488
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Traditional Non-Dairy Fermented Products: A Candidate for Probiotics

ORCID Icon & ORCID Icon

References

  • Kaur, P.; Ghoshal, G.; Banerjee, U. C. Traditional Bio-Preservation in Beverages: Fermented Beverages. In Preservatives and Preservation Approaches in Beverages, Alexandru, M.G. and Alina, M.H. Academic Press: Duxford, 2019; Vol. 15, pp 69–113, 9780128166864. DOI: 10.1016/B978-0-12-816685-7.00003-3.
  • Wuyts, S.; Van Beeck, W.; Allonsius, C. N.; van den Broek, M. F.; Lebeer, S. Applications of Plant-Based Fermented Foods and Their Microbes. Curr. Opin. Biotechnol. 2020, 61, 45–52. DOI: 10.1016/j.copbio.2019.09.023.
  • Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential Non-Dairy Probiotic Products–A Healthy Approach. Food Biosci. 2018, 21, 80–89. DOI: 10.1016/j.fbio.2017.12.003.
  • Romero-Luna, H. E.; Peredo-Lovillo, A.; Hernández-Mendoza, A.; Hernández-Sánchez, H.; Cauich-Sánchez, P. I.; Ribas-Aparicio, R. M.; Dávila-Ortiz, G. Probiotic Potential of Lactobacillus Paracasei CT12 Isolated from Water Kefir Grains (Tibicos). Curr. Microbiol. 2020, 77(10), 2584–2592. DOI: 10.1007/s00284-020-02016-0.
  • Aladeboyeje, O. T.; Sanli, N. O.; Buyuk, U. Evaluation of the Antimicrobial Efficacy of Some Fermented Traditional Turkish Beverages with Probiotic Potentials. Johnson Matthey Technol. Rev. 2021, 66(3), 337–350. DOI: 10.1595/205651322X16388083409013.
  • Ilango, S.; Antony, U. Probiotic Microorganisms from Non-Dairy Traditional Fermented Foods. Trends Food Sci. Technol. 2021, 118, 617–638. DOI: 10.1016/j.tifs.2021.05.034.
  • Rasika, D. M. D.; Vidanarachchi, J. K.; Luiz, S. F.; Azeredo, D. R. P.; Cruz, A. G.; Ranadheera, C. S. Probiotic Delivery Through Non-Dairy Plant-Based Food Matrices. Agriculture. 2021, 11(7), 599. DOI: 10.3390/agriculture11070599.
  • Shivangi, S.; Devi, P. B.; Ragul, K.; Shetty, P. H. Probiotic Potential of Bacillus Strains Isolated from an Acidic Fermented Food Idli. Probiotics Antimicrob. Proteins. 2020, 12(4), 1502–1513. DOI: 10.1007/s12602-020-09650-x.
  • Bayat, G.; Yıldız, G. The Special Fermented Turkish Drink: Boza. J. Tourism Gastron. Stud. 2019, 7(4), 2438–2446. DOI: 10.21325/jotags.2019.480.
  • Oyeyinka, A. T.; Siwela, M.; Pillay, K. A Mini Review of the Physicochemical Properties of Amahewu, a Southern African Traditional Fermented Cereal Grain Beverage. LWT-Food Sci. Technol. 2021, 151, 112159. DOI: 10.1016/j.lwt.2021.112159.
  • Rubio-Castillo, A. E.; Santiago-Lopez, L.; Vallejo-Cordoba, B.; Hernandez-Mendoza, A.; Sayago-Ayerdi, S. G.; Gonzalez-Cordova, A. F. Traditional Non-Distilled Fermented Beverages from Mexico to Based on Maize: An Approach to Tejuino Beverage. Int. J. Gastron. Food Sci. 2021, 23, 100283. DOI: 10.1016/j.ijgfs.2020.100283.
  • Rani, M.; Amane, D.; Ananthanarayan, L. Impact of Partial Replacement of Rice with Other Selected Cereals on Idli Batter Fermentation and Idli Characteristics. J. Food Sci. Technol. 2019, 56(3), 1192–1201. DOI: 10.1007/s13197-019-03582-3.
  • Akintayo, O. A.; Hashim, Y. O.; Adereti, A. G.; Balogun, M. A.; Bolarinwa, I. F.; Abiodun, O. A.; Alabi, O. F. Potentials of Rice as a Suitable Alternative for the Production of Ogi (A Cereal‐based Starchy Fermented Gruel). J. Food Sci. 2020, 85(8), 2380–2388. DOI: 10.1111/1750-3841.15334.
  • Kato, B. Development of a Sorghum Malt-Based Nutrient Enriched Probiotic Bushera. Ph.D. Dissertation, School of Food Technology, Kampala, Uganda, 2019.
  • Setta, M. C.; Matemu, A.; Mbega, E. R. Potential of Probiotics from Fermented Cereal-Based Beverages in Improving Health of Poor People in Africa. J. Food Sci. Technol. 2020, 57(11), 3935–3946. DOI: 10.1007/s13197-020-04432-3.
  • Robledo-Márquez, K.; Ramírez, V.; González-Córdova, A. F.; Ramírez-Rodríguez, Y.; García-Ortega, L.; Trujillo, J. Research Opportunities: Traditional Fermented Beverages in Mexico. Cultural, Microbiological, Chemical, and Functional Aspects. Food. Res. Int. 2021, 147, 110482. DOI: 10.1016/j.foodres.2021.110482.
  • Glinushkin, L.; Císarová, M.; Hleba, A.; Igor, A.; Derkanosova, A.; Laishevtcev, P.; Shariati, M. A. Physicochemical, Functional and Sensory Properties of Acha-Tamba Based Ogi Enriched with Hydrolysed Soy Peptides. J. Microbiol. Biotechnol. Food Sci. 2021, 2021(4), 823–830. DOI: 10.15414/jmbfs.2020.9.4.823-830.
  • Lidums, I.; Karklina, D.; Kirse, A.; Sabovics, M. Nutritional Value, Vitamins, Sugars and Aroma Volatiles in Naturally Fermented and Dry Kvass. 11th Baltic Conference on Food Science and Technology-Food Sci. Technol. Changing World, Calıfornıa. 2017, 1:61–65. DOI: 10.22616/FOODBALT.2017.027 .
  • Ucak, S.; Yurt, M. N. Z.; Tasbasi, B. B.; Acar, E. E.; Altunbas, O.; Soyucok, A.; Sudagidan, M. Identification of Bacterial Communities of Fermented Cereal Beverage Boza by Metagenomic Analysis. LWT-Food Sci. Technol. 2022, 153, 112465. DOI: 10.1016/j.lwt.2021.112465.
  • Mukisa, I. M.; Porcellato, D.; Byaruhanga, Y. B.; Muyanja, C. M.; Rudi, K.; Langsrud, T.; Narvhus, J. A. The Dominant Microbial Community Associated with Fermentation of Obushera (Sorghum and Millet Beverages) Determined by Culture-Dependent and Culture-Independent Methods. Int. J. Food Microbiol. 2012, 160(1), 1–10. DOI: 10.1016/j.ijfoodmicro.2012.09.023.
  • Muyanja, C. M. B. K.; Langsrud, T.; Narvhus, J. A. The Use of Starter Cultures in the Fermentation of Bushera: A Ugandan Traditional Fermented Sorghum Beverage. Uganda J. Agric. Sci. 2004, 9(1), 606–616. DOI: 10.4314/ajfand.v3i1.19108.
  • Mugwanda, K. In Vitro Assessment of the Probiotic Properties of Lactic Acid Bacteria Isolated from Sorghum Mahewu. Master Dissertation, Faculty of Science, Zimbabwe, Africa, 2016
  • Olusanya, R. N. The Nutritional Composition and Acceptability of Moringa oleifera Leaf Powder (MOLP)-Supplemented Mahewu: A Maize Meal-Based Beverage for Improved Food and Nutrition Security. Ph.D. Dissertation, Agricultural, Earth and Environmental Sciences, Durban, South Africa, 2018.
  • Awobusuyi, T. D.; Siwela, M. Nutritional Properties and Consumer’s Acceptance of Provitamin A-Biofortified Amahewu Combined with Bambara (Vigna Subterranea) Flour. Nutrients. 2019, 11(7), 1476. DOI: 10.3390/nu11071476.
  • Pérez-Armendáriz, B.; Cardoso-Ugarte, G. A. Traditional Fermented Beverages in Mexico: Biotechnological, Nutritional, and Functional Approaches. Food Res. Int. 2020, 136, 109307. DOI: 10.1016/j.foodres.2020.109307.
  • Trabanino, F.; Meléndez, L. El ajkum sa’o’pozol de camote’-una bebida entre los mayas palencanos del Clásico Tardío. Ketzalcalli. 2016, 2, 3–27.
  • Mandhania, M. H.; Paul, D.; Suryavanshi, M. V.; Sharma, L.; Chowdhury, S.; Diwanay, S. S.; Patole, M. S. Diversity and Succession of Microbiota During Fermentation of the Traditional Indian Food Idli. Appl. Environ. Microbiol. 2019, 85(13), e00368–19. DOI: 10.1128/AEM.00368-19.
  • Mashau, M. E.; Maliwichi, L. L.; Jideani, A. I. O. Non-Alcoholic Fermentation of Maize (Zea Mays) in Sub-Saharan Africa. Fermentation. 2021, 7(3), 158. DOI: 10.3390/fermentation7030158.
  • Amadou, I. Millet Based Fermented Beverages Processing. In Fermented Beverages, Alexandru, M.G. and Alina, M.H., Eds.; Academic Press: Sawston, UK, 2019; Vol. 5, pp 433–472. DOI: 10.1016/B978-0-12-815271-3.00011-7.
  • Basinskiene, L. Cereal-Based Nonalcoholic Beverages. In Trends in Non-Alcoholic Beverages; Charis, M.G., Ed.; Academic Press: Cambridge, MA, USA , 2020; pp 63–99. DOI: 10.1016/B978-0-12-816938-4.00003-3.
  • Ukom, A. N.; Adiegwu, E. C.; Ojimelukwe, P. C.; Okwunodulu, I. N. Quality and Sensory Acceptability of Yellow Maize Ogi Porridge Enriched with Orange-Fleshed Sweet Potato and African Yam Bean Seed Flours for Infants. Sci. Afr. 2019, 6, e00194. DOI: 10.1016/j.sciaf.2019.e00194.
  • Sajjad, N.; Rasool, A.; Fazili, A. B. A.; Eijaz Ahmed Bhat, E. A. Fermentation of Fruits and Vegetables. Plant Arch. 2020, 20, 1338–1342.
  • Aspri, M.; Papademas, P.; Tsaltas, D. Review on Non-Dairy Probiotics and Their Use in Non-Dairy Based Products. Fermentation. 2020, 6(1), 30. DOI: 10.3390/fermentation6010030.
  • Khadka, D. B.; Lama, J. P. Traditional Fermented Food of Nepal and Their Nutritional and Nutraceutical Potential. In Nutritional and Health Aspects of Food in South Asian Countries; Jamuna, P., Viduranga, W. and Vishweshwaraiah, P., Eds.; Amsterdam: Elsevier B.V., 2020; pp 165–194. DOI: :10.1016/B978-0-12-820011-7.00022-8.
  • Kırlangıç, O.; Ilgaz, C.; Kadiroğlu, P. Influence of Pasteurization and Storage Conditions on Microbiological Quality and Aroma Profiles of Shalgam. Food Biosci. 2021, 44, 101350. DOI: 10.1016/j.fbio.2021.101350.
  • Szutowska, J.; Gwiazdowska, D.; Rybicka, I.; Pawlak-Lemańska, K.; Biegańska-Marecik, R.; Gliszczyńska-Świgło, A. Controlled Fermentation of Curly Kale Juice with the Use of Autochthonous Starter Cultures. Food. Res. Int. 2021, 149, 110674. DOI: 10.1016/j.foodres.2021.110674.
  • Chin, S. Y.; Chye, F. Y.; Anton, A. Microbiological Diversity of Spontaneous Fermentation of Bambangan (Mangifera pajang), a Traditional Fermented Fruit from Northern Borneo. Short Commun. Biotechnol. 2016, 2, 1–9.
  • Chuah, L. O.; Shamila-Syuhada, A. K.; Liong, M. T.; Rosma, A.; Thong, K. L.; Rusul, G. Physio-Chemical, Microbiological Properties of Tempoyak and Molecular Characterisation of Lactic Acid Bacteria Isolated from Tempoyak. Food Microbiol. 2016, 58, 95–104. DOI: 10.1016/j.fm.2016.04.002.
  • Soemarie, Y. B.; Milanda, T.; Barliana, M. I. Fermented Foods as Probiotics: A Review. J. Adv. Pharm. Technol. Res. 2021, 12(4), 335. DOI: 10.4103/japtr.japtr_116_21.
  • Behera, S. S.; El Sheikha, A. F.; Hammami, R.; Kumar, A. Traditionally Fermented Pickles: How the Microbial Diversity Associated with Their Nutritional and Health Benefits? J. Funct. Foods. 2020, 70, 103971. DOI: 10.1016/j.jff.2020.103971.
  • Peñas, E. Sauerkraut. In Fermented Foods in Health and Disease Prevention, 1st ed.; Juana, F., Cristina, M.V. and Elena, P., Eds.; Academic Press: Waltham (MA), 2017; pp 557–576. DOI: 10.1016/B978-0-12-802309-9.00024-8.
  • Rajagukguk, Y. V.; Arnold, M. Tempoyak: Fermented Durian Paste of Malay Ethnic and Its Functional Properties. Int. J. Gastron. Food Sci. 2021, 23, 100297. DOI: 10.1016/j.ijgfs.2020.100297.
  • Gok, I. Functional Potential of Several Turkish Fermented Traditional Foods: Biotic Properties, Bioactive Compounds, and Health Benefits. Food Rev. Int. 2021, 1–26. DOI: 10.1080/87559129.2021.1962340.
  • Villarreal‐soto, S. A.; Beaufort, S.; Bouajila, J.; Souchard, J. P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83(3), 580–588. DOI: 10.1111/1750-3841.14068.
  • Ekinci, F. Y.; Baser, G. M.; Özcan, E.; Üstündağ, Ö. G.; Korachi, M.; Sofu, A.; Chen, C. Y. O. Characterization of Chemical, Biological, and Antiproliferative Properties of Fermented Black Carrot Juice, Shalgam. Eur. Food Res. Technol. 2016, 242(8), 1355–1368. DOI: 10.1007/s00217-016-2639-7.
  • Silva, L. C. D.; Pimenta, D. M.; Forti, V. A.; Sala, F. C.; Medeiros, S. D. S.; Verruma-Bernardi, M. R. Sensory Analysis of Curly Kale Produced Under Conventional and Hydroponic Systems. Braz. J. Food Technol. 2021, 24. DOI: 10.1590/1981-6723.19220.
  • Benjamin, M. A. Z.; Bakar, M. A.; Bakar, F. A.; Sabran, S. F.; Kormin, F.; Fuzi, S. M. Development of Bambangan (Mangifera Pajang) Carbonated Drink. IOP Conf. Ser. Earth Environ. Sci. 2021, 736(1), 012010. DOI: 10.1088/1755-1315/736/1/012010.
  • Satora, P.; Skotniczny, M.; Strnad, S.; Piechowicz, W. Chemical Composition and Sensory Quality of Sauerkraut Produced from Different Cabbage Varieties. LWT- Food Sci. Technol. 2021, 136, 110325. DOI: 10.1016/j.lwt.2020.110325.
  • Coskun, F. A Traditional Turkish Fermented Non-Alcoholic Beverage, “Shalgam”. Beverages. 2017, 3(4), 49. DOI: 10.3390/beverages3040049.
  • Tanriseven, D.; Kadiroglu, P.; Selli, S.; Kelebek, H. LC-DAD-ESI-MS/ms-Assisted Elucidation of the Phenolic Compounds in Shalgams: Comparison of Traditional and Direct Methods. Food Chem. 2020, 305, 125505. DOI: 10.1016/j.foodchem.2019.125505.
  • Szutowska, J.; Rybicka, I.; Pawlak‐lemańska, K.; Gwiazdowska, D. Spontaneously Fermented Curly Kale Juice: Microbiological Quality, Nutritional Composition, Antioxidant, and Antimicrobial Properties. J. Food Sci. 2020, 85(4), 1248–1255. DOI: 10.1111/1750-3841.15080.
  • Chan, S. T. Antioxidant Properties and Phenolic Compounds of Fermented Bambangan (Mangifera pajang). B.Sc. Thesis, Shool of Food Science and Nutrition, Malaysia, 2013.
  • Tangah, J.; Bajau, F. E.; Jilimin, W.; Chan, H. T.; Wong, S. K.; Chan, E. W. C. Phytochemistry and Pharmacology of Mangifera Pajang: An Iconic Fruit of Sabah. Malaysia. Sys. Rev. Pharm. 2017, 8(1), 86. DOI: 10.5530/srp.2017.1.15.
  • Swain, M. R.; Anandharaj, M.; Ray, R. C.; Rani, R. P. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014, 2014, 1–20. DOI: 10.1155/2014/250424.
  • Korus, A.; Bernaś, E.; Korus, J.; Hernández, E.; Hernández, E. Health-Promoting Constituents and Selected Quality Parameters of Different Types of Kimchi: Fermented Plant Products. Int. J. Food Sci. 2021, 2021, 1–9. DOI: 10.1155/2021/9925344.
  • Karki, T.; Ojha, P.; Panta, O. P. Ethnic Fermented Foods of Nepal. In Ethnic Fermented Foods and Alcoholic Beverages of Asia; Jyoti, P.T., Ed.; Springer: New Delhi, 2016; pp. 91–117.
  • Sadeghizadeh Yazdi, J.; Behradkia, V.; Sarhadi, H.; Hozoori, M. Evaluation of Sensorial, Chemical, and Microbial Characteristics of Pickled Cucumber Supplied in Shiraz. J. Nutr. Food Sec. 2018, 3(2), 79–85.
  • Uthpala, T. G. G.; Marapana, R. A. U. J.; Lakmini, K.; Wettimuny, D. C. Nutritional Bioactive Compounds and Health Benefits of Fresh and Processed Cucumber (Cucumis Sativus L.). Sumerianz J. Biotechnol. 2020, 3(9), 75–82.
  • Zieliński, H.; Surma, M.; Zielińska, D. The Naturally Fermented Sour Pickled Cucumbers. In Fermented Foods in Health and Disease Prevention, 1st ed.; Juana, F., Cristina, M.V. and Elena, P., Eds.; Amsterdam: Elsevier B.V., 2017; pp 503–516. DOI: 10.1016/B978-0-12-802309-9.00021-2.
  • Matei, B.; Diguță, C. F.; Popa, O.; Cornea, C. P.; Matei, F. Molecular Identification of Yeast Isolated from Different Kombucha Sources. Annals Univ. Dunarea de Jos Galati. Fascicle VI Food Technol. 2018, 42(1), 17–25.
  • Fu, C.; Yan, F.; Cao, Z.; Xie, F.; Lin, J. Antioxidant Activities of Kombucha Prepared from Three Different Substrates and Changes in Content of Probiotics During Storage. Food Sci. Technol. 2014, 34(1), 123–126. DOI: 10.1590/S0101-20612014005000012.
  • Lavefve, L.; Marasini, D.; Carbonero, F. Microbial Ecology of Fermented Vegetables and Non-Alcoholic Drinks and Current Knowledge on Their Impact on Human Health. Adv. Food Nutr.Res. 2019, 87, 147–185. DOI: 10.1016/bs.afnr.2018.09.001.
  • Vohra, B. M.; Fazry, S.; Sairi, F.; Babul-Airianah, O. Effects of Medium Variation and Fermentation Time on the Antioxidant and Antimicrobial Properties of Kombucha. Mal. J. Fund. App. Sci. 2019, 15(2–1), 298–302. DOI: 10.11113/mjfas.v15n2-1.1536.
  • Goh, W. N.; Rosma, A.; Kaur, B.; Fazilah, A.; Karim, A. A.; Bhat, R. Fermentation of Black Tea Broth (Kombucha): I. Effects of Sucrose Concentration and Fermentation Time on the Yield of Microbial Cellulose. Int. Food Res. J. 2012, 19(1), 109–117.
  • Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid Contents and the Effect of Fermentation Condition of Kombucha Tea Beverages on Physicochemical, Microbiological and Sensory Properties. CYTA J. Food. 2017, 15(4), 601–607. DOI: 10.1080/19476337.2017.1321588.
  • Pswarayi, F.; Gänzle, M. G. Composition and Origin of the Fermentation Microbiota of Mahewu, a Zimbabwean Fermented Cereal Beverage. Appl. Environ. Microbiol. 2019, 85(11), e03130–18. DOI: 10.1128/AEM.03130-18.
  • Arici, M.; Coşkun, F.; Çelikyurt, G.; Mirik, M.; Gülcü, M.; Tokatli, N. Some Technological and Functional Properties of Lactic Acid Bacteria Isolated from Hardaliye. J. Agric. Sci. 2017, 23(4), 428–437. DOI: 10.15832/ankutbd.385870.
  • Dogan, M.; Ozpinar, H. Investigation of Probiotic Features of Bacteria Isolated from Some Food Products. Kafkas Üniv. Vet. Fak. Derg. 2017, 23(4). DOI: 10.9775/kvfd.2016.17273.
  • Fadahunsi, I. F.; Soremekun, O. O. Production, Nutritional and Microbiological Evaluation of Mahewu a South African Traditional Fermented Porridge. J. Adv. Biol. Biotechnol. 2017, 14(4), 1–10. DOI: 10.9734/JABB/2017/33175.
  • Kwofie, M. K.; Bukari, N.; Adeboye, O. Probiotics Potential of Yeast and Lactic Acid Bacteria Fermented Foods and the Impact of Processing: A Review of Indigenous and Continental Food Products. Adv. Microbiol. 2020, 10(09), 492. DOI: 10.4236/aim.2020.109037.
  • Maind, M. N. Isolation of Lactic Acid Bacteria (Probiotic) from Homemade Fermented Food Sample for Yoghurt Formation. Think India J. 2019, 22(31), 296–313.
  • López-Hernández, M.; Rodríguez-Alegría, M. E.; López-Munguía, A.; Wacher, C. Evaluation of Xylan as Carbon Source for Weissella Spp., a Predominant Strain in Pozol Fermentation. LWT-Food Sci. Technol. 2018, 89, 192–197. DOI: 10.1016/j.lwt.2017.10.030.
  • Rizo, J.; Guillén, D.; Díaz-Ruiz, G.; Wacher, C.; Encarnación, S.; Sánchez, S.; Rodríguez-Sanoja, R. Metaproteomic Insights into the Microbial Community in Pozol. Front. Nutrit. 2021, 8, 714814. DOI: 10.3389/fnut.2021.714814.
  • Itaman, V. O.; Nwachukwu, E. Bacteriological and Nutritional Assessment of Fermented Maize (Ogi) Fortified with Ugba (Pentaclethra Macrophylla). Niger. J. Microbiol. 2021, 35(2), 5906–5917.
  • Baschali, A.; Tsakalidou, E.; Kyriacou, A.; Karavasiloglou, N.; Matalas, A. L. Traditional Low-Alcoholic and Non-Alcoholic Fermented Beverages Consumed in European Countries: A Neglected Food Group. Nutr. Res. Rev. 2021, 30(1), 1–24. DOI: 10.1017/S0954422416000202.
  • Tamang, J. P.; Tamang, B.; Schillinger, U.; Franz, C. M.; Gores, M.; Holzapfel, W. H. Identification of Predominant Lactic Acid Bacteria Isolated from Traditionally Fermented Vegetable Products of the Eastern Himalayas. Int. J. Food Microbiol. 2005, 105(3), 347–356. DOI: 10.1016/j.ijfoodmicro.2005.04.024.
  • Kahve, H. I.; Akbulut, M.; Coklar, H. Identification and Technological Characterization of Endogenous Yeast Isolated from Fermented Black Carrot Juice, Shalgam. LWT-Food Sci. Technol. 2022, 154, 112823. DOI: 10.1016/j.lwt.2021.112823.
  • Akman, P. K.; Ozulku, G.; Tornuk, F.; Yetim, H. Potential Probiotic Lactic Acid Bacteria Isolated from Fermented Gilaburu and Shalgam Beverages. LWT-Food Sci. Technol. 2021, 149, 111705. DOI: 10.1016/j.lwt.2021.111705.
  • Szutowska, J.; Gwiazdowska, D. Probiotic Potential of Lactic Acid Bacteria Obtained from Fermented Curly Kale Juice. Arc. Microbiol. 2021, 203(3), 975–988. DOI: 10.1007/s00203-020-02095-4.
  • Ng, S. Y.; Koon, S. S.; Padam, B. S.; Chye, F. Y. Evaluation of Probiotic Potential of Lactic Acid Bacteria Isolated from Traditional Malaysian Fermented Bambangan (Mangifera Pajang). CYTA J. Food. 2015, 13(4), 563–572. DOI: 10.1080/19476337.2015.1020342.
  • de la Fuente‐salcido, N. M.; Castañeda‐ramírez, J. C.; García‐almendárez, B. E.; Bideshi, D. K.; Salcedo‐hernández, R.; Barboza‐corona, J. E. Isolation and Characterization of Bacteriocinogenic Lactic Bacteria from M‐tuba and Tepache, Two Traditional Fermented Beverages in México. Food Sci. Nutr. 2015, 3(5), 434–442. DOI: 10.1002/fsn3.236.
  • Barrios-Roblero, C.; Rosas-Quijano, R.; Salvador-Figueroa, M.; Gálvez-López, D.; Vázquez-Ovando, A. Antifungal Lactic Acid Bacteria Isolated from Fermented Beverages with Activity Against Colletotrichum Gloeosporioides. Food Biosci. 2019, 29, 47–54. DOI: 10.1016/j.fbio.2019.03.008.
  • Park, W. J.; Kong, S. J.; Park, J. H. Kimchi Bacteriophages of Lactic Acid Bacteria: Population, Characteristics, and Their Role in Watery Kimchi. Food Sci. Biotechnol. 2021, 30(7), 949–957. DOI: 10.1007/s10068-021-00930-y.
  • Toushik, S. H.; Kim, K.; Ashrafudoulla, M.; Mizan, M. F. R.; Roy, P. K.; Nahar, S.; Ha, S. D. Korean Kimchi-Derived Lactic Acid Bacteria Inhibit Foodborne Pathogenic Biofilm Growth on Seafood and Food Processing Surface Materials. Food Control. 2021, 129, 108276. DOI: 10.1016/j.foodcont.2021.108276.
  • Gautam, N.; Sharma, N. Evaluation of Probiotic Potential of New Bacterial Strain, Lactobacillus Spicheri G2 Isolated from Gundruk. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85(4), 979–986. DOI: 10.1007/s40011-014-0458-9.
  • Amarantini, C.; Budarso, T. Y.; Antika, Y. E.; Prakasita, V. C. Characterisation of Lactobacillus Plantarum Isolated from Pickled Cucumber, and Its Antagonist Effect on Pathogenic Bacteria. Int. Food Res. J. 2020, 27(5), 805–813.
  • Liu, Z.; Li, J.; Zhou, X.; Wei, B.; Xie, S.; Du, T.; Xiong, T. The Lactic Acid Bacteria and Yeast Community of Home-Made Sauerkraut from Three Provinces in Southwest China. Arc. Microbiol. 2021, 203(6), 3171–3182. DOI: 10.1007/s00203-021-02222-9.
  • Nordin, N. A. Y.; Suzila, M.; Lazim, N.; Mohamed, E.; Camalxaman, S. N.; Haron, N.; Rambely, A. S. Biochemical Characterization of Lactic Acid Bacteria (LAB) Isolated from Home-Made Fermented Durian Flesh, Tempoyak. Health Scope. 2019, 1, 79–83.
  • Villarreal-Soto, S. A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P. D.; Souchard, J. P.; Taillandier, P.; Beaufort, S. Metabolome-Microbiome Signatures in the Fermented Beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. DOI: 10.1016/j.ijfoodmicro.2020.108778.
  • Torán-Pereg, P.; Del Noval, B.; Valenzuela, S.; Martinez, J.; Prado, D.; Perisé, R.; Arboleya, J. C. Microbiological and Sensory Characterization of Kombucha SCOBY for Culinary Applications. Int. J. Gastron. Food Sci. 2021, 23, 100314. DOI: 10.1016/j.ijgfs.2021.100314.
  • Food and Agricultural Organization of the United Nations and World Health Organization. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. (accessed August 1, 2022) https://4cau4jsaler1zglkq3wnmje1-wpengine.netdna-ssl.com/wp-content/uploads/2019/04/probiotic_guidelines.pdf.
  • Enujiugha, V. N.; Badejo, A. A. Probiotic Potentials of Cereal-Based Beverages. Crit. Rev. Food Sci. Nutr. 2017, 57(4), 790–804. DOI: 10.1080/10408398.2014.930018.
  • Cholakov, R.; Tumbarski, Y.; Yanakieva, V.; Dobrev, I.; Salim, Y.; Denkova, Z. Antimicrobial Activity of Leuconostoc lactis Strain BT17, Isolated from a Spontaneously Fermented Cereal Beverage (Boza). J. Microbiol. Biotechnol. Food Sci. 2021, 2021(1), 47–49. DOI: 10.15414/jmbfs.2017.7.1.47-49.
  • Queiroz, L. L.; Hoffmann, C.; Lacorte, G. A.; de Melo Franco, B. D. G.; Todorov, S. D. Genomic and Functional Characterization of Bacteriocinogenic Lactic Acid Bacteria Isolated from Boza, a Traditional Cereal-Based Beverage. Sci. Rep. 2022, 12(1), 1–13. DOI: 10.1038/s41598-022-05086-1.
  • Byakika, S.; Mukisa, I. M.; Byaruhanga, Y. B.; Muyanja, C. Probiotic Potential of Lactic Acid Starter Cultures Isolated from a Traditional Fermented Sorghum-Millet Beverage. Int. J. Microbiol. 2020, 2020, 1–13. DOI: 10.1155/2020/6622207.
  • Velázquez-López, A.; Covatzin-Jirón, D.; Toledo-Meza, M. D.; Vela-Gutiérrez, G. Fermented Drink Elaborated with Lactic Acid Bacteria Isolated from Chiapaneco Traditional Pozol. CienciaUAT. 2018, 13(1), 165–178. DOI: 10.29059/cienciauat.v13i1.871.
  • Sharma, S.; Kandasamy, S.; Kavitake, D.; Shetty, P. H. Probiotic Characterization and Antioxidant Properties of Weissella confusa KR780676, Isolated from an Indian Fermented Food. LWT-Food Sci. Technol. 2018, 97, 53–60. DOI: 10.1016/j.lwt.2018.06.033.
  • Sadishkumar, V.; Jeevaratnam, K. In vitro Probiotic Evaluation of Potential Antioxidant Lactic Acid Bacteria Isolated from Idli Batter Fermented with Piper Betle Leaves. Int. J. Food Sci. Technol. 2017, 52(2), 329–340. DOI: 10.1111/ijfs.13284.
  • Olatunde, O. O.; Obadina, A. O.; Omemu, A. M.; Oyewole, O. B.; Olugbile, A.; Olukomaiya, O. O. Screening and Molecular Identification of Potential Probiotic Lactic Acid Bacteria in Effluents Generated During Ogi Production. Ann. Microbiol. 2018, 68(7), 433–443. DOI: 10.1007/s13213-018-1348-9.
  • Todorov, S. D.; Holzapfel, W. H. Traditional Cereal Fermented Foods as Sources of Functional Microorganisms. In Advances in Fermented Foods and Beverages; Holzapfel, W.H., Ed.; Woodhead Publishing: Sawston, Cambridge, 2015; pp 123–153. DOI: 10.1016/B978-1-78242-015-6.00006-2.
  • Von Mollendorff, J. W.; Todorov, S. D.; Dicks, L. M. T. Comparison of Bacteriocins Produced by Lactic-Acid Bacteria Isolated from Boza, a Cereal-Based Fermented Beverage from the Balkan Peninsula. Current Microbiol. 2006, 53(3), 209–216. DOI: 10.1007/s00284-006-0075-9.
  • Todorov, S. D.; Dicks, L. M. Bacteriocin Production by Lactobacillus Pentosus ST712BZ Isolated from Boza. Braz. J. Microbiol. 2007, 38(1), 166–172. DOI: 10.1590/S1517-83822007000100034.
  • Agaliya, P. J.; Jeevaratnam, K. Screening of Lactobacillus Plantarum Isolated from Fermented Idli Batter for Probiotic Properties. Afr. J. Biotechnol. 2012, 11(65), 12856–12864. DOI: 10.5897/AJB12.1825.
  • Iyer, B. K.; Singhal, R. S.; Ananthanarayan, L. Characterization and in vitro Probiotic Evaluation of Lactic Acid Bacteria Isolated from Idli Batter. J. Food Sci. Technol. 2013, 50(6), 1114–1121. DOI: 10.1007/s13197-011-0445-6.
  • Oyetayo, V. O.; Osho, B. Assessment of Probiotic Properties of a Strain of Lactobacillus Plantarum Isolated from Fermenting Corn Slurry (Ogi). J. Food Agric Environ. 2004, 2, 132–134.
  • Shaikh, A.; Siddique, I.; Shaikh, M.; Shetty, S. Isolation and Enumeration of Probiotic Microorganisms from Fermented Idli Batter. Afr. J. Biol. Sci. 2021, 3(3), 59–63. DOI: 10.33472/AFJBS.3.3.2021.59-63.
  • Devi, S. M.; Aishwarya, S.; Halami, P. M. Discrimination and Divergence Among Lactobacillus Plantarum-Group (LPG) Isolates with Reference to Their Probiotic Functionalities from Vegetable Origin. Syst. Appl. Microbiol. 2016, 39(8), 562–570. DOI: 10.1016/j.syapm.2016.09.005.
  • Yetiman, A. E.; Keskin, A.; Darendeli, B. N.; Kotil, S. E.; Ortakci, F.; Dogan, M. Characterization of Genomic, Physiological, and Probiotic Features Lactiplantibacillus plantarum DY46 Strain Isolated from Traditional Lactic Acid Fermented Shalgam Beverage. Food Biosci. 2022, 46, 101499. DOI: 10.1016/j.fbio.2021.101499.
  • Escobar-Ramírez, M. C.; Jaimez-Ordaz, J.; Escorza-Iglesias, V. A.; Rodríguez-Serrano, G. M.; Contreras-López, E.; Ramírez-Godínez, J.; González-Olivares, L. G. Lactobacillus Pentosus ABHEAU-05: An in vitro Digestion Resistant Lactic Acid Bacterium Isolated from a Traditional Fermented Mexican Beverage. Rev. Argent. Microbiol. 2020, 52(4), 305–314. DOI: 10.1016/j.ram.2019.10.005.
  • Won, S. M.; Chen, S.; Park, K. W.; Yoon, J. H. Isolation of Lactic Acid Bacteria from Kimchi and Screening of Lactobacillus Sakei ADM14 with Anti-Adipogenic Effect and Potential Probiotic Properties. LWT-Food Sci. Technol. 2020, 126, 109296. DOI: 10.1016/j.lwt.2020.109296.
  • Dallal, M. S.; Zamaniahari, S.; Davoodabadi, A.; Hosseini, M.; Rajabi, Z. Identification and Characterization of Probiotic Lactic Acid Bacteria Isolated from Traditional Persian Pickled Vegetables. GMS Hyg. Infect. Control. 2017, 12. DOI: 10.3205/dgkh000300.
  • Başdoğan, M. G. Determination of Probiotic Potential of Lactic Acid Bacteria Isolated from Pickles Produced Traditionally. Master Thesis, Graduate School of Natural and Applied Sciences, Izmir, Turkey, 2020.
  • Ahmad, A.; Yap, W. B.; Kofli, N. T.; Ghazali, A. R. Probiotic Potentials of Lactobacillus Plantarum Isolated from Fermented Durian (Tempoyak), a Malaysian Traditional Condiment. Food Sci. Nutr. 2018, 6(6), 1370–1377. DOI: 10.1002/fsn3.672.
  • Khalil, E. S.; Manap, A.; Yazid, M.; Mustafa, S.; Alhelli, A. M.; Shokryazdan, P. Probiotic Properties of Exopolysaccharide-Producing Lactobacillus Strains Isolated from Tempoyak. Molecules. 2018, 23(2), 398. DOI: 10.3390/molecules23020398.
  • Diguță, C. F.; Nițoi, G. D.; Matei, F.; Luță, G.; Cornea, C. P. The Biotechnological Potential of Pediococcus Spp. Isolated from Kombucha Microbial Consortium. Foods. 2020, 9(12), 1780. DOI: 10.3390/foods9121780.
  • Homayouni, A.; Norouzi, S. Evaluation of Physicochemical Traits, Sensory Properties and Survival of Lactobacillus Casei in Fermented Soy‐based Ice Cream. J. Food Process Preserv. 2016, 40(4), 681–687. DOI: 10.1111/jfpp.12648.
  • Fonseca, H. C.; de Sousa Melo, D.; Ramos, C. L.; Menezes, A. G. T.; Dias, D. R.; Schwan, R. F. Sensory and Flavor-Aroma Profiles of Passion Fruit Juice Fermented by Potentially Probiotic Lactiplantibacillus plantarum CCMA 0743 Strain. Food. Res. Int. 2022, 152, 110710. DOI: 10.1016/j.foodres.2021.110710.
  • Pehlivanoğlu, H.; Gündüz, H. H.; Demirci, M. An Investigation of Antimicrobial Activity of Wheat Grass Juice, Barley Grass Juice, Hardaliye and Boza. Int. Interdiscip. J. Sci. Res. 2015, 2(1), 1–7.
  • Moiseenko, K. V.; Glazunova, O. A.; Savinova, O. S.; Ajibade, B. O.; Ijabadeniyi, O. A.; Fedorova, T. V. Analytical Characterization of the Widely Consumed Commercialized Fermented Beverages from Russia (Kefir and Ryazhenka) and South Africa (Amasi and Mahewu): Potential Functional Properties and Profiles of Volatile Organic Compounds. Foods. 2021, 10(12), 3082. DOI: 10.3390/foods10123082.
  • Gambuś, H.; Mickowska, B.; Bartoń, H.; Augustyn, G.; Zięć, G.; Litwinek, D.; Berski, W. Health Benefits of Kvass Manufactured from Rye Wholemeal Bread. J. Microbiol. Biotechnol. Food Sci. 2021, 2015, 34–39. DOI: 10.15414/jmbfs.2015.4.special3.34-39.
  • Martinez-Villaluenga, C.; Peñas, E.; Sidro, B.; Ullate, M.; Frías, J.; Vidal-Valverde, C. White Cabbage Fermentation Improves Ascorbigen Content, Antioxidant and Nitric Oxide Production Inhibitory Activity in LPS-Induced Macrophages. LWT-Food Sci. Technol. 2012, 46(1), 77–83. DOI: 10.1016/j.lwt.2011.10.023.
  • Mizuta, A. G.; de Menezes, J. L.; Dutra, T. V.; Ferreira, T. V.; Castro, J. C.; da Silva, C. A. J.; de Abreu Filho, B. A. Evaluation of Antimicrobial Activity of Green Tea Kombucha at Two Fermentation Time Points Against Alicyclobacillus Spp. LWT-Food Sci. Technol. 2020, 130, 109641. DOI: 10.1016/j.lwt.2020.109641.
  • Michalak, M.; Szwajgier, D.; Paduch, R.; Kukula-Koch, W.; Waśko, A.; Polak-Berecka, M. Fermented Curly Kale as a New Source of Gentisic and Salicylic Acids with Antitumor Potential. J. Funct. Foods. 2020, 67, 103866. DOI: 10.1016/j.jff.2020.103866.
  • Cardoso, R. R.; Neto, R. O.; dos Santos D’Almeida, C. T.; Do Nascimento, T. P.; Pressete, C. G.; Azevedo, L.; de Barros, F. A. R. Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food. Res. Int. 2020, 128, 108782. DOI: 10.1016/j.foodres.2019.108782.
  • Susanto, S.; Sumarpo, A.; Parikesit, A. A.; Putra, A. B. N.; Ishida, E.; Tabuch, K.; Sugahara, T. Immunostimulatory Effect of Tempoyak (Fermented Durian) on Inducing Cytokine Production (IL-6 and TNF-?) by RAW 264.7 Cells. Biodivers. J. Biol. Divers. 2018, 19(1), 318–322. DOI: 10.13057/biodiv/d190143.
  • Kancabaş, A.; Karakaya, S. Angiotensin‐converting Enzyme (Ace)‐inhibitory Activity of Boza, a Traditional Fermented Beverage. J. Sci. Food Agric. 2013, 93(3), 641–645. DOI: 10.1002/jsfa.5883.
  • Hill, D.; Ross, R. P.; Arendt, E.; Stanton, C. Microbiology of Yogurt and Bio-Yogurts Containing Probiotics and Prebiotics. In Yogurt in Health and Disease Prevention, 1st ed.; Shah, N.P., Eds. Academic Press: London, 2017; pp 69–85. DOI: 10.1016/B978-0-12-805134-4.00004-3.
  • Song, S.; Jeong, A.; Lim, J.; Kim, B. K.; Park, D. J.; Oh, S. Lactiplantibacillus plantarum L67 Probiotics Vs Paraprobiotics for Reducing Pro‐inflammatory Responses in Colitis Mice. Int. J Dairy Technol. 2022. DOI: 10.1111/1471-0307.12933.
  • Cordeiro, B. F.; Alves, J. L.; Belo, G. A.; Oliveira, E. R.; Braga, M. P.; da Silva, S. H.; Do Carmo, F. L. Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Front. Microbiol. 2021, 12, 623920. DOI: 10.3389/fmicb.2021.623920.
  • Eor, J. Y.; Tan, P. L.; Son, Y. J.; Lee, C. S.; Kim, S. H. Milk Products Fermented by Lactobacillus Strains Modulate the Gut–Bone Axis in an Ovariectomised Murine Model. Int. J Dairy Technol. 2020, 73(4), 743–756. DOI: 10.1111/1471-0307.12708.
  • Lee, C. S.; Lee, S. H.; Kim, S. H. Bone‐protective Effects of Lactobacillus Plantarum B719‐fermented Milk Product. Int. J Dairy Technol. 2020, 73(4), 706–717. DOI: 10.1111/1471-0307.12701.
  • Gomes, I. A.; Venâncio, A.; Lima, J. P.; Freitas-Silva, O. Fruit-Based Non-Dairy Beverage: A New Approach for Probiotics. Adv. Biol. Chem. 2021, 11(6), 302–330. DOI: 10.4236/abc.2021.116021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.