
  • Cho, E. -H.; Jung, H. -T.; Lee, B. -H.; Kim, H. -S.; Rhee, J. -K.; Yoo, S. -H. Green Process Development for Apple-Peel Pectin Production by Organic Acid Extraction. Carbohydr. Polym. 2019, 204, 97–103. DOI: 10.1016/j.carbpol.2018.09.086.
  • Yuliarti, O.; Matia-Merino, L.; Goh, K. K. T.; Mawson, J.; Williams, M. A. K.; Brennan, C. Characterization of Gold Kiwifruit Pectin from Fruit of Different Maturities and Extraction Methods. Food Chem. 2015, 166, 479–485. DOI: 10.1016/j.foodchem.2014.06.055.
  • Wikiera, A.; Mika, M.; Grabacka, M. Multicatalytic Enzyme Preparations as Effective Alternative to Acid in Pectin Extraction. Food Hydrocoll. 2015, 44, 156–161. DOI: 10.1016/j.foodhyd.2014.09.018.
  • Nguyễn, H. V.; Savage, G. P. The Effects of Temperature and pH on the Extraction of Oxalate and Pectin from Green Kiwifruit (Actinidia Deliciosa L.), Golden Kiwifruit (Actinidia Chinensis L.), Kiwiberry (Actinidia Arguta) and Persimmon (Diospyros Kaki). Int. J. Food Sci. Technol. 2013, 48(4), 4. 794–800. DOI: 10.1111/ijfs.12029.
  • Ciriminna, R.; Chavarría-Hernández, N.; Hernández, I. R.; Pagliaro M, A. Pectin: A New Perspective from the Biorefi Nery Standpoint. Biofuels Bioprod. Biorefin. 2015, 9(4), 368–377. DOI: 10.1002/bbb.1551.
  • Goula, A. M. Ultrasound-Assisted Extraction of Pomegranate Seed Oil – Kinetic Modeling. J. Food Eng. 2013, 117(4), 492–498. DOI: 10.1016/j.jfoodeng.2012.10.009.
  • Ponmurugan, K.; Al-Dhabi, N. A.; Maran, J. P.; Karthikeyan, K.; Moothy, I. G.; Sivarajasekar, N.; Manoj, J. J. B. Ultrasound Assisted Pectic Polysaccharide Extraction and Its Characterization from Waste Heads of Helianthus Annus. Carbohydr. Polym. 2017, 173, 707–713. DOI: 10.1016/j.carbpol.2017.06.018.
  • Ciriminna, R.; Carnaroglio, D.; Delisi, R.; Arvati, S.; Tamburino, A.; Pagliaro, M. Industrial Feasibility of Natural Products Extraction with Microwave Technology. ChemistrySelect. 2016, 1(3), 549–555. DOI: 10.1002/slct.201600075.
  • Wang, J.; Lan, T.; Lei, Y.; Suo, J.; Zhao, Q.; Wang, H.; Lei, J.; Sun, X.; Ma, T. Optimization of Ultrasonic-Assisted Enzymatic Extraction of Kiwi Starch and Evaluation of Its Structural, Physicochemical, and Functional Characteristics. Ultrason. Sonochem. 2021, 81, 105866. DOI: 10.1016/j.ultsonch.2021.105866.
  • Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. J. Agric. Food. Chem. 2020, 68(11), 3330–3343. DOI: 10.1021/acs.jafc.9b06574.
  • Naczk, M.; Shahidi, F. Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis. J. Pharm. Biomed. Anal. 2006, 41(5), 1523–1542. DOI: 10.1016/j.jpba.2006.04.002.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. DOI: 10.1016/j.crfs.2021.03.011.
  • Jovanovic, A.; Petrovic, P.; Ðordjevic, V.; Zdunic, G.; Savikin, K.; Bugarski, B. Polyphenols Extraction from Plant Sources. Lek Sirovine 2017, 37, 45–49. DOI: 10.5937/leksir1737045J.
  • Bucic-Kojic, A.; Planinc, M.; Tomas, S.; Jokic, S.; Mujic, I.; Bilic, M.; Velic, D. Effect of Extraction Conditions on the Extractability of Phenolic Compounds from Lyophilised Fig Fruits (Ficus Carica L.). Pol. J. Food Nutr. Sci. 2011, 61(3), 195–199. DOI: 10.2478/v10222-011-0021-9.
  • Silva, A. M.; Luís, A. S.; Moreira, M. M.; Ferraz, R.; Brezo-Borjan, T.; Švarc-Gajić, J.; Costa, P. C.; Delerue-Matos, C.; Rodrigues, F. Influence of Temperature on the Subcritical Water Extraction of Actinidia Arguta Leaves: A Screening of Pro-Healthy Compounds. Sustainable Chem. Pharm. 2022, 25, 100593. DOI: 10.1016/j.scp.2021.100593.
  • Guthrie, F.; Wang, Y.; Neeve, N.; Quek, S. Y.; Mohammadi, K.; Baroutian, S. Recovery of Phenolic Antioxidants from Green Kiwifruit Peel Using Subcritical Water Extraction. Food Bioprod. Process. 2020, 122, 136–144. DOI: 10.1016/j.fbp.2020.05.002.
  • Bursal, E.; Gülçin, İ. Polyphenol Contents and in vitro Antioxidant Activities of Lyophilised Aqueous Extract of Kiwifruit (Actinidia Deliciosa). Food. Res. Int. 2011, 44(5), 1482–1489. DOI: 10.1016/j.foodres.2011.03.031.
  • Silva, A. M.; Pinto, D.; Moreira, M. M.; Costa, P. C.; Delerue-Matos, C.; Rodrigues, F. Valorization of Kiwiberry Leaves Recovered by Ultrasound-Assisted Extraction for Skin Application: A Response Surface Methodology Approach. Antioxidants. 2022, 11(4), 4. DOI: 10.3390/antiox11040763.
  • Nuapia, Y.; Cukrowska, E.; Tutu, H.; Chimuka, L. Statistical Comparison of Two Modeling Methods on Pressurized Hot Water Extraction of Vitamin C and Phenolic Compounds from Moringa Oleifera Leaves. S. Afr. J. Bot. 2020, 129, 9–16. DOI: 10.1016/j.sajb.2018.09.001.
  • van Le, H.; van Le, V. M. Comparison of Enzyme-Assisted and Ultrasound-Assisted Extraction of Vitamin C and Phenolic Compounds from Acerola (Malpighia Emarginata DC.) Fruit. Int. J. Food Sci. Technol. 2012, 47(6), 1206–1214. DOI: 10.1111/j.1365-2621.2012.02960.x.
  • Musteata, M. L.; Musteata, F. M. Overview of Extraction Methods for Analysis of Vitamin D and Its Metabolites in Biological Samples. Bioanalysis. 2011, 3(17), 1987–2002. DOI: 10.4155/bio.11.195.
  • Hadolin, M.; Skerget, M.; Knez, Z.; Bauman, D. High Pressure Extraction of Vitamin E-Rich Oil from Silybum Marianum. Food Chem. 2001, 74(3), 255–364. DOI: 10.1016/S0308-8146(01)00152-2.
  • Mai, Y. -H.; Zhuang, Q. -G.; Li, Q. -H.; Du, K.; Wu, D. -T.; Li, H. -B.; Xia, Y.; Zhu, F.; Gan, R. -Y. Ultrasound-Assisted Extraction, Identification, and Quantification of Antioxidants from ‘Jinfeng’ Kiwifruit. Foods. 2022, 11(6), 827. DOI: 10.3390/foods11060827.
  • López-Hortas, L.; Pérez-Larrán, P.; González-Muñoz, M. J.; Falqué, E.; Domínguez, H. Recent Developments on the Extraction and Application of Ursolic Acid. A Review. Food. Res. Int. 2018, 103, 130–149. DOI: 10.1016/j.foodres.2017.10.028.
  • Vetal, M. D.; Lade, V. G.; Rathod, V. K. Extraction of Ursolic Acid from Ocimum Sanctum by Ultrasound: Process Intensification and Kinetic Studies. Chem. Eng. Process. 2013, 69, 24–30. DOI: 10.1016/j.cep.2013.01.011.
  • Xia, E. -Q.; Yu, Y. -Y.; Xu, X. -R.; Deng, G. -F.; Guo, Y. -J.; Li, H. -B. Ultrasound-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum Lucidum Ait. Ultrason. Sonochem. 2012, 19(4), 772–776. DOI: 10.1016/j.ultsonch.2011.11.014.
  • Wei, M. -C.; Yang, Y. -C. Extraction Characteristics and Kinetic Studies of Oleanolic and Ursolic Acids from Hedyotis Diffusa Under Ultrasound-Assisted Extraction Conditions. Sep. Purif. Technol. 2014, 130, 182–192. DOI: 10.1016/j.seppur.2014.04.029.
  • Xia, E. -Q.; Wang, B. -W.; Xu, X. -R.; Zhu, L.; Song, Y.; Li, H. -B. Microwave-Assisted Extraction of Oleanolic Acid and Ursolic Acid from Ligustrum Lucidum Ait. Int. J. Mol. Sci. 2011, 12(8), 5319–5329. DOI: 10.3390/ijms12085319.
  • Chen, X.; Zhang, Z.; Yang, X.; Li, J.; Liu, Y.; Chen, H.; Rao, W.; Yao, S. Molecularly Imprinted Polymers Based on Multi-Walled Carbon Nanotubes for Selective Solid-Phase Extraction of Oleanolic Acid from the Roots of Kiwi Fruit Samples. Talanta. 2012, 99, 959–965. DOI: 10.1016/j.talanta.2012.07.066.
  • Djilani, A.; Legseir, B.; Soulimani, R.; Dicko, A.; Younos, C. New Extraction Technique for Alkaloids. J. Braz. Chem. Soc. 2006, 17(3), 518–520. DOI: 10.1590/S0103-50532006000300013.
  • Negi, P. S. Plant Extracts for the Control of Bacterial Growth: Efficacy, Stability and Safety Issues for Food Application. Int. J. Food Microbiol. 2012, 156(1), 7–17. DOI: 10.1016/j.ijfoodmicro.2012.03.006.
  • La Morales-de Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages. Beverages. 2016, 2(2), 14. DOI: 10.3390/beverages2020014.
  • Manzoor, M. F.; Ahmad, N.; Aadil, R. M.; Rahaman, A.; Ahmed, Z.; Rehman, A.; Siddeeg, A.; Zeng, X. ‐.; Manzoor, A. Impact of Pulsed Electric Field on Rheological, Structural, and Physicochemical Properties of Almond Milk. J. Food Process. Eng. 2019, 42(8), 518. DOI: 10.1111/jfpe.13299.
  • Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods. 2018, 7(10), 10. DOI: 10.3390/foods7100164.
  • Iqbal, A.; Murtaza, A.; Marszałek, K.; Iqbal, M. A.; Chughtai, M. F. J.; Hu, W.; Barba, F. J.; Bi, J.; Liu, X.; Xu, X. Inactivation and Structural Changes of Polyphenol Oxidase in Quince (Cydonia Oblonga Miller) Juice Subjected to Ultrasonic Treatment. J. Sci. Food Agric. 2020, 100(5), 2065–2073. DOI: 10.1002/jsfa.10229.
  • Sun, R.; Tomkinson, J. Comparative Study of Lignins Isolated by Alkali and Ultrasound-Assisted Alkali Extractions from Wheat Straw. Ultrason. Sonochem. 2002, 9(2), 85–93. DOI: 10.1016/S1350-4177(01)00106-7.
  • Aadil, R. M.; Zeng, X. -A.; Wang, M. -S.; Liu, Z. -W.; Han, Z.; Zhang, Z. -H.; Hong, J.; Jabbar, S. A Potential of Ultrasound on Minerals, Micro-Organisms, Phenolic Compounds and Colouring Pigments of Grapefruit Juice. Int. J. Food Sci. Technol. 2015, 50(5), 1144–1150. DOI: 10.1111/ijfs.12767.
  • Khandpur, P.; Gogate, P. R. Effect of Novel Ultrasound Based Processing on the Nutrition Quality of Different Fruit and Vegetable Juices. Ultrason. Sonochem. 2015, 27, 125–136. DOI: 10.1016/j.ultsonch.2015.05.008.
  • Manzoor, M. F.; Ahmed, Z.; Ahmad, N.; Aadil, R. M.; Rahaman, A.; Roobab, U.; Rehman, A.; Siddique, R.; Zeng, X. -A.; Siddeeg, A. Novel Processing Techniques and Spinach Juice: Quality and Safety Improvements. J. Food Sci. 2020, 85(4), 1018–1026. DOI: 10.1111/1750-3841.15107.
  • Bhargava, N.; Mor, R. S.; Kumar, K.; Sharanagat, V. S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70, 105293. DOI: 10.1016/j.ultsonch.2020.105293.
  • Vivek, K.; Subbarao, K. V.; Srivastava, B. Optimization of Postharvest Ultrasonic Treatment of Kiwifruit Using RSM. Ultrason. Sonochem. 2016, 32, 328–335. DOI: 10.1016/j.ultsonch.2016.03.029.
  • Wang, J.; Wang, J.; Vanga, S. K.; Raghavan, V. High-Intensity Ultrasound Processing of Kiwifruit Juice: Effects on the Microstructure, Pectin, Carbohydrates and Rheological Properties. Food Chem. 2020, 313, 126121. DOI: 10.1016/j.foodchem.2019.126121.
  • Wang, J.; Vanga, S. K.; Raghavan, V. High-Intensity Ultrasound Processing of Kiwifruit Juice: Effects on the Ascorbic Acid, Total Phenolics, Flavonoids and Antioxidant Capacity. LWT. 2019, 107, 299–307. DOI: 10.1016/j.lwt.2019.03.024.
  • Vallespir, F.; Rodríguez, Ó.; Cárcel, J. A.; Rosselló, C.; Simal, S. Ultrasound Assisted Low-Temperature Drying of Kiwifruit: Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity. J. Sci. Food Agric. 2019, 99(6), 2901–2909. DOI: 10.1002/jsfa.9503.
  • Tao, Y.; Sun, D. -W.; Hogan, E.; Kelly, A. L. High-Pressure Processing of Foods. In Emerging Technologies for Food Processing; Elsevier: 2014; pp. 3–24. doi:10.1016/B978-0-12-411479-1.00001-2
  • Muntean, M. -V.; Marian, O.; Barbieru, V.; Cătunescu, G. M.; Ranta, O.; Drocas, I.; Terhes, S. High Pressure Processing in Food Industry – Characteristics and Applications. Agric. Agric. Sci.Procedia. 2016, 10, 377–383. DOI: 10.1016/j.aaspro.2016.09.077.
  • Yuste, J.; Capellas, M.; Pla, R.; Fung, D. Y. C.; Mor-Mur, M. High Pressure Processing for Food Safety and Preservation: A Review. J. Rapid Methods Autom. Microbiol. 2001, 9(1), 1–10. DOI: 10.1111/j.1745-4581.2001.tb00223.x.
  • Torres, J. A.; Velazquez, G. Commercial Opportunities and Research Challenges in the High Pressure Processing of Foods. J. Food Eng. 2005, 67(1–2), 95–112. DOI: 10.1016/j.jfoodeng.2004.05.066.
  • Rastogi, N. K.; Raghavarao, K. S. M. S.; Balasubramaniam, V. M.; Niranjan, K.; Knorr, D. Opportunities and Challenges in High Pressure Processing of Foods. Crit. Rev. Food Sci. Nutr. 2007, 47(1), 69–112. DOI: 10.1080/10408390600626420.
  • Fang, L.; Jiang, B.; Zhang, T. Effect of Combined High Pressure and Thermal Treatment on Kiwifruit Peroxidase. Food Chem. 2008, 109(4), 802–807. DOI: 10.1016/j.foodchem.2008.01.017.
  • Yi, J.; Kebede, B. T.; Grauwet, T.; van Loey, A.; Hu, X.; Hendrickx, M. Comparing the Impact of High-Pressure Processing and Thermal Processing on Quality of “Hayward” and “Jintao” Kiwifruit Purée: Untargeted Headspace Fingerprinting and Targeted Approaches. Food Bioprocess Technol. 2016, 9(12), 2059–2069. DOI: 10.1007/s11947-016-1783-1.
  • Salehi, F. Physico-Chemical and Rheological Properties of Fruit and Vegetable Juices as Affected by High Pressure Homogenization: A Review. Int. J. Food. Prop. 2020, 23(1), 1. 1136–1149. DOI: 10.1080/10942912.2020.1781167.
  • Quan, W.; Tao, Y.; Qie, X.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effects of High-Pressure Homogenization, Thermal Processing, and Milk Matrix on the in vitro Bioaccessibility of Phenolic Compounds in Pomelo and Kiwi Juices. J. Funct. Foods. 2020, 64, 103633. DOI: 10.1016/j.jff.2019.103633.
  • Patrignani, F.; Mannozzi, C.; Tappi, S.; Tylewicz, U.; Pasini, F.; Castellone, V.; Riciputi, Y.; Rocculi, P.; Romani, S.; Caboni, M. F., et al. (Ultra) High Pressure Homogenization Potential on the Shelf-Life and Functionality of Kiwifruit Juice. Front. Microbiol. 2019, 10, 246. DOI: 10.3389/fmicb.2019.00246.
  • Kumar, Y.; Patel, K. K.; Kumar, V. Pulsed Electric Field Processing in Food Technology. Int. J.Eng. Studies and Tech. Approach. 2015, 1, 6–17.
  • Toepfl, S.; Siemer, C.; Saldaña-Navarro, G.; Heinz, V. Overview of Pulsed Electric Fields Processing for Food. In Emerging Technol. for Food Process; Elsevier: 2014; pp. 93–114. doi:10.1016/B978-0-12-411479-1.00006-1
  • Koubaa, M.; Barba, F. J.; Bursać Kovačević, D.; Putnik, P.; Santos, M. D.; Queirós, R. P.; Moreira, S. A.; Inácio, R. S.; Fidalgo, L. G.; Saraiva, J. A. Pulsed Electric Field Processing of Fruit Juices. In Fruit Juices; Elsevier: 2018; pp. 437–449. doi:10.1016/B978-0-12-802230-6.00022-9
  • Dermesonlouoglou, E.; Chalkia, A.; Dimopoulos, G.; Taoukis, P. Combined Effect of Pulsed Electric Field and Osmotic Dehydration Pre-Treatments on Mass Transfer and Quality of Air Dried Goji Berry. Innovative Food Sci. Emerging Technol. Innovative Food Sci. Emerging Technol. 2018, 49, 106–115. DOI: 10.1016/j.ifset.2018.08.003.
  • Tylewicz, U.; Tappi, S.; Mannozzi, C.; Romani, S.; Dellarosa, N.; Laghi, L.; Ragni, L.; Rocculi, P.; Dalla Rosa, M. Effect of Pulsed Electric Field (PEF) Pre-Treatment Coupled with Osmotic Dehydration on Physico-Chemical Characteristics of Organic Strawberries. J. Food Eng. 2017, 213, 2–9. DOI: 10.1016/j.jfoodeng.2017.04.028.
  • Dellarosa, N.; Ragni, L.; Laghi, L.; Tylewicz, U.; Rocculi, P.; Dalla Rosa, M. Time Domain Nuclear Magnetic Resonance to Monitor Mass Transfer Mechanisms in Apple Tissue Promoted by Osmotic Dehydration Combined with Pulsed Electric Fields. Innovative Food Sci. Emerging Technol. 2016, 37, 345–351. DOI: 10.1016/j.ifset.2016.01.009.
  • Lamanauskas, N.; Šatkauskas, S.; Bobinaitė, R.; Viškelis, P. Pulsed Electric Field (PEF) Impact on Actinidia Kolomikta Drying Efficiency. J. Food Process. Eng. 2015, 38(3), 243–249. DOI: 10.1111/jfpe.12161.
  • Dermesonlouoglou, E.; Zachariou, I.; Andreou, V.; Taoukis, P. S. Effect of Pulsed Electric Fields on Mass Transfer and Quality of Osmotically Dehydrated Kiwifruit. Food Bioprod. Process. 2016, 100, 535–544. DOI: 10.1016/j.fbp.2016.08.009.
  • Bogaerts, A.; Neyts, E. C. Plasma Technology: An Emerging Technology for Energy Storage. Acs. Energy. Lett. 2018, 3(4), 1013–1027. DOI: 10.1021/acsenergylett.8b00184.
  • Mir, S. A.; Shah, M. A.; Mir, M. M. Understanding the Role of Plasma Technology in Food Industry. Food Bioprocess Technol. 2016, 9(5), 734–750. DOI: 10.1007/s11947-016-1699-9.
  • Misra, N. N.; Pankaj, S. K.; Segat, A.; Ishikawa, K. Cold Plasma Interactions with Enzymes in Foods and Model Systems. Trends Food Sci. Technol. 2016, 55, 39–47. DOI: 10.1016/j.tifs.2016.07.001.
  • Pankaj, S. K.; Bueno-Ferrer, C.; Misra, N. N.; Milosavljević, V.; O’Donnell, C. P.; Bourke, P.; Keener, K. M.; Cullen, P. J. Applications of Cold Plasma Technology in Food Packaging. Trends Food Sci. Technol. 2014, 35(1), 5–17. DOI: 10.1016/j.tifs.2013.10.009.
  • Pankaj, S. K.; Keener, K. M. Cold Plasma: Background, Applications and Current Trends. Curr. Opin. Food Sci. 2017, 16, 49–52. DOI: 10.1016/j.cofs.2017.07.008.
  • Misra, N. N.; Schlüter, O.; Cullen, P. J. Plasma in Food and Agriculture. In Cold Plasma Food Agric; Elsevier: 2016; pp. 1–16. doi:10.1016/B978-0-12-801365-6.00001-9
  • Liu, Z.; Zhao, W.; Zhang, Q.; Gao, G.; Meng, Y. Effect of Cold Plasma Treatment on Sterilizing Rate and Quality of Kiwi Turbid Juice. J. Food Process. Eng. 2021, 44(6). DOI: 10.1111/jfpe.13711.
  • Ramazzina, I.; Berardinelli, A.; Rizzi, F.; Tappi, S.; Ragni, L.; Sacchetti, G.; Rocculi, P. Effect of Cold Plasma Treatment on Physico-Chemical Parameters and Antioxidant Activity of Minimally Processed Kiwifruit. Postharvest. Biol. Technol. 2015, 107, 55–65. DOI: 10.1016/j.postharvbio.2015.04.008.
  • Hwang, J. -S.; Cho, C. H.; Baik, M. -Y.; Park, S. -K.; Heo, H. J.; Cho, Y. -S.; Kim, D. -O. Effects of Freeze-Drying on Antioxidant and Anticholinesterase Activities in Various Cultivars of Kiwifruit (Actinidia Spp.). Food Sci. Biotechnol. 2017, 26(1), 221–228. DOI: 10.1007/s10068-017-0030-5.
  • Yang, X. -H.; Deng, L. -Z.; Mujumdar, A. S.; Xiao, H. -W.; Zhang, Q.; Kan, Z. Evolution and Modeling of Colour Changes of Red Pepper (Capsicum Annuum L.) During Hot Air Drying. J. Food Eng. 2018, 231, 101–108. DOI: 10.1016/j.jfoodeng.2018.03.013.
  • Zhao, Q.; Dong, B.; Chen, J.; Zhao, B.; Wang, X.; Wang, L.; Zha, S.; Wang, Y.; Zhang, J.; Wang, Y. Effect of Drying Methods on Physicochemical Properties and Antioxidant Activities of Wolfberry (Lycium Barbarum) Polysaccharide. Carbohydr. Polym. 2015, 127, 176–181. DOI: 10.1016/j.carbpol.2015.03.041.
  • Correia, P. M. R.; Guiné, R. P. F.; Correia, A. C.; Gonalves, F.; Ribeiro Jessica, R. P. Physical, Chemical and Sensory Properties of Kiwi as Influenced by Drying Conditions. Agric. Eng. Int. 2017, 19, 203–212.
  • Feng, H.; Yin, Y.; Tang, J. Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Eng. Rev. 2012, 4(2), 89–106. DOI: 10.1007/s12393-012-9048-x.
  • Izli, N.; Izli, G.; Taskin, O. D. K. Colour, Total Phenolic Content and Antioxidant Capacity Properties of Kiwi Dried by Different Methods. Food Meas. 2017, 11(1), 64–74. DOI: 10.1007/s11694-016-9372-6.
  • Domin, M.; Dziki, D.; Kłapsia, S.; Blicharz-Kania, A.; Biernacka, B.; Krzykowski, A. Influence of the Freeze-Drying Conditions on the Physicochemical Properties and Grinding Characteristics of Kiwi. Int. J. Food Eng. 2020, 16(1–2), 527. DOI: 10.1515/ijfe-2018-0315.
  • CalisKan, G.; Ergun, D.; Dirim, S. N. Freeze Drying of Kiwi (Actinidia Deliciosa) Puree and the Powder Properties. Ital. J. Food Sci. 2015, 27, 385–396.
  • Aktürk Gümüşay, Ö.; Yıldırım Yalçın, M. Dondurarak Kurutma İşleminin Karayemiş ve Kivinin Fiziksel ve Antioksidan Özellikleri Üzerine Etkisi. Akademik Gıda. 2019, 17(1), 9–15. DOI: 10.24323/akademik-gida.543985.
  • Boland, M. Kiwifruit Proteins and Enzymes: Actinidin and Other Significant Proteins. Adv. Food Nutr. Res. 2013, 68, 59–80. DOI: 10.1016/B978-0-12-394294-4.00004-3.
  • Kaur, L.; Boland, M. Influence of Kiwifruit on Protein Digestion. Adv. Food Nutr. Res. 2013, 68, 149–167. DOI: 10.1016/B978-0-12-394294-4.00008-0.
  • Tamburrini, M.; Cerasuolo, I.; Carratore, V.; Stanziola, A. A.; Zofra, S.; Romano, L.; Camardella, L.; Ciardiello, M. A. Kiwellin, a Novel Protein from Kiwi Fruit. Purification, biochemical Characterization and Identification as an Allergen. Protein J. 2005, 24(7–8), 423–429. DOI: 10.1007/s10930-005-7638-7.
  • Richardson, D. P.; Ansell, J.; Drummond, L. N. The Nutritional and Health Attributes of Kiwifruit: A Review. Eur. J. Nutr. 2018, 57(8), 2659–2676. DOI: 10.1007/s00394-018-1627-z.
  • Gavrović-Jankulović, M.; ćIrković, T.; Vucković, O.; Atanasković-Marković, M.; Petersen, A.; Gojgić, G.; Burazer, L.; Jankov, R. M. Isolation and Biochemical Characterization of a Thaumatin-Like Kiwi Allergen. J. Allergy Clin. Immunol. 2002, 110(5), 805–810. DOI: 10.1067/mai.2002.128947.
  • D’Avino, R.; Bernardi, M. L.; Wallner, M.; Palazzo, P.; Camardella, L.; Tuppo, L.; Alessandri, C.; Breiteneder, H.; Ferreira, F.; Ciardiello, M. A., et al. Kiwifruit Act D 11 is the First Member of the Ripening-Related Protein Family Identified as an Allergen. Allergy. 2011, 66(7), 870–877.
  • Yu, W.; Freeland, D. M. H.; Nadeau, K. C. Food Allergy: Immune Mechanisms, Diagnosis and Immunotherapy. Nat. Rev. Immunol. 2016, 16(12), 751–765. DOI: 10.1038/nri.2016.111.
  • Bedolla-Pulido, T. R.; Álvarez-Corona, S. A.; Bedolla-Pulido, T. I.; Uribe-Cota, B.; González-Mendoza, T.; Bedolla-Barajas, M. Prevalencia de Sensibilización yalergia Al Kiwi (Actinidia deliciosa) en Adultos Con Enfermedades Alérgicas. Revista Alergia México. 2018, 65(1), 19–24. DOI: 10.29262/ram.v65i1.293.
  • Lucas, J. S. A.; Grimshaw, K. E. C.; Collins, K.; Warner, J. O.; Hourihane, J. O. ’. Kiwi Fruit is a Significant Allergen and is Associated with Differing Patterns of Reactivity in Children and Adults. Clinical Experimental Allergy. 2004, 34(7), 1115–1121. DOI: 10.1111/j.1365-2222.2004.01982.x.
  • Lucas, J. S. A.; Cochrane, S. A.; Warner, J. O.; Hourihane, J. O. ’. B. The Effect of Digestion and pH on the Allergenicity of Kiwifruit Proteins. Pediatr. Allergy Immunol. 2008, 19(5), 392–398. DOI: 10.1111/j.1399-3038.2007.00678.x.
  • Wang, J.; Vanga, S. K.; McCusker, C.; Raghavan, V. A Comprehensive Review on Kiwifruit Allergy: Pathogenesis, Diagnosis, Management, and Potential Modification of Allergens Through Processing. Compr. Rev. Food Sci. Food Saf. 2019, 18(2), 500–513. DOI: 10.1111/1541-4337.12426.
  • Vanga, S. K.; Raghavan, V. Processing Effects on Tree Nut Allergens: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57(17), 3794–3806. DOI: 10.1080/10408398.2016.1175415.
  • Verma, A. K.; Kumar, S.; Das, M.; Dwivedi, P. D. Impact of Thermal Processing on Legume Allergens. Plant Foods for Hum. Nutr. (Dordrecht, Netherlands). 2012, 67(4), 430–441. DOI: 10.1007/s11130-012-0328-7.
  • Chizoba Ekezie, F. -G.; Cheng, J. -H.; Sun, D. -W. Effects of Nonthermal Food Processing Technologies on Food Allergens: A Review of Recent Research Advances. Trends Food Sci. Technol. 2018, 74, 12–25. DOI: 10.1016/j.tifs.2018.01.007.
  • Uberti, F.; Peñas, E.; Manzoni, Y.; Di Lorenzo, C.; Ballabio, C.; Fiocchi, A.; Terracciano, L.; Restani, P. Molecular Characterization of Allergens in Raw and Processed Kiwifruit. Pediatr. Allergy Immunol. 2015, 26(2), 139–144. DOI: 10.1111/pai.12345.
  • Wang, J.; Wang, J.; Kranthi Vanga, S.; Raghavan, V. Influence of High-Intensity Ultrasound on the IgE Binding Capacity of Act D 2 Allergen, Secondary Structure, and in-Vitro Digestibility of Kiwifruit Proteins. Ultrason. Sonochem. 2021, 71, 105409. DOI: 10.1016/j.ultsonch.2020.105409.
  • Ciardiello, M. A.; Giangrieco, I.; Tuppo, L.; Tamburrini, M.; Buccheri, M.; Palazzo, P.; Bernardi, M. L.; Ferrara, R.; Mari, A. Influence of the Natural Ripening Stage, Cold Storage, and Ethylene Treatment on the Protein and IgE-Binding Profiles of Green and Gold Kiwi Fruit Extracts. J. Agric. Food. Chem. 2009, 57(4), 1565–1571. DOI: 10.1021/jf802966n.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.