1,766
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Insight into the Role of Melatonin in Mitigating Chilling Injury and Maintaining the Quality of Cold-Stored Fruits and Vegetables

, , , , &

References

  • Bellavia, A.; Larsson, S. C.; Bottai, M.; Wolk, A.; Orsini, N. Fruit and Vegetable Consumption and All-Cause Mortality: A Dose-Response Analysis. Am. J. Clin. Nut. 2013, 98(2), 454–459. DOI: 10.3945/ajcn.112.056119.
  • Singh, Z. Interventions to Minimise Postharvest Losses, Ensure the Quality and Safety of Tropical and Subtropical Fruits: An Overview. Acta Hortic. 2022, 1340, 1–12. DOI: 10.17660/ActaHortic.2022.1340.1.
  • Singh, S. P.; Singh, Z.; Swinny, E. E. Postharvest Nitric Oxide Fumigation Delays Fruit Ripening and Alleviates Chilling Injury During Cold Storage of Japanese Plums (Prunus salicina Lindell). Postharvest. Biol. Technol. 2009, 53(3), 101–108. DOI: 10.1016/j.postharvbio.2009.04.007.
  • Shewfelt, R. Response of Plant Membranes to Chilling and Freezing. In The Plant Membrane: A Biophysical Approach; Leshem, Y.Y., Ed.; Springer: Kluwer: Dordrecht, The Netherlands, 1992; pp. 192–219.
  • Zhang, W.; Jiang, H.; Cao, J.; Jiang, W. Advances in Biochemical Mechanisms and Control Technologies to Treat Chilling Injury in Postharvest Fruits and Vegetables. Trends Food Sci. Technol. 2021, 113, 355–365. DOI: 10.1016/j.tifs.2021.05.009.
  • Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M. H. The Science, Development, and Commercialization of Postharvest Biocontrol Products. Postharvest. Biol. Technol. 2016, 122, 22–29. DOI: 10.1016/j.postharvbio.2016.04.006.
  • Back, K.; Tan, D. X.; Reiter, R. J. Melatonin Biosynthesis in Plants: Multiple Pathways Catalyze Tryptophan to Melatonin in the Cytoplasm or Chloroplasts. J. Pin. Res. 2016, 61(4), 426–437. DOI: 10.1111/jpi.12364.
  • Wei, J.; Li, D. X.; Zhang, J. R.; Shan, C.; Rengel, Z.; Song, Z. B.; Chen, Q. Phytomelatonin Receptor PMTR1-Mediated Signaling Regulates Stomatal Closure in Arabidopsis thaliana. J. Pin. Res. 2018, 65(2), e12500. DOI: 10.1111/jpi.12500.
  • Madebo, M. P.; Hu, S.; Zheng, Y.; Jin, P. Mechanisms of Chilling Tolerance in Melatonin Treated Postharvest Fruits and Vegetables: A Review. J. Fut. Foods. 2021, 1(2), 156–167. DOI: 10.1016/j.jfutfo.2022.01.005.
  • Du, H.; Liu, G.; Hua, C.; Liu, D.; He, Y.; Liu, H.; Kurtenbach, R.; Ren, D. Exogenous Melatonin Alleviated Chilling Injury in Harvested Plum Fruit via Affecting the Levels of Polyamines Conjugated to Plasma Membrane. Postharvest. Biol. Technol. 2021, 179, 111585. DOI: 10.1016/j.postharvbio.2021.111585.
  • Xu, R.; Wang, L.; Li, K.; Cao, J.; Zhao, Z. Integrative Transcriptomic and Metabolomic Alterations Unravel the Effect of Melatonin on Mitigating Postharvest Chilling Injury Upon Plum (Cv. Friar) Fruit. Postharvest. Biol. Technol. 2022, 186, 111819. DOI: 10.1016/j.postharvbio.2021.111819.
  • Medina-Santamarina, J.; Serrano, M.; Lorente-Mento, J. M.; García-Pastor, M. E.; Zapata, P. J.; Valero, D.; Guillén, F. Melatonin Treatment of Pomegranate Trees Increases Crop Yield and Quality Parameters at Harvest and During Storage. Agron. 2021, 11(5), 861. DOI: 10.3390/agronomy11050861.
  • Jayarajan, S.; Sharma, R. Melatonin: A Blooming Biomolecule for Postharvest Management of Perishable Fruits and Vegetables. Trends Food Sci. Technol. 2021, 116, 318–328. DOI: 10.1016/j.tifs.2021.07.034.
  • Zhang, J.; Ma, Y.; Dong, C.; Terry, L. A.; Watkins, C. B.; Yu, Z.; Cheng, Z. M. Meta-Analysis of the Effects of 1-Methylcyclopropene (1-MCP) Treatment on Climacteric Fruit Ripening. Hortic. Res. 2020, 7(1), 208. DOI: 10.1038/s41438-020-00405-x.
  • Borenstein, M.; Hedges, L. V.; Higgins, J. P.; Rothstein, H. R. Introduction to Meta-Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021.
  • Chen, J.; He, L.; Jiang, Y.; Wang, Y.; Joyce, D. C.; Ji, Z.; Lu, W. Role of Phenylalanine Ammonia‐lyase in Heat Pretreatment‐induced Chilling Tolerance in Banana Fruit. Physiol. Planta. 2008, 132(3), 318–328. DOI: 10.1111/j.1399-3054.2007.01013.x.
  • Zaharah, S.; Singh, Z. Postharvest Nitric Oxide Fumigation Alleviates Chilling Injury, Delays Fruit Ripening and Maintains Quality in Cold-Stored ‘Kensington Pride’ Mango. Postharvest. Biol. Technol. 2011, 60(3), 202–210. DOI: 10.1016/j.postharvbio.2011.01.011.
  • Kong, X.; Ge, W.; Wei, B.; Zhou, Q.; Zhou, X.; Zhao, Y.; Ji, S. Melatonin Ameliorates Chilling Injury in Green Bell Peppers During Storage by Regulating Membrane Lipid Metabolism and Antioxidant Capacity. Postharvest. Biol. Technol. 2020, 170, 111315. DOI: 10.1016/j.postharvbio.2020.111315.
  • Lin, X.; Wang, L.; Hou, Y.; Zheng, Y.; Jin, P. A Combination of Melatonin and Ethanol Treatment Improves Postharvest Quality in Bitter Melon Fruit. Foods. 2020, 9(10), 1376. DOI: 10.3390/foods9101376.
  • Park, M. H.; Sangwanangkul, P.; Choi, J. W. Reduced Chilling Injury and Delayed Fruit Ripening in Tomatoes with Modified Atmosphere and Humidity Packaging. Sci. Hortic. 2018, 231, 66–72. DOI: 10.1016/j.scienta.2017.12.021.
  • Leisso, R. S.; Buchanan, D. A.; Lee, J.; Mattheis, J. P.; Sater, C.; Hanrahan, I.; Watkins, C. B.; Gapper, N.; Johnston, J. W.; Schaffer, R. J. Chilling-Related Cell Damage of Apple (Malus × domestica Borkh.) Fruit Cortical Tissue Impacts Antioxidant, Lipid and Phenolic Metabolism. Physiol. Planta. 2015, 153(2), 204–220. DOI: 10.1111/ppl.12244.
  • Stanley, J.; Prakash, R.; Marshall, R.; Schröder, R. Effect of Harvest Maturity and Cold Storage on Correlations Between Fruit Properties During Ripening of Apricot (Prunus armeniaca). Postharvest. Biol. Technol. 2013, 82, 39–50. DOI: 10.1016/j.postharvbio.2013.02.020.
  • Pesis, E.; Ackerman, M.; Ben-Arie, R.; Feygenberg, O.; Feng, X.; Apelbaum, A.; Goren, R.; Prusky, D. Ethylene Involvement in Chilling Injury Symptoms of Avocado During Cold Storage. Postharvest. Biol. Technol. 2002, 24(2), 171–181. DOI: 10.1016/S0925-5214(01)00134-X.
  • Nguyen, T. B. T.; Ketsa, S.; Van Doorn, W. G. Effect of Modified Atmosphere Packaging on Chilling-Induced Peel Browning in Banana. Postharvest. Biol. Technol. 2004, 31(3), 313–317. DOI: 10.1016/j.postharvbio.2003.09.006.
  • Molimau-Samasoni, S.; Vaavia, V.; Wills, R. B. Effect of Low Temperatures on the Storage Life of Two Samoan Breadfruit (Artocarpus altilis) Cultivars. J. Hortic. Postharvest Res. 2020, 3, 91–96. DOI: 10.22077/JHPR.2019.2912.1106.
  • Ali, Z. M.; Chin, L. H.; Marimuthu, M.; Lazan, H. Low Temperature Storage and Modified Atmosphere Packaging of Carambola Fruit and Their Effects on Ripening Related Texture Changes, Wall Modification and Chilling Injury Symptoms. Postharvest. Biol. Technol. 2004, 33(2), 181–192. DOI: 10.1016/j.postharvbio.2004.02.007.
  • Medina-Santamarina, J.; Guillén, F.; Ilea, M. I. M.; Ruiz-Aracil, M. C.; Valero, D.; Castillo, S.; Serrano, M. Melatonin Treatments Reduce Chilling Injury and Delay Ripening, Leading to Maintenance of Quality in Cherimoya Fruit. Int. J. Mol. Sci. 2023, 24(4), 3787. DOI: 10.3390/ijms24043787.
  • Fan, Z.; Lin, B.; Lin, H.; Lin, M.; Chen, J.; Lin, Y. γ-Aminobutyric Acid Treatment Reduces Chilling Injury and Improves Quality Maintenance of Cold-Stored Chinese Olive Fruit. Food Chem X. 2022, 13, 100208. DOI: 10.1016/j.fochx.2022.100208.
  • Wang, C. Y.; Wang, S. Y. Effect of Storage Temperatures on Fruit Quality of Various Cranberry Cultivars. Acta Hortic. 2009, 810(810), 853–862. DOI: 10.17660/ActaHortic.2009.810.114.
  • Prasanna, V. K.; Sudhakar, R. D.; Krishnamurthy, S. Effect of Storage Temperature on Ripening and Quality of Custard Apple (Annona squamosa L.) Fruits. J. Hortic. Sci. Biotechnol. 2000, 75(5), 546–550. DOI: 10.1080/14620316.2000.11511283.
  • Tongdee, S. C.; Suwanagul, A.; Neamprem, S.; Bunruengsri, U. Effect of Surface Coatings on Weight Loss and Internal Atmosphere of Durian (Durio zibethinus Murray) Fruit. ASEAN Food J. 1990, 5, 103–107.
  • McCollum, T.; McDonald, R. Electrolyte Leakage, Respiration, and Ethylene Production as Indices of Chilling Injury in Grapefruit. HortScience. 1991, 26(9), 1191–1192. DOI: 10.21273/HORTSCI.26.9.1191.
  • Alba-Jiménez, J.; Benito-Bautista, P.; Nava, G.; Rivera-Pastrana, D.; Vázquez-Barrios, M. E.; Mercado-Silva, E. Chilling Injury is Associated with Changes in Microsomal Membrane Lipids in Guava Fruit (Psidium guajava L.) and the Use of Controlled Atmospheres Reduce These Effects. Sci. Hortic. 2018, 240, 94–101. DOI: 10.1016/j.scienta.2018.05.026.
  • Kaur, J.; Singh, Z.; Shah, H. M. S.; Mazhar, M. S.; Hasan, M. U.; Woodward, A. Insights into Phytonutrient Profile and Postharvest Quality Management of Jackfruit: A Review. Crit. Rev. Food Sci. Nutr. 2023, 1–27. DOI: 10.1080/10408398.2023.2174947.
  • Zhang, J.; Wu, Z.; Ban, Z.; Li, L.; Chen, C.; Kowaleguet, M. G. G. M.; Chen, F.; Fei, L.; Wang, L. Exogenous Polyamines Alleviate Chilling Injury of Jujube Fruit (Zizyphus jujuba Mill). J. Food Proc. Pres. 2020, 44(10), e14746. DOI: 10.1111/jfpp.14746.
  • Jiao, J.; Jin, M.; Liu, H.; Suo, J.; Yin, X.; Zhu, Q.; Rao, J. Application of Melatonin in Kiwifruit (Actinidia chinensis) Alleviated Chilling Injury During Cold Storage. Sci. Hortic. 2022, 296, 110876. DOI: 10.1016/j.scienta.2022.110876.
  • Obenland, D.; Margosan, D.; Houck, L.; Aung, L. Essential Oils and Chilling Injury in Lemon. HortScience. 1997, 32(1), 108–111. DOI: 10.21273/HORTSCI.32.1.108.
  • Khan, A. S.; Singh, Z. Harvesting and postharvest management. In The Lime Botany: Production and Uses; Khan, Mumtaz M., Al-Yahyal, R., Al-Said, F. Eds. CAB International: Wallingford, UK, 2017; pp. 186–205.
  • Liu, G.; Zhang, Y.; Yun, Z.; Hu, M.; Liu, J.; Jiang, Y.; Zhang, Z. Melatonin Enhances Cold Tolerance by Regulating Energy and Proline Metabolism in Litchi Fruit. Foods. 2020, 9(4), 454. DOI: 10.3390/foods9040454.
  • Jaitrong, S.; Rattanapanone, N.; Manthey, J. A. Analysis of the Phenolic Compounds in Longan (Dimocarpus longan Lour.) Peel. Acta Hortic. 2006, 119, 371–375. DOI: 10.17660/ActaHortic.2005.682.208.
  • Shah, H. M. S.; Khan, A. S.; Singh, Z.; Ayyub, S. Postharvest Biology and Technology of Loquat (Eriobotrya japonica Lindl.). Foods. 2023, 12(6), 1329. DOI: 10.3390/foods12061329.
  • Ghasemnezhad, M.; Marsh, K.; Shilton, R.; Babalar, M.; Woolf, A. Effect of Hot Water Treatments on Chilling Injury and Heat Damage in ‘Satsuma’ Mandarins: Antioxidant Enzymes and Vacuolar ATPase, and Pyrophosphatase. Postharvest. Biol. Technol. 2008, 48(3), 364–371. DOI: 10.1016/j.postharvbio.2007.09.014.
  • Kebbeh, M.; Dong, J.; Chen, H.; Shen, S.; Yan, L.; Zheng, X. Melatonin Treatment Alleviates Chilling Injury in Mango Fruit ‘Keitt’ by Modulating Proline Metabolism Under Chilling Stress. J. Integ. Agric. 2023, 22(3), 935–944. DOI: 10.1016/j.jia.2023.02.008.
  • Kondo, S.; Jitratham, A.; Kittikorn, M.; Kanlayanarat, S. Relationships Between Jasmonates and Chilling Injury in Mangosteens are Affected by Spermine. HortScience. 2004, 39(6), 1346–1348. DOI: 10.21273/HORTSCI.39.6.1346.
  • Yang, C.; Han, B.; Zheng, Y.; Liu, L.; Li, C.; Sheng, S.; Zhang, J.; Wang, J.; Wu, F. The Quality Changes of Postharvest Mulberry Fruit Treated by Chitosan- g -Caffeic Acid during Cold Storage. J. Food Sci. 2016, 81(4), C881–888. DOI: 10.1111/1750-3841.13262.
  • Nanos, G.; Kiritsakis, A.; Sfakiotakis, E. Preprocessing Storage Conditions for Green ‘Conservolea’ and ‘Chondrolia’ Table Olives. Postharvest. Biol. Technol. 2002, 25(1), 109–115. DOI: 10.1016/S0925-5214(01)00164-8.
  • Aboryia, M.; Loay, A.; Omar, A. S. Reduction of Chilling Injury of ‘Washington’ Navel Orange Fruits by Melatonin Treatments During Cold Storage. Folia Hortic. 2021, 33(2), 343–353. DOI: 10.2478/fhort-2021-0026.
  • Pan, Y. G.; Yuan, M. Q.; Zhang, W. M.; Zhang, Z. K. Effect of Low Temperatures on Chilling Injury in Relation to Energy Status in Papaya Fruit During Storage. Postharvest. Biol. Technol. 2017, 125, 181–187. DOI: 10.1016/j.postharvbio.2016.11.016.
  • Gao, H.; Lu, Z.; Yang, Y.; Wang, D.; Yang, T.; Cao, M.; Cao, W. Melatonin Treatment Reduces Chilling Injury in Peach Fruit Through Its Regulation of Membrane Fatty Acid Contents and Phenolic Metabolism. Food Chem. 2018, 245, 659–666. DOI: 10.1016/j.foodchem.2017.10.008.
  • Salvador, A.; Arnal, L. A.; Monterde, A.; Cuquerella, J. N. Reduction of Chilling Injury Symptoms in Persimmon Fruit Cv. ‘Rojo Brillante’ by 1-MCP. Postharvest. Biol. Technol. 2004, 33(3), 285–291. DOI: 10.1016/j.postharvbio.2004.03.005.
  • Nilprapruck, P.; Pradisthakarn, N.; Authanithee, F.; Keebjan, P. Effect of Exogenous Methyl Jasmonate on Chilling Injury and Quality of Pineapple (Ananas comosus L.) Cv. Pattavia. Sci. Eng. Health Stud. 2008, 33–42. DOI: 10.14456/sustj.2008.9.
  • Freitas, S. T. D.; Mitcham, E. J. Quality of Pitaya Fruit (Hylocereus undatus) as Influenced by Storage Temperature and Packaging. Sci. Agric. 2013, 70(4), 257–262. DOI: 10.1590/S0103-90162013000400006.
  • Jannatizadeh, A. Exogenous Melatonin Applying Confers Chilling Tolerance in Pomegranate Fruit During Cold Storage. Sci. Hortic. 2019, 246, 544–549. DOI: 10.1016/j.scienta.2018.11.027.
  • Mirshekari, A.; Madani, B.; Yahia, E. M.; Golding, J. B.; Vand, S. H. Postharvest Melatonin Treatment Reduces Chilling Injury in Sapota Fruit. J. Sci. Food Agric. 2020, 100(5), 1897–1903. DOI: 10.1002/jsfa.10198.
  • Perkins-Veazie, P.; Collins, J.; McCollum, T.; Motes, J. Comparison of Asparagus Cultivars During Storage. HortTechnol. 1993, 3(3), 330–331. DOI: 10.21273/HORTTECH.3.3.330.
  • Song, L.; Zhang, W.; Li, Q.; Jiang, Z.; Wang, Y.; Xuan, S.; Zhao, J.; Luo, S.; Shen, S.; Chen, X. Melatonin Alleviates Chilling Injury and Maintains Postharvest Quality by Enhancing Antioxidant Capacity and Inhibiting Cell Wall Degradation in Cold-Stored Eggplant Fruit. Postharvest. Biol. Technol. 2022, 194, 112092. DOI: 10.1016/j.postharvbio.2022.112092.
  • Liu, Z.; Li, L.; Luo, Z.; Zeng, F.; Jiang, L.; Tang, K. Effect of Brassinolide on Energy Status and Proline Metabolism in Postharvest Bamboo Shoot During Chilling Stress. Postharvest. Biol. Technol. 2016, 111, 240–246. DOI: 10.1016/j.postharvbio.2015.09.016.
  • Raseetha, S.; Nadirah, S. Effect of Different Packaging Materials on Quality of Fresh-Cut Broccoli and Cauliflower at Chilled Temperature. Int. Food Res. J. 2018, 25(4), 1559–1565.
  • Xu, C. C.; Liu, D. K.; Guo, C. X.; Wu, Y. Q. Effect of Cooling Rate and Super-Chilling Temperature on Ice Crystal Characteristic, Cell Structure, and Physicochemical Quality of Super-Chilled Fresh-Cut Celery. Int. J. Refrig. 2020, 113, 249–255. DOI: 10.1016/j.ijrefrig.2020.01.024.
  • Sullivan, K. M.; Bramlage, W. J. Chilling Injury of Chile Peppers (Capsicum annuum L.). HortScience. 2000, 35(5), 829. DOI: 10.21273/HORTSCI.35.5.829B.
  • Madebo, M. P.; Luo, S.; Li, W.; Zheng, Y.; Peng, J. Melatonin Treatment Induces Chilling Tolerance by Regulating the Contents of Polyamine, γ-Aminobutyric Acid, and Proline in Cucumber Fruit. J. Integ. Agric. 2021, 20(11), 3060–3074. DOI: 10.1016/S2095-3119(20)63485-2.
  • Kaushal, M.; Gupta, A.; Vaidya, D.; Gupta, M. Postharvest Management and Value Addition of Ginger (Zingiber officinale Roscoe): A Review. Int. J. Environ. Agric. Biotech. 2017, 2(1), 397–412. DOI: 10.22161/ijeab/2.1.50.
  • Wang, J.; Mao, L.; Li, X.; Lv, Z.; Liu, C.; Huang, Y.; Li, D. Oxalic Acid Pretreatment Reduces Chilling Injury in Hami Melons (Cucumis melo Var. Reticulatus Naud.) by Regulating Enzymes Involved in Antioxidative Pathways. Sci. Hortic. 2018, 241, 201–208. DOI: 10.1016/j.scienta.2018.06.084.
  • Phornvillay, S.; Pongprasert, N.; Aree, W. C.; Uthairatanakij, A.; Srilaong, V. Exogenous Putrescine Treatment Delays Chilling Injury in Okra Pod (Abelmoschus esculentus) Stored at Low Storage Temperature. Sci. Hortic. 2019, 256, 108550. DOI: 10.1016/j.scienta.2019.108550.
  • Lukatkin, A. S.; Brazaityte, A.; Bobinas, C.; Duchovskis, P. Chilling Injury in Chilling-Sensitive Plants: A Review. Agric. 2012, 99, 111–124.
  • Zuo, X.; Cao, S.; Zhang, M.; Cheng, Z.; Cao, T.; Jin, P.; Zheng, Y. High Relative Humidity (HRH) Storage Alleviates Chilling Injury of Zucchini Fruit by Promoting the Accumulation of Proline and ABA. Postharvest. Biol. Technol. 2021, 171, 111344. DOI: 10.1016/j.postharvbio.2020.111344.
  • Karim, N. U.; Yusof, N. L. Effect of Vacuum Impregnation with Sucrose and Plant Growth Hormones to Mitigate the Chilling Injury in Spinach Leaves. Appl. Sci. 2021, 11(21), 10410. DOI: 10.3390/app112110410.
  • Pan, Y.; Chen, L.; Chen, X.; Jia, X.; Zhang, J.; Ban, Z.; Li, X. Postharvest Intermittent Heat Treatment Alleviates Chilling Injury in Cold‐stored Sweet Potato Roots Through the Antioxidant Metabolism Regulation. J. Food Proc. Pres. 2019, 43(12), e14274. DOI: 10.1111/jfpp.14274.
  • Azadshahraki, F.; Jamshidi, B.; Mohebbi, S. Postharvest Melatonin Treatment Reduces Chilling Injury and Enhances Antioxidant Capacity of Tomato Fruit During Cold Storage. Adv. Hortic. Sci. 2018, 32, 299–310. DOI: 10.13128/ahs-22260.
  • Habibi, F.; Ramezanian, A.; Guillén, F.; Martínez-Romero, D.; Serrano, M.; Valero, D. Susceptibility of Blood Orange Cultivars to Chilling Injury Based on Antioxidant System and Physiological and Biochemical Responses at Different Storage Temperatures. Foods. 2020, 9(11), 1609. DOI: 10.3390/foods9111609.
  • Wang, P.; Zhang, B.; Li, X.; Xu, C.; Yin, X.; Shan, L.; Ferguson, I.; Chen, K. Ethylene Signal Transduction Elements Involved in Chilling Injury in Non-Climacteric Loquat Fruit. J. Exp. Bot. 2010, 61(1), 179–190. DOI: 10.1093/jxb/erp302.
  • Phakawatmongkol, W.; Ketsa, S.; Van Doorn, W. G. Variation in Fruit Chilling Injury Among Mango Cultivars. Postharvest. Biol. Technol. 2004, 32(1), 115–118. DOI: 10.1016/j.postharvbio.2003.11.011.
  • Crisosto, C. H.; Mitchell, F. G.; Ju, Z. Susceptibility to Chilling Injury of Peach, Nectarine, and Plum Cultivars Grown in California. HortScience. 1999, 34(6), 1116–1118. DOI: 10.21273/HORTSCI.34.6.1116.
  • Biswas, P.; East, A. R.; Hewett, E. W.; Heyes, J. A. Chilling Injury in Tomato Fruit. Hortic. Rev. 2016, 44, 229–278. DOI: 10.1002/9781119281269.ch5.
  • Woolf, A. B.; Watkins, C. B.; Bowen, J. H.; Lay-Yee, M.; Maindonald, J. H.; Ferguson, I. B. Reducing External Chilling Injury in Stored ‘Hass’ Avocados with Dry Heat Treatments. J. Am. Soc. Hortic. Sci. 1995, 120(6), 1050–1056. DOI: 10.21273/JASHS.120.6.1050.
  • Shewfelt, R.; Del Rosario, B. The Role of Lipid Peroxidation in Storage Disorders of Fresh Fruits and Vegetables. HortScience. 2000, 35(4), 575–579. DOI: 10.21273/HORTSCI.35.4.575.
  • Aghdam, M. S.; Fard, J. R. Melatonin Treatment Attenuates Postharvest Decay and Maintains Nutritional Quality of Strawberry Fruits (Fragaria × anannasa Cv. Selva) by Enhancing GABA Shunt Activity. Food Chem. 2017, 221, 1650–1657. DOI: 10.1016/j.foodchem.2016.10.123.
  • Savchenko, T.; Tikhonov, K. Oxidative Stress-Induced Alteration of Plant Central Metabolism. Life. 2021, 11(4), 304. DOI: 10.3390/life11040304.
  • Medina-Santamarina, J.; Zapata, P. J.; Valverde, J. M.; Valero, D.; Serrano, M.; Guillén, F. Melatonin Treatment of Apricot Trees Leads to Maintenance of Fruit Quality Attributes During Storage at Chilling and Non-Chilling Temperatures. Agron. 2021, 11(5), 917. DOI: 10.3390/agronomy11050917.
  • Dong, Q.; Liu, H.; Kurtenbach, R. Polyamines in Plasma Membrane Function in Melatonin-Mediated Tolerance of Apricot Fruit to Chilling Stress. Czech J. Food Sci. 2022, 40(4), 313–322. DOI: 10.17221/74/2022-CJFS.
  • Wang, Z.; Pu, H.; Shan, S.; Zhang, P.; Li, J.; Song, H.; Xu, X. Melatonin Enhanced Chilling Tolerance and Alleviated Peel Browning of Banana Fruit Under Low Temperature Storage. Postharvest. Biol. Technol. 2021, 179, 111571. DOI: 10.1016/j.postharvbio.2021.111571.
  • Wang, Z.; Zhang, L.; Duan, W.; Li, W.; Wang, Q.; Li, J.; Song, H.; Xu, X. Melatonin Maintained Higher Contents of Unsaturated Fatty Acid and Cell Membrane Structure Integrity in Banana Peel and Alleviated Postharvest Chilling Injury. Food Chem. 2022, 397, 133836. DOI: 10.1016/j.foodchem.2022.133836.
  • Chen, H.; Lin, H.; Jiang, X.; Lin, M.; Fan, Z. Amelioration of Chilling Injury and Enhancement of Quality Maintenance in Cold-Stored Guava Fruit by Melatonin Treatment. Food Chem X. 2022, 14, 100297. DOI: 10.1016/j.fochx.2022.100297.
  • Bhardwaj, R.; Pareek, S.; Mani, S.; Domínguez-Avila, J. A.; González-Aguilar, G. A.; Aguayo, E. A Melatonin Treatment Delays Postharvest Senescence, Maintains Quality, Reduces Chilling Injury, and Regulates Antioxidant Metabolism in Mango Fruit. J. Food Qual. 2022, 2022, 2022. DOI: 10.1155/2022/2379556.
  • Bhardwaj, R.; Pareek, S.; Saravanan, C.; Yahia, E. M. Contribution of Pre-Storage Melatonin Application to Chilling Tolerance of Some Mango Fruit Cultivars and Relationship with Polyamines Metabolism and γ-Aminobutyric Acid Shunt Pathway. Environ. Exp. Bot. 2022, 194, 104691. DOI: 10.1016/j.envexpbot.2021.104691.
  • Bhardwaj, R.; Pareek, S.; Domínguez-Avila, J. A.; Gonzalez-Aguilar, G. A.; Valero, D.; Serrano, M. An Exogenous Pre-Storage Melatonin Alleviates Chilling Injury in Some Sango Fruit Cultivars, by Acting on the Enzymatic and Non-Enzymatic Antioxidant System. Antioxidants. 2022, 11(2), 384. DOI: 10.3390/antiox11020384.
  • Bhardwaj, R.; Pareek, S.; González-Aguilar, G. A.; Domínguez-Avila, J. A. Changes in the Activity of Proline-Metabolising Enzymes is Associated with Increased Cultivar-Dependent Chilling Tolerance in Mangos, in Response to Pre-Storage Melatonin Application. Postharvest. Biol. Technol. 2021, 182, 111702. DOI: 10.1016/j.postharvbio.2021.111702.
  • Xu, P.; Huber, D. J.; Gong, D.; Yun, Z.; Pan, Y.; Jiang, Y.; Zhang, Z. Amelioration of Chilling Injury in ‘Guifei’ Mango Fruit by Melatonin is Associated with Regulation of Lipid Metabolic Enzymes and Remodeling of Lipidome. Postharvest. Biol. Technol. 2023, 198, 112233. DOI: 10.1016/j.postharvbio.2022.112233.
  • Bal, E. Effect of Melatonin Treatments on Biochemical Quality and Postharvest Life of Nectarines. J. Food Meas. Charact. 2021, 15(1), 288–295. DOI: 10.1007/s11694-020-00636-5.
  • Cao, S.; Shao, J.; Shi, L.; Xu, L.; Shen, Z.; Chen, W.; Yang, Z. Melatonin Increases Chilling Tolerance in Postharvest Peach Fruit by Alleviating Oxidative Damage. Sci. Rep. 2018, 8(1), 1–11. DOI: 10.1038/s41598-018-19363-5.
  • Cao, S.; Song, C.; Shao, J.; Bian, K.; Chen, W.; Yang, Z. Exogenous Melatonin Treatment Increases Chilling Tolerance and Induces Defense Response in Harvested Peach Fruit During Cold Storage. J. Agric. Food. Chem. 2016, 64(25), 5215–5222. DOI: 10.1021/acs.jafc.6b01118.
  • Guillén, F.; Medina-Santamarina, J.; García-Pastor, M. E.; Chen, N. J.; Uruu, G.; Paull, R. E. Postharvest Melatonin Treatment Delays Senescence and Increases Chilling Tolerance in Pineapple. LWT. 2022, 169, 113989. DOI: 10.1016/j.lwt.2022.113989.
  • Molla, S. M. H.; Rastegar, S.; Omran, V. G.; Khademi, O. Ameliorative Effect of Melatonin Against Storage Chilling Injury in Pomegranate Husk and Arils Through Promoting the Antioxidant System. Sci. Hortic. 2022, 295, 110889. DOI: 10.1016/j.scienta.2022.110889.
  • Wang, L.; Shen, X.; Chen, X.; Ouyang, Q.; Tan, X.; Tao, N. Exogenous Application of Melatonin to Green Horn Pepper Fruit Reduces Chilling Injury During Postharvest Cold Storage by Regulating Enzymatic Activities in the Antioxidant System. Plants. 2022, 11(18), 2367. DOI: 10.3390/plants11182367.
  • Aghdam, M. S.; Luo, Z.; Jannatizadeh, A.; Sheikh-Assadi, M.; Sharafi, Y.; Farmani, B.; Fard, J. R.; Razavi, F. Employing Exogenous Melatonin Applying Confers Chilling Tolerance in Tomato Fruits by Upregulating ZAT2/6/12 Giving Rise to Promoting Endogenous Polyamines, Proline, and Nitric Oxide Accumulation by Triggering Arginine Pathway Activity. Food Chem. 2019, 275, 549–556. DOI: 10.1016/j.foodchem.2018.09.157.
  • Jannatizadeh, A.; Aghdam, M. S.; Luo, Z.; Razavi, F. Impact of Exogenous Melatonin Application on Chilling Injury in Tomato Fruits During Cold Storage. Food Bioproc. Technol. 2019, 12(5), 741–750. DOI: 10.1007/s11947-019-2247-1.
  • Luo, Y.; Wang, R.; Lei, X.; Ren, Y.; Yuan, C. Melatonin Treatment Delays Senescence and Alleviates Chilling Injury in Spaghetti Squash During Low-Temperature Storage. Sci. Hortic. 2023, 310, 111778. DOI: 10.1016/j.scienta.2022.111778.
  • Cao, S.; Bian, K.; Shi, L.; Chung, H.; Chen, W.; Yang, Z. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit. J. Agric. Food. Chem. 2018, 66(22), 5663–5670. DOI: 10.1021/acs.jafc.8b02055.
  • Singh, S. P.; Singh, Z. Controlled and Modified Atmospheres Influence Chilling Injury, Fruit Quality and Antioxidative System of Japanese Plums (Prunus salicina Lindell). Int. J. Food Sci. 2013, 48(2), 363–374. DOI: 10.1111/j.1365-2621.2012.03196.x.
  • Gao, H.; Zhang, Z. K.; Chai, H. K.; Cheng, N.; Yang, Y.; Wang, D. N.; Yang, T.; Cao, W. Melatonin Treatment Delays Postharvest Senescence and Regulates Reactive Oxygen Species Metabolism in Peach Fruit. Postharvest. Biol. Technol. 2016, 118, 103–110. DOI: 10.1016/j.postharvbio.2016.03.006.
  • Sun, Q.; Liu, L.; Zhang, L.; Lv, H.; He, Q.; Guo, L.; Zhang, X.; He, H.; Ren, S.; Zhang, N. Melatonin Promotes Carotenoid Biosynthesis in an Ethylene-Dependent Manner in Tomato Fruits. Plant Sci. 2020, 298, 110580. DOI: 10.1016/j.plantsci.2020.110580.
  • Arabia, A.; Munne-Bosch, S.; Muñoz, P. Melatonin Triggers Tissue-Specific Changes in Anthocyanin and Hormonal Contents During Postharvest Decay of Angeleno Plums. Plant Sci. 2022, 320, 111287. DOI: 10.1016/j.plantsci.2022.111287.
  • Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002, 7(9), 405–410. DOI: 10.1016/S1360-1385(02)02312-9.
  • Shah, H. M. S.; Khan, A. S.; Ali, S. Pre-Storage Kojic Acid Application Delays Pericarp Browning and Maintains Antioxidant Activities of Litchi Fruit. Postharvest. Biol. Technol. 2017, 132, 154–161. DOI: 10.1016/j.postharvbio.2017.06.004.
  • Wang, X.; Liang, D.; Xie, Y.; Lv, X.; Wang, J.; Xia, H. Melatonin Application Increases Accumulation of Phenol Substances in Kiwifruit During Storage. Emir. J. Food Agric. 2019, 361–367. DOI: 10.9755/ejfa.2019.v31.i5.1954.
  • Wang, L.; Luo, Z.; Yang, M.; Li, D.; Qi, M.; Xu, Y.; Abdelshafy, A. M.; Ban, Z.; Wang, F.; Li, L. Role of Exogenous Melatonin in Table Grapes: First Evidence on Contribution to the Phenolics-Oriented Response. Food Chem. 2020, 329, 127155. DOI: 10.1016/j.foodchem.2020.127155.
  • Gupta, K.; Dey, A.; Gupta, B. Plant Polyamines in Abiotic Stress Responses. Acta Physiol. Plant. 2013, 35(7), 2015–2036. DOI: 10.1007/s11738-013-1239-4.
  • Galston, A. W.; Kaur-Sawhney, R. Polyamines as Endogenous Growth Regulators. In Plant Hormones; Davis, P.J., Ed.; Springer: Dordrecht, Netherlands, 1995; pp. 158–178.
  • Zhang, X.; Ji, N.; Zhen, F.; Ren, P.; Li, F. Metabolism of Endogenous Arginine in Tomato Fruit Harvested at Different Ripening Stages. Sci. Hortic. 2014, 179, 349–355. DOI: 10.1016/j.scienta.2014.09.045.
  • Cona, A.; Rea, G.; Angelini, R.; Federico, R.; Tavladoraki, P. Functions of Amine Oxidases in Plant Development and Defence. Trends Plant Sci. 2006, 11(2), 80–88. DOI: 10.1016/j.tplants.2005.12.009.
  • Bogoyevitch, M. A.; Fairlie, D. P. A New Paradigm for Protein Kinase Inhibition: Blocking Phosphorylation Without Directly Targeting ATP Binding. Drug Discov. Tod. 2007, 12(15–16), 622–633. DOI: 10.1016/j.drudis.2007.06.008.
  • Jin, P.; Zhu, H.; Wang, J.; Chen, J.; Wang, X.; Zheng, Y. Effect of Methyl Jasmonate on Energy Metabolism in Peach Fruit During Chilling Stress. J. Sci. Food Agric. 2013, 93(8), 1827–1832. DOI: 10.1002/jsfa.5973.
  • Alves, G.; Ameglio, T.; Guilliot, A.; Fleurat-Lessard, P.; Lacointe, A.; Sakr, S.; Petel, G.; Julien, J. L. Winter Variation in Xylem Sap pH of Walnut Trees: Involvement of Plasma Membrane H+-ATPase of Vessel-Associated Cells. Tree Physiol. 2004, 24(1), 99–105. DOI: 10.1093/treephys/24.1.99.
  • Hartman, S.; Sasidharan, R.; Voesenek, L. A. The Role of Ethylene in Metabolic Acclimations to Low Oxygen. N. Phytol. 2021, 229(1), 64–70. DOI: 10.1111/nph.16378.
  • Bailey-Serres, J.; Fukao, T.; Gibbs, D. J.; Holdsworth, M. J.; Lee, S. C.; Licausi, F.; Perata, P.; Voesenek, L. A.; van Dongen, J. T. Making Sense of Low Oxygen Sensing. Trends Plant Sci. 2012, 17(3), 129–138. DOI: 10.1016/j.tplants.2011.12.004.
  • Chaban, Y.; Boekema, E. J.; Dudkina, N. V. Structures of Mitochondrial Oxidative Phosphorylation Supercomplexes and Mechanisms for Their Stabilisation. Biochim. Biophys. Acta Bioenerg. 2014, 1837(4), 418–426. DOI: 10.1016/j.bbabio.2013.10.004.
  • Luo, S.; Hu, H.; Wang, Y.; Zhou, H.; Zhang, Y.; Zhang, L.; Li, P. The Role of Melatonin in Alleviating the Postharvest Browning of Lotus Seeds Through Energy Metabolism and Membrane Lipid Metabolism. Postharvest. Biol. Technol. 2020, 167, 111243. DOI: 10.1016/j.postharvbio.2020.111243.
  • Dong, J.; Kebbeh, M.; Yan, R.; Huan, C.; Jiang, T.; Zheng, X. Melatonin Treatment Delays Ripening in Mangoes Associated with Maintaining the Membrane Integrity of Fruit Exocarp During Postharvest. Plant Physiol. Biochem. 2021, 169, 22–28. DOI: 10.1016/j.plaphy.2021.10.038.
  • Sabehat, A.; Lurie, S.; Weiss, D. Expression of Small Heat-Shock Proteins at Low Temperatures: A Possible Role in Protecting Against Chilling Injuries. Plant Physiol. 1998, 117(2), 651–658. DOI: 10.1104/pp.117.2.651.
  • Bush, D. S. Regulation of Cytosolic Calcium in Plants. Plant Physiol. 1993, 103(1), 7. DOI: 10.1104/pp.103.1.7.
  • Xin, D.; Si, J.; Kou, L. Postharvest Exogenous Melatonin Enhances Quality and Delays the Senescence of Cucumber. Acta Hortic. Sin. 2017, 44, 891–901.
  • Zhang, Y.; Huber, D. J.; Hu, M.; Jiang, G.; Gao, Z.; Xu, X.; Jiang, Y.; Zhang, Z. Delay of Postharvest Browning in Litchi Fruit by Melatonin via the Enhancing of Antioxidative Processes and Oxidation Repair. J. Agric. Food. Chem. 2018, 66(28), 7475–7484. DOI: 10.1021/acs.jafc.8b01922.
  • Liu, C.; Zheng, H.; Sheng, K.; Liu, W.; Zheng, L. Effects of Melatonin Treatment on the Postharvest Quality of Strawberry Fruit. Postharvest. Biol. Technol. 2018, 139, 47–55. DOI: 10.1016/j.postharvbio.2018.01.016.
  • Wang, F.; Zhang, X.; Yang, Q.; Zhao, Q. Exogenous Melatonin Delays Postharvest Fruit Senescence and Maintains the Quality of Sweet Cherries. Food Chem. 2019, 301, 125311. DOI: 10.1016/j.foodchem.2019.125311.
  • Meng, J. F.; Xu, T. F.; Song, C. Z.; Yu, Y.; Hu, F.; Zhang, L.; Zhang, Z. W.; Xi, Z. M. Melatonin Treatment of Pre-Veraison Grape Berries to Increase Size and Synchronicity of Berries and Modify Wine Aroma Components. Food Chem. 2015, 185, 127–134. DOI: 10.1016/j.foodchem.2015.03.140.
  • Wang, L.; Luo, Z.; Ban, Z.; Jiang, N.; Yang, M.; Li, L. Role of Exogenous Melatonin Involved in Phenolic Metabolism of Zizyphus jujuba Fruit. Food Chem. 2021, 341, 128268. DOI: 10.1016/j.foodchem.2020.128268.
  • R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on December 14, 2022).
  • Balduzzi, S.; Rücker, G.; Schwarzer, G. How to Perform a Meta-Analysis with R: A Practical Tutorial. Evid. Based Ment. Health. 2019, 22(4), 153–160. DOI: 10.1136/ebmental-2019-300117.