346
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Advantages and Disadvantages of Using Emerging Technologies to Increase Postharvest Life of Fruits and Vegetables

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Mostafidi, M.; Sanjabi, M. R.; Shirkhan, F.; Zahedi, M. T. A Review of Recent Trends in the Development of the Microbial Safety of Fruits and Vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. DOI: 10.1016/j.tifs.2020.07.009.
  • Salami, S. A.; Luciano, G.; O’Grady, M. N.; Biondi, L.; Newbold, C. J.; Kerry, J. P.; Priolo, A. Sustainability of Feeding Plant By-Products: A Review of the Implications for Ruminant Meat Production. Anim. Feed Sci. Technol. 2019, 251, 37–55. DOI: 10.1016/j.anifeedsci.2019.02.006.
  • Nerín, C.; Aznar, M.; Carrizo, D. Food Contamination During Food Process. Trends Food Sci. Technol. 2016, 48, 63–68. DOI: 10.1016/j.tifs.2015.12.004.
  • Han, J. W.; Ruiz-Garcia, L.; Qian, J. P.; Yang, X. T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17(4), 860–877. DOI: 10.1111/1541-4337.12343.
  • Sousa-Gallagher, M. J.; Tank, A.; Sousa, R. Emerging Technologies to Extend the Shelf Life and Stability of Fruits and Vegetables. In The Stability and Shelf Life of Food; Subramaniam, P., Ed.; Woodhead Publishing: New Delhi, India, 2016; pp. 399–430.
  • Atuonwu, J. C.; Leadley, C.; Bosman, A.; Tassou, S. A.; Lopez-Quiroga, E.; Fryer, P. J. Comparative Assessment of Innovative and Conventional Food Preservation Technologies: Process Energy Performance and Greenhouse Gas Emissions. Innov. Food Sci. Emerg. Technol. 2018, 50, 174–187. DOI: 10.1016/j.ifset.2018.09.008.
  • Jermann, C.; Koutchma, T.; Margas, E.; Leadley, C.; Ros-Polski, V. Mapping Trends in Novel and Emerging Food Processing Technologies Around the World. Innov. Food Sci. Emerg. Technol. 2015, 31, 14–27. DOI: 10.1016/j.ifset.2015.06.007.
  • Salinas-Hernández, R. M.; González-Aguilar, G. A.; Pirovani, M. E.; Ulín-Montejo, F. Modelling Deterioration of Fresh-Cut Vegetables. Univ. Ciencia. 2007, 23, 183–196.
  • Yahia, E. M.; Fonseca, J. M.; Kitinoja, L. Postharvest Losses and Waste. In Postharvest Technology of Perishable Horticultural Commodities; Yahia, E.M., Ed.; Cambridge, UK: Woodhead Publishing, 2019; pp. 43–69.
  • Leneveu-Jenvrin, C.; Charles, F.; Barba, F. J.; Remize, F. Role of Biological Control Agents and Physical Treatments in Maintaining the Quality of Fresh and Minimally-Processed Fruit and Vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60(17), 2837–2855. DOI: 10.1080/10408398.2019.1664979.
  • James, A.; Zikankuba, V. Postharvest Management of Fruits and Vegetable: A Potential for Reducing Poverty, Hidden Hunger and Malnutrition in Sub-Sahara Africa. Cogent Food & Agri. 2017, 3(1), 1312052. DOI: 10.1080/23311932.2017.1312052.
  • Vargas-González, G.; Alvarez-Reyna, V. P.; Guigón-López, C.; Cano-Ríos, P.; Jiménez-Díaz, F.; Vásquez-Arroyo, J.; García-Carrillo, M. Pattern of Use High Risk Pesticides in the Crop of Melon (Cucumis Melo L.) in the Comarca Lagunera. Ecosistemas Rec. Agrop. 2016, 3, 367–378.
  • Del Puerto-Rodríguez, A. M.; Suárez-Tamayo, S.; Palacio-Estrada, D. E. Effects of Pesticides on Health and the Environment. Rev. Cubana Hig. Epidemiol. 2014, 52, 372–387.
  • Ramírez-Jiménez, R.; Oregel-Zamudio, E. Preliminary Study for the Determination of Pesticides in Vegetables Marketed in a Zone of Michoacán (México). Rev. Ciencias Ambient. 2018, 52, 39–56.
  • Yang, R.; Huang, X.; Che, Z.; Zhang, Y.; Xu, H. Application of Sustainable Natural Resources in Crop Protection: Podophyllotoxin-Based Botanical Pesticides Derived from Podophyllum Hexandrum for Controlling Crop-Threatening Insect Pests. Ind. Crop Prod. 2017, 107, 45–53. DOI: 10.1016/j.indcrop.2017.05.033.
  • Yang, R.; Xu, T.; Fan, J.; Zhang, Q.; Ding, M.; Huang, M.; Deng, L.; Lu, Y.; Guo, Y. Natural Products-Based Pesticides: Design, Synthesis and Pesticidal Activities of Novel Fraxinellone Derivatives Containing N-Phenylpyrazole Moiety. Ind. Crop Prod. 2018, 117, 50–57. DOI: 10.1016/j.indcrop.2018.02.088.
  • Batish, D. R.; Singh, H. P.; Kohli, R. K.; Kaur, S. Eucalyptus Essential Oil as a Natural Pesticide. For. Ecol. Manag. 2008, 256(12), 2166–2174. DOI: 10.1016/j.foreco.2008.08.008.
  • Rashwan, R. S.; Hammad, D. M. Toxic Effect of Spirulina Platensis and Sargassum Vulgar as Natural Pesticides on Survival and Biological Characteristics of Cotton Leaf Worm Spodoptera Littoralis. Sci. Afr. 2020, 8, e00323. DOI: 10.1016/j.sciaf.2020.e00323.
  • Kuchi, V. S.; Ilahy, R.; Siddiqui, M. W. Commercial Disinfectants in Skirmishing Postharvest Diseases. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Cambridge, USA: Academic Press, 2018; pp. 273–292.
  • Cengiz, M. F.; Certel, M. Effects of Chlorine, Hydrogen Peroxide, and Ozone on the Reduction of Mancozeb Residues on Tomatoes. Turk. J. Agric. For. 2014, 38, 371–376. DOI: 10.3906/tar-1307-14.
  • Chen, Y.; Xie, H.; Tang, J.; Lin, M.; Hung, Y. C.; Lin, H. Effects of Acidic Electrolyzed Water Treatment on Storability, Quality Attributes and Nutritive Properties of Longan Fruit During Storage. Food Chem. 2020, 320, 126641. DOI: 10.1016/j.foodchem.2020.126641.
  • Ippolito, A.; Mincuzzi, A.; Surano, A.; Youssef, K.; Sanzani, S. M. Electrolyzed Water as a Potential Agent for Controlling Postharvest Decay of Fruits and Vegetables. In Postharvest Pathology; Spadaro, D., Droby, S. and Gullino, M.L., Eds.; Cham, Switzerland: Springer, Cham, 2021; pp. 181–202.
  • Sun, J.; Chen, H.; Xie, H.; Li, M.; Chen, Y.; Hung, Y. C.; Lin, H. Acidic Electrolyzed Water Treatment Retards Softening and Retains Cell Wall Polysaccharides in Pulp of Postharvest Fresh Longans and Its Possible Mechanism. Food Chem. X. 2022, 13, 100265. DOI: 10.1016/j.fochx.2022.100265.
  • Jia, L.; Li, Y.; Liu, G.; He, J. Acidic Electrolyzed Water Improves the Postharvest Quality of Jujube Fruit by Regulating Antioxidant Activity and Cell Wall Metabolism. Sci. Hortic. 2022, 304, 111253. DOI: 10.1016/j.scienta.2022.111253.
  • Mahajan, P. V.; Caleb, O. J.; Singh, Z.; Watkins, C. B.; Geyer, M. Postharvest Treatments of Fresh Produce. Philos. Trans. Royal Soc. A. 2014, 372(2017), 20130309. DOI: 10.1098/rsta.2013.0309.
  • Yang, R.; Han, Y.; Han, Z.; Ackah, S.; Li, Z.; Bi, Y.; Yang, Q.; Prusky, D. Hot Water Dipping Stimulated Wound Healing of Potato Tubers. Postharvest. Biol. Technol. 2020, 167, 111245. DOI: 10.1016/j.postharvbio.2020.111245.
  • El Hamahmy, M. A. M.; ElSayed, A. I.; Odero, D. C. Physiological Effects of Hot Water Dipping, Chitosan Coating and Gibberellic Acid on Shelf-Life and Quality Assurance of Sugar Snap Peas (Pisum Sativum L. Var. Macrocarpon). Food Packag. Shelf Life. 2017, 11, 58–66. DOI: 10.1016/j.fpsl.2016.12.002.
  • Endo, H.; Miyazaki, K.; Ose, K.; Imahori, Y. Hot Water Treatment to Alleviate Chilling Injury and Enhance Ascorbate-Glutathione Cycle in Sweet Pepper Fruit During Postharvest Cold Storage. Sci. Hortic. 2019, 257, 108715. DOI: 10.1016/j.scienta.2019.108715.
  • Dimitris, L.; Pompodakis, N.; Markellou, E.; Lionakis, S. M. Storage Response of Cactus Pear Fruit Following Hot Water Brushing. Postharvest. Biol. Technol. 2005, 38(2), 145–151. DOI: 10.1016/j.postharvbio.2005.06.006.
  • James, C.; Seignemartin, V.; James, S. J. The Freezing and Supercooling of Garlic (Allium Sativum L.). Intern. J. Refrig. 2009, 32(2), 253–260. DOI: 10.1016/j.ijrefrig.2008.05.012.
  • Celli, G. B.; Ghanem, A.; Su-Ling, B. M. Influence of Freezing Process and Frozen Storage on Fruits and Fruit Products Quality. Food Rev. Int. 2015, 32(3), 280–304. DOI: 10.1080/87559129.2015.1075212.
  • Liu, D. K.; Xu, C. C.; Guo, C. X.; Zhang, X. X. Sub-Zero Temperature Preservation of Fruits and Vegetables: A Review. J. Food Eng. 2020, 275, 109881. DOI: 10.1016/j.jfoodeng.2019.109881.
  • Feliziani, E.; Lichter, A.; Smilanick, J. L.; Ippolito, A. Disinfecting Agents for Controlling Fruit and Vegetable Diseases After Harvest. Postharvest. Biol. Technol. 2016, 122, 53–69. DOI: 10.1016/j.postharvbio.2016.04.016.
  • Maisanaba, S.; Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Puerto, M.; Prieto, A. I.; Jos, A.; Cameán, A. M. New Advances in Active Packaging Incorporated with Essential Oils or Their Main Components for Food Preservation. Food Rev. Int. 2017, 33(5), 447–515. DOI: 10.1080/87559129.2016.1175010.
  • Ngnitcho, P. F. K.; Khan, I.; Tango, C. N.; Hussain, M. S.; Oh, D. H. Inactivation of Bacterial Pathogens on Lettuce, Sprouts, and Spinach Using Hurdle Technology. Innov. Food Sci. Emerg. Technol. 2017, 43, 68–76. DOI: 10.1016/j.ifset.2017.07.033.
  • Ramos-Villarroel, A. Y.; Martín-Belloso, O.; Soliva-Fortuny, R. Combined Effects of Malic Acid Dip and Pulsed Light Treatments on the Inactivation of Listeria Innocua and Escherichia coli on Fresh-Cut Produce. Food Control. 2015, 52, 112–118. DOI: 10.1016/j.foodcont.2014.12.020.
  • Bhargava, K.; Conti, D. S.; da Rocha, S. R. P.; Zhang, Y. Application of an Oregano Oil Nanoemulsion to the Control of Foodborne Bacteria on Fresh Lettuce. Food Microbiol. 2015, 47, 69–73. DOI: 10.1016/j.fm.2014.11.007.
  • Salvia-Trujillo, L.; Rojas-Graü, M. A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of Antimicrobial Nanoemulsions as Edible Coatings: Impact on Safety and Quality Attributes of Fresh-Cut Fuji Apples. Postharvest. Biol. Technol. 2015, 105, 8–16. DOI: 10.1016/j.postharvbio.2015.03.009.
  • Gao, M.; Feng, L.; Jiang, T. Browning Inhibition and Quality Preservation of Button Mushroom (Agaricus bisporus) by Essential Oils Fumigation Treatment. Food Chem. 2014, 149, 107–113. DOI: 10.1016/j.foodchem.2013.10.073.
  • Morales-de la Peña, M.; Welti-Chanes, J.; Martín-Belloso, O. Novel Technologies to Improve Food Safety and Quality. Curr. Opin. Food Sci. 2019, 30, 1–7. DOI: 10.1016/j.cofs.2018.10.009.
  • Yamamoto, K. Food Processing by High Hydrostatic Pressure. Bioscience, Biotechnol. Biochem. 2017, 81(4), 672–679. DOI: 10.1080/09168451.2017.1281723.
  • Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Effect of High Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture. 2017, 7(9), 72. DOI: 10.3390/agriculture7090072.
  • Hu, K.; Peng, D.; Wang, L.; Liu, H.; Xie, B.; Sun, Z. Effect of Mild High Hydrostatic Pressure Treatments on Physiological and Physicochemical Characteristics and Carotenoid Biosynthesis in Postharvest Mango. Postharvest. Biol. Technol. 2021, 172, 111381. DOI: 10.1016/j.postharvbio.2020.111381.
  • Rux, G.; Gelewsky, R.; Schlüter, O.; Herppich, W. B. High Hydrostatic Pressure Effects on Membrane-Related Quality Parameters of Fresh Radish Tubers. Postharvest. Biol. Technol. 2019, 151, 1–9. DOI: 10.1016/j.postharvbio.2019.01.007.
  • Viacava, F.; Ortega-Hernández, E.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. A. Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots. Food Bio. process Technol. 2020, 13(10), 1717–1727. DOI: 10.1007/s11947-020-02512-y.
  • Xie, F.; Zhang, W.; Lan, X.; Gong, S.; Wu, J.; Wang, Z. Effects of High Hydrostatic Pressure and High-Pressure Homogenization Processing on Characteristics of Potato Peel Waste Pectin. Carbohydr. Polym. 2018, 196, 474–482. DOI: 10.1016/j.carbpol.2018.05.061.
  • Zhou, C. L.; Liu, W.; Zhao, J.; Yuan, C.; Song, Y.; Chen, D.; Ni, Y. Y.; Li, Q. H. The Effect of High Hydrostatic Pressure on the Microbiological Quality and Physical-Chemical Characteristics of Pumpkin (Cucurbita Maxima Duch.) During Refrigerated Storage. Innov. Food Sci. Emerg. Technol. 2014, 21, 24–34. DOI: 10.1016/j.ifset.2013.11.002.
  • Maitland, J. E.; Boyer, R. R.; Eifert, J. D.; Williams, R. C. High Hydrostatic Pressure Processing Reduces Salmonella enterica Serovars in Diced and Whole Tomatoes. Int. J. Food Microbiol. 2011, 149(2), 113–117. DOI: 10.1016/j.ijfoodmicro.2011.05.024.
  • Paciulli, M.; Medina-Meza, I. G.; Chiavaro, E.; Barbosa-Cánovas, G. V. Impact of Thermal and High-Pressure Processing on Quality Parameters of Beetroot (Beta Vulgaris L.). LWT. 2016, 68, 98–104. DOI: 10.1016/j.lwt.2015.12.029.
  • Yu, G.; Bei, J.; Zhao, J.; Li, Q.; Cheng, C. Modification of Carrot (Daucus carota Linn. Var. Sativa Hoffm.) Pomace Insoluble Dietary Fiber with Complex Enzyme Method, Ultrafine Comminution, and High Hydrostatic Pressure. Food Chem. 2018, 257, 333–340. DOI: 10.1016/j.foodchem.2018.03.037.
  • Ertugay, M. F.; Başlar, M.; Ortakci, F. Effect of Pulsed Electric Field Treatment on Polyphenol Oxidase, Total Phenolic Compounds, and Microbial Growth of Apple Juice. Turk. J. Agric. For. 2013, 37, 772–780. DOI: 10.3906/tar-1211-17.
  • Gürsul, I.; Gueven, A.; Grohmann, A.; Knorr, D. Pulsed Electric Fields on Phenylalanine Ammonia Lyase Activity of Tomato Cell Culture. J. Food Eng. 2016, 188, 66–76. DOI: 10.1016/j.jfoodeng.2016.05.007.
  • Jacobo-Velázquez, D. A.; Cuéllar-Villarreal, M. R.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Ramos-Parra, P. A.; Hernández-Brenes, C. Nonthermal Processing Technologies as Elicitors to Induce the Biosynthesis and Accumulation of Nutraceuticals in Plant Foods. Trends Food Sci. Technol. 2017, 60, 80–87. DOI: 10.1016/j.tifs.2016.10.021.
  • López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Electric Fields Affect Endogenous Enzyme Activities, Respiration and Biosynthesis of Phenolic Compounds in Carrots. Postharvest. Biol. Technol. 2020, 168, 111284. DOI: 10.1016/j.postharvbio.2020.111284.
  • Salehi, F. Application of Pulsed Light Technology for Fruits and Vegetables Disinfection: A Review. J. Appl. Microbiol. 2022, 132(4), 2521–2530. DOI: 10.1111/jam.15389.
  • Li, J.; Shi, J.; Huang, X.; Wang, T.; Zou, X.; Li, Z.; Zhang, D.; Zhang, W.; Xu, Y. Effects of Pulsed Electric Field Pretreatment on Frying Quality of Fresh-Cut Lotus Root Slices. LWT. 2020, 132, 109873. DOI: 10.1016/j.lwt.2020.109873.
  • Katsenios, N.; Christopoulos, M. V.; Kakabouki, I.; Vlachakis, D.; Kavvadias, V.; Efthimiadou, A. Effect of Pulsed Electromagnetic Field on Growth, Physiology and Postharvest Quality of Kale (Brassica oleracea), Wheat (Triticum durum) and Spinach (Spinacia oleracea) Microgreens. Agronomy. 2021, 11(7), 1364. 2021. DOI: 10.3390/agronomy11071364.
  • Liu, C.; Pirozzi, A.; Ferrari, G.; Vorobiev, E.; Grimi, N. Impact of Pulsed Electric Fields on Vacuum Drying Kinetics and Physicochemical Properties of Carrot. Food. Res. Int. 2020, 137, 109658. DOI: 10.1016/j.foodres.2020.109658.
  • Hua, X.; Li, T.; Wu, C.; Zhou, D.; Fan, G.; Li, X.; Cong, K.; Yan, Z.; Wu, Z. Novel Physical Treatments (Pulsed Light and Cold Plasma) Improve the Quality of Postharvest Apricots After Long-Distance Simulated Transportation. Postharvest. Biol. Technol. 2022, 194, 112098. DOI: 10.1016/j.postharvbio.2022.112098.
  • Gavahian, M.; Tiwari, B. K.; Chu, Y. H.; Ting, Y.; Farahnaky, A. Food Texture as Affected by Ohmic Heating: Mechanisms Involved, Recent Findings, Benefits, and Limitations. Trends Food Sci. Technol. 2019, 86, 328–339. DOI: 10.1016/j.tifs.2019.02.022.
  • Alcántara-Zavala, A. E.; Figueroa-Cárdenas, J. D.; Morales-Sánchez, E.; Aldrete-Tapia, J. A.; Arvizu-Medrano, S. M.; Martínez-Flores, H. E. Application of Ohmic Heating to Extend Shelf Life and Retain the Physicochemical, Microbiological, and Sensory Properties of Pulque. Food Bioprod. Process. 2019, 118, 139–148. DOI: 10.1016/j.fbp.2019.09.007.
  • Kaur, N.; Singh, A. K. Ohmic Heating: Concept and Applications—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56(14), 2338–2351. DOI: 10.1080/10408398.2013.835303.
  • Jaeger, H.; Roth, A.; Toepfl, S.; Holzhauser, T.; Engel, K. H.; Knorr, D.; Vogel, R. F.; Bandick, N.; Kulling, S.; Heinz, V., et al. Opinion on the Use of Ohmic Heating for the Treatment of Foods. Trends Food Sci. Technol. 2016, 55, 84–97. DOI: 10.1016/j.tifs.2016.07.007.
  • Castro, I.; Macedo, B.; Teixeira, J. A.; Vicente, A. A. The Effect of Electric Field on Important Food‐processing Enzymes: Comparison of Inactivation Kinetics Under Conventional and Ohmic Heating. J. Food Sci. 2004, 69(9), C696–701. DOI: 10.1111/j.1365-2621.2004.tb09918.x.
  • Samaranayake, C. P.; Sastry, S. K. Effect of Moderate Electric Fields on Inactivation Kinetics of Pectin Methylesterase in Tomatoes: The Roles of Electric Field Strength and Temperature. J. Food Eng. 2016, 186, 17–26. DOI: 10.1016/j.jfoodeng.2016.04.006.
  • Barrón-García, O. Y.; Nava-Álvarez, B.; Gaytán-Martínez, M.; Gonzalez-Jasso, E.; Morales-Sánchez, E. Ohmic Heating Blanching of Agaricus Bisporus Mushroom: Effects on Polyphenoloxidase Inactivation Kinetics, Color, and Texture. Innov. Food Sci. Emerg. Technol. 2022, 80, 103105. DOI: 10.1016/j.ifset.2022.103105.
  • Farahnaky, A.; Azizi, R.; Gavahian, M. Accelerated Texture Softening of Some Root Vegetables by Ohmic Heating. J. Food Eng. 2012, 113(2), 275–280. DOI: 10.1016/j.jfoodeng.2012.05.039.
  • Farber, R.; Dabush-Busheri, I.; Chaniel, G.; Rozenfeld, S.; Bormashenko, E.; Multanen, V.; Cahan, R. Biofilm Grown on Wood Waste Pretreated with Cold Low-Pressure Nitrogen Plasma: Utilization for Toluene Remediation. Int. Biodeterior. Biodegradation. 2019, 139, 62–69. DOI: 10.1016/j.ibiod.2019.03.003.
  • Lee, H.; Kim, J. E.; Chung, M. S.; Min, S. C. Cold Plasma Treatment for the Microbiological Safety of Cabbage, Lettuce, and Dried Figs. Food Microbiol. 2015, 51, 74–80. DOI: 10.1016/j.fm.2015.05.004.
  • Zhu, Y.; Li, C.; Cui, H.; Lin, L. Feasibility of Cold Plasma for the Control of Biofilms in Food Industry. Trends Food Sci. Technol. 2020, 99, 142–151. DOI: 10.1016/j.tifs.2020.03.001.
  • Deng, L. Z.; Mujumdar, A. S.; Pan, Z.; Vidyarthi, S. K.; Xu, J.; Zielinska, M.; Xiao, H. W. Emerging Chemical and Physical Disinfection Technologies of Fruits and Vegetables: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508. DOI: 10.1080/10408398.2019.1649633.
  • Giannoglou, M.; Stergiou, P.; Dimitrakellis, P.; Gogolides, E.; Stoforos, N. G.; Katsaros, G. Effect of Cold Atmospheric Plasma Processing on Quality and Shelf-Life of Ready-To-Eat Rocket Leafy Salad. Innov. Food Sci. Emerg. Technol. 2020, 66, 102502. DOI: 10.1016/j.ifset.2020.102502.
  • Kumar-Mahnot, N.; Siyu, L. -P.; Wan, Z.; Keener, K. M.; Misra, N. N. In-Package Cold Plasma Decontamination of Fresh-Cut Carrots: Microbial and Quality Aspects. J. Phys D: Appl Phys. 2020, 53(15), 154002. DOI: 10.1088/1361-6463/ab6cd3.
  • Zhang, X. L.; Zhong, C. S.; Mujumdar, A. S.; Yang, X. H.; Deng, L. Z.; Wang, J.; Xiao, H. W. Cold Plasma Pretreatment Enhances Drying Kinetics and Quality Attributes of Chili Pepper (Capsicum Annuum L.). J. Food Eng. 2019, 241, 51–57. DOI: 10.1016/j.jfoodeng.2018.08.002.
  • Mao, L.; Mhaske, P.; Zing, X.; Kasapis, S.; Majzoobi, M.; Farahnaky, A. Cold Plasma: Microbial Inactivation and Effects on Quality Attributes of Fresh and Minimally Processed Fruits and Ready-To-Eat Vegetables. Trends Food Sci. Technol. 2021, 116, 146–175. DOI: 10.1016/j.tifs.2021.07.002.
  • Mousavi, S. M.; Imani, S.; Dorranian, D.; Larijani, K.; Shojaee, M. Effect of Cold Plasma on Degradation of Organophosphorus Pesticides Used on Some Agricultural Products. J. Plant Prot. Res. 2017, 57(1), 25–35. DOI: 10.1515/jppr-2017-0004.
  • Gavahian, M.; Khaneghah, A. M. Cold Plasma as a Tool for the Elimination of Food Contaminants: Recent Advances and Future Trends. Crit. Rev. Food Sci. Nutr. 2020, 60(9), 1581–1592. DOI: 10.1080/10408398.2019.1584600.
  • Urban, L.; Charles, F.; de Miranda, M. R. A.; Aarrouf, J. Understanding the Physiological Effects of UV-C Light and Exploiting Its Agronomic Potential Before and After Harvest. Plant Physiol. Biochem. 2016, 105, 1–11. DOI: 10.1016/j.plaphy.2016.04.004.
  • Zhang, W.; Jiang, W. UV Treatment Improved the Quality of Postharvest Fruits and Vegetables by Inducing Resistance. Trends Food Sci. Technol. 2019, 92, 71–80. DOI: 10.1016/j.tifs.2019.08.012.
  • Pataro, G.; Donsi, G.; Ferrari, G. Post-Harvest UV-C and PL Irradiation of Fruits and Vegetables. Chemi. Eng. Trans. 2015, 44, 31–36.
  • Le Goff, L.; Hubert, B.; Favennec, L.; Villena, I.; Ballet, J. J.; Agoulon, A.; Orange, N.; Gargala, G. Pilot-Scale Pulsed UV Light Irradiation of Experimentally Infected Raspberries Suppresses Cryptosporidium Parvum Infectivity in Immunocompetent Suckling Mice. J. Food Prot. 2015, 78(12), 2247–2252. DOI: 10.4315/0362-028X.JFP-15-062.
  • Bermúdez-Aguirre, D.; Barbosa-Cánovas, G. V. Disinfection of Selected Vegetables Under Nonthermal Treatments: Chlorine, Acid Citric, Ultraviolet Light and Ozone. Food Control. 2013, 29(1), 82–90. DOI: 10.1016/j.foodcont.2012.05.073.
  • Baykuş, G.; Akgün, M. P.; Unluturk, S. Effects of Ultraviolet-Light Emitting Diodes (UV-LEDs) on Microbial Inactivation and Quality Attributes of Mixed Beverage Made from Blend of Carrot, Carob, Ginger, Grape and Lemon Juice. Innov. Food Sci. Emerg. Technol. 2020, 67, 102572. DOI: 10.1016/j.ifset.2020.102572.
  • Du, W. -X.; Avena-Bustillos, R. J.; Breksa, A. P.; McHugh, T. H. UV-B Light as a Factor Affecting Total Soluble Phenolic Contents of Various Whole and Fresh-Cut Specialty Crops. Postharvest. Biol. Technol. 2014, 93, 72–82. DOI: 10.1016/j.postharvbio.2014.02.004.
  • Vázquez-Ovando, A.; López-Hilerio, H.; Salvador-Figueroa, M.; Adriano-Anaya, L.; Rosas-Quijano, R.; Gálvez-López, D. Uso combinado de radiación UV-C y biorecubrimiento de quitosán con aceites esenciales para el control de hongos en papaya Maradol. Revista Bras. Frutic. 2018, 40(3), e688. DOI: 10.1590/0100-29452018688.
  • Ronholm, J.; Lau, F.; Banerjee, S. K. Emerging Seafood Preservation Techniques to Extend Freshness and Minimize Vibrio Contamination. Front. Microbiol. 2016, 7, 350. DOI: 10.3389/fmicb.2016.00350.
  • Brodowska, A. J.; Nowak, A.; Śmigielski, K. Ozone in the Food Industry: Principles of Ozone Treatment, Mechanisms of Action, and Applications: An Overview. Crit. Rev. Food Sci. Nutr. 2018, 58(13), 2176–2201. DOI: 10.1080/10408398.2017.1308313.
  • Pandiselvam, R.; Kaavya, R.; Jayanath, Y.; Veenuttranon, K.; Lueprasitsakul, P.; Divya, V.; Kothakota, A.; Ramesh, S. V. Ozone as a Novel Emerging Technology for the Dissipation of Pesticide Residues in Foods–A Review. Trends Food Sci. Technol. 2020, 97, 38–54. DOI: 10.1016/j.tifs.2019.12.017.
  • Mohammad, Z.; Kalbasi-Ashtari, A.; Riskowski, G.; Juneja, V.; Castillo, A. Inactivation of Salmonella and Shiga Toxin-Producing Escherichia coli (STEC) from the Surface of Alfalfa Seeds and Sprouts by Combined Antimicrobial Treatments Using Ozone and Electrolyzed Water. Food. Res. Int. 2020, 136, 109488. DOI: 10.1016/j.foodres.2020.109488.
  • Taiye-Mustapha, A.; Zhou, C.; Wahia, H.; Amanor-Atiemoh, R.; Otu, P.; Qudus, A.; Abiola Fakayode, O.; Ma, H. Sonozonation: Enhancing the Antimicrobial Efficiency of Aqueous Ozone Washing Techniques on Cherry Tomato. Ultrason. Sonochem. 2020, 64, 105059. DOI: 10.1016/j.ultsonch.2020.105059.
  • Sachadyn-Król, M.; Materska, M.; Chilczuk, B.; Karaś, M.; Jakubczyk, A.; Perucka, I.; Jackowska, I. Ozone-Induced Changes in the Content of Bioactive Compounds and Enzyme Activity During Storage of Pepper Fruits. Food Chem. 2016, 211, 59–67. DOI: 10.1016/j.foodchem.2016.05.023.
  • Salvador-Figueroa, M.; Castillo-López, D.; Adriano-Anaya, L.; Gálvez-López, D.; Rosas-Quijano, R.; Vázquez-Ovando, A. Chitosan Composite Films: Physicochemical Characterization and Their Use as Coating in Papaya Maradol Stored at Room Temperature. Emir. J. Food Agric. 2017, 29, 779–791. DOI: 10.9755/ejfa.2017.v29.i10.1303.
  • Sharma, P.; Shehin, V. P.; Kaur, N.; Vyas, P. Application of Edible Coatings on Fresh and Minimally Processed Vegetables: A Review. Int. J. Veg. Sci. 2019, 25(3), 295–314. DOI: 10.1080/19315260.2018.1510863.
  • Hassan, B.; Chatha, S. A. S.; Hussain, A. I.; Zia, K. M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. DOI: 10.1016/j.ijbiomac.2017.11.097.
  • Janesch, J.; Arminger, B.; Gindl-Altmutter, W.; Hansmann, C. Coatings Superhydrophobic Coatings on Wood Made of Plant Oil and Natural Wax. Prog. Org. Coat. 2020, 148, 105891. DOI: 10.1016/j.porgcoat.2020.105891.
  • Singh, S.; Khemariya, P.; Rai, A.; Chandra, A.; Koley, T. K.; Singh, B. Carnauba Wax-Based Edible Coating Enhances Shelf-Life and Retain Quality of Eggplant (Solanum melongena) Fruits. LWT. 2016, 74, 420–426. DOI: 10.1016/j.lwt.2016.08.004.
  • Ayesha, T.; Nasrin, A.; Rahman, A.; Sadia, M.; Islam, N. Effect of Novel Coconut Oil and Beeswax Edible Coating on Postharvest Quality of Lemon at Ambient Storage. J. Agric. Food Res. 2020, 2, 100019. DOI: 10.1016/j.jafr.2019.100019.
  • Oregel-Zamudio, E.; Angoa-Pérez, M. V.; Oyoque-Salcedo, G.; Aguilar-González, C. N.; Mena-Violante, H. G. Effect of Candelilla Wax Edible Coatings Combined with Biocontrol Bacteria on Strawberry Quality During the Shelf-Life. Sci. Hortic. 2017, 214, 273–279. DOI: 10.1016/j.scienta.2016.11.038.
  • Feng, Z.; Wu, G.; Liu, C.; Li, D.; Jiang, B.; Zhang, X. Edible Coating Based on Whey Protein Isolate Nanofibrils for Antioxidation and Inhibition of Product Browning. Food Hydrocoll. 2018, 79, 179–188. DOI: 10.1016/j.foodhyd.2017.12.028.
  • Tulamandi, S.; Rangarajan, V.; Rizvi, S. S. H.; Singhal, R. S.; Chattopadhyay, S. K.; Saha, N. C. A Biodegradable and Edible Packaging Film Based on Papaya Puree, Gelatin, and Defatted Soy Protein. Food Packag. Shelf Life. 2016, 10, 60–71. DOI: 10.1016/j.fpsl.2016.10.007.
  • Cortez-Vega, W. R.; Pizato, S.; De Souza, J. T. A.; Prentice, C. Using Edible Coatings from Whitemouth Croaker (Micropogonias furnieri) Protein Isolate and Organo-Clay Nanocomposite for Improve the Conservation Properties of Fresh-Cut “Formosa” Papaya. Innov. Food Sci. Emerg. Technol. 2014, 22, 197–202. DOI: 10.1016/j.ifset.2013.12.007.
  • Grosso, A. L.; Asensio, C. M.; Grosso, N. R.; Nepote, V. Increase of Walnuts’ Shelf Life Using a Walnut Flour Protein-Based Edible Coating. LWT. 2020, 118, 108712. DOI: 10.1016/j.lwt.2019.108712.
  • González-Estrada, R. R.; Chalier, P.; Ragazzo-Sánchez, J. A.; Konuk, D.; Calderón-Santoyo, M. Antimicrobial Soy Protein Based Coatings: Application to Persian Lime (Citrus latifolia Tanaka) for Protection and Preservation. Postharvest. Biol. Technol. 2017, 132, 138–144. DOI: 10.1016/j.postharvbio.2017.06.005.
  • Mohamed, S. A. A.; El-Sakhawy, M.; El-Sakhawy, M. A. M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. DOI: 10.1016/j.carbpol.2020.116178.
  • Lara, G.; Yakoubi, S.; Villacorta, C. M.; Uemura, K.; Kobayashi, I.; Takahashi, C.; Nakajima, M.; Neves, M. A. Spray Technology Applications of Xanthan Gum-Based Edible Coatings for Fresh-Cut Lotus Root (Nelumbo nucifera). Food. Res. Int. 2020, 137, 109723. DOI: 10.1016/j.foodres.2020.109723.
  • Dos Passos-Braga, S.; Magnani, M.; Madruga, M. S.; de Souza-Galvão, M.; de Medeiros, L. L.; Batista, A. U. D.; Dias, R. T. A.; Fernandes, L. R.; de Medeiros, E. S.; de Souza, E. L. Characterization of Edible Coatings Formulated with Chitosan and Mentha Essential Oils and Their Use to Preserve Papaya (Carica Papaya L.). Innov. Food Sci. Emerg. Technol. 2020, 65, 102472. DOI: 10.1016/j.ifset.2020.102472.
  • Hu, X.; Saravanakumar, K.; Sathiyaseelan, A.; Wang, M. -H. Chitosan Nanoparticles as Edible Surface Coating Agent to Preserve the Fresh-Cut Bell Pepper (Capsicum Annuum L. Var. grossum (L.) Sendt). Int. J. Biol. Macrom. 2020, 165, 948–957. DOI: 10.1016/j.ijbiomac.2020.09.176.
  • Salama, H. E.; Abdel Aziz, M. S. Optimized Alginate and Aloe Vera Gel Edible Coating Reinforced with NTiO2 for the Shelf-Life Extension of Tomatoes. Int. J. Biol. Macrom. 2020, 165, 2693–2701. DOI: 10.1016/j.ijbiomac.2020.10.108.
  • Monzón-Ortega, K.; Salvador-Figueroa, M.; Gálvez-López, D.; Rosas-Quijano, R.; Ovando-Medina, I.; Vázquez-Ovando, A. Characterization of Aloe Vera-Chitosan Composite Films and Their Use for Reducing the Disease Caused by Fungi in Papaya Maradol. J. Food Sci. Technol. 2018, 55(12), 4747–4757. DOI: 10.1007/s13197-018-3397-2.
  • Wu, S. Extending Shelf-Life of Fresh-Cut Potato with Cactus Opuntia Dillenii Polysaccharide-Based Edible Coatings. Int. J. Biol. Macrom. 2019, 130, 640–644. DOI: 10.1016/j.ijbiomac.2019.03.022.
  • Wohner, B.; Gabriel, V. H.; Krenn, B.; Krauter, V.; Tacker, M. Environmental and Economic Assessment of Food-Packaging Systems with a Focus on Food Waste. Case Study on Tomato Ketchup. Sci. Total Environ. 2020, 738, 139846. DOI: 10.1016/j.scitotenv.2020.139846.
  • Pinela, J.; Ferreira, I. C. Nonthermal Physical Technologies to Decontaminate and Extend the Shelf-Life of Fruits and Vegetables: Trends Aiming at Quality and Safety. Crit. Rev. Food Sci. Nutr. 2017, 57(10), 2095–2111. DOI: 10.1080/10408398.2015.1046547.
  • Deepa, G. T.; Chetti, M. B.; Khetagoudar, M. C.; Adavirao, G. M. Influence of Vacuum Packaging on Seed Quality and Mineral Contents in Chilli (Capsicum Annuum L.). J. Food Sci. Technol. 2013, 50(1), 153–158. DOI: 10.1007/s13197-011-0241-3.
  • Padmanaban, G.; Singaravelu, K.; Annavi, S. T. Increasing the Shelf-Life of Papaya Through Vacuum Packing. J. Food Sci. Technol. 2014, 51(1), 163–167. DOI: 10.1007/s13197-011-0468-z.
  • Zhang, S. J.; Hu, T. T.; Liu, H. K.; Chen, Y. Y.; Pang, X. J.; Zheng, L. L.; Chang, S. M.; Kang, Y. F. Moderate Vacuum Packing and Low Temperature Effects on Qualities of Harvested Mung Bean (Vigna Radiata L.) Sprouts. Postharvest. Biol. Technol. 2018, 145, 83–92. DOI: 10.1016/j.postharvbio.2018.06.005.
  • Zandi, M.; Ganjloo, A.; Bimakr, M.; Moradi, N.; Nikoomanesh, N. Effect of Active Coating Containing Radish Leaf Extract with or Without Vacuum Packaging on the Postharvest Changes of Sweet Lemon During Cold Storage. J. Food Process Preserv. 2021, 45(3), e15252. DOI: 10.1111/jfpp.15252.
  • Dorostkar, M.; Moradinezhad, F. Postharvest Quality Responses of Pomegranate Fruit (Cv. Shishekab) to Ethanol, Sodium Bicarbonate Dips and Modified Atmosphere Packaging. Adv. Hortic. Sci. 2022, 36(2), 107–117. DOI: 10.36253/ahsc-12041.
  • Wilson, M. D.; Stanley, R. A.; Eyles, A.; Ross, T. Innovative Processes and Technologies for Modified Atmosphere Packaging of Fresh and Fresh-Cut Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2019, 59(3), 411–422. DOI: 10.1080/10408398.2017.1375892.
  • Kim, S. Y.; Bang, I. H.; Min, S. C. Effects of Packaging Parameters on the Inactivation of Salmonella Contaminating Mixed Vegetables in Plastic Packages Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. J. Food Eng. 2019, 242, 55–67. DOI: 10.1016/j.jfoodeng.2018.08.020.
  • Han-Lyn, F.; Maryam-Adilah, Z. A.; Nor-Khaizura, M. A. R.; Jamilah, B.; Nur-Hanani, Z. A. Application of Modified Atmosphere and Active Packaging for Oyster Mushroom (Pleurotus ostreatus). Food Packag. Shelf Life. 2020, 23, 100451. DOI: 10.1016/j.fpsl.2019.100451.
  • Mudau, A. R.; Soundy, P.; Araya, H. T.; Mudau, F. N. Influence of Modified Atmosphere Packaging on Postharvest Quality of Baby Spinach (Spinacia Oleracea L.) Leaves. HortScience. 2018, 53(2), 224–230. DOI: 10.21273/HORTSCI12589-17.
  • Candir, E.; Ozdemir, A. E.; Aksoy, M. C. Effects of Chitosan Coating and Modified Atmosphere Packaging on Postharvest Quality and Bioactive Compounds of Pomegranate Fruit Cv.‘Hicaznar’. Sci. Hortic. 2018, 235, 235–243. DOI: 10.1016/j.scienta.2018.03.017.
  • Olawuyi, I. F.; Park, J. J.; Lee, J. J.; Lee, W. Y. Combined Effect of Chitosan Coating and Modified Atmosphere Packaging on Fresh-Cut Cucumber. Food Sci. Nutr. 2019, 7(3), 1043–1052. DOI: 10.1002/fsn3.937.
  • Vidal, C. P.; Muñoz-Shugulí, C.; Vidal, M. P.; Galotto, M. J.; de Dicastillo, C. L. Active Electrospun Mats: A Promising Material for Active Food Packaging. In Electrospinning - Material Technology of the Future; Tański, T.A. and Jarka, P., Eds.; London, UK: IntechOpen, 2022; pp. 1–20.
  • Yousuf, O.; Titikshya, S.; Singh, A. Fresh-Cut Fruits and Vegetables: Scope in Developing Countries and Approaches to Improve Quality and Safety. Int. J. Chem. Stud. 2018, 6, 2226–2229.
  • Gaona-Forero, A.; Agudelo-Rodríguez, G.; Herrera, A. O.; Castellanos, D. A. Modeling and Simulation of an Active Packaging System with Moisture Adsorption for Fresh Produce. Application in ‘Hass’ Avocado. Food Packag. Shelf Life. 2018, 17, 187–195. DOI: 10.1016/j.fpsl.2018.07.005.
  • Priyadarshi, R.; Sauraj, K.; Negi, B.; S, Y. Chitosan Film Incorporated with Citric Acid and Glycerol as an Active Packaging Material for Extension of Green Chilli Shelf Life. Carbohydr. Polym. 2018, 195, 329–338. DOI: 10.1016/j.carbpol.2018.04.089.
  • Szabo, K.; Teleky, B. E.; Mitrea, L.; Călinoiu, L. F.; Martău, G. A.; Simon, E.; Varvara, R. A.; Vodnar, D. C. Active Packaging—Poly(vinyl Alcohol) Films Enriched with Tomato By-Products Extract. Coatings. 2020, 10(2), 141. DOI: 10.3390/coatings10020141.
  • Sanches, M. A. R.; Camelo-Silva, C.; Da Silva Carvalho, C.; De Mello, J. R.; Barroso, N. G.; Da Silva Barros, E. L.; Paulino, S. P.; Pertuzatti, P. B. Active Packaging with Starch, Red Cabbage Extract and Sweet Whey: Characterization and Application in Meat. LWT. 2021, 135, 110275. DOI: 10.1016/j.lwt.2020.110275.
  • Fuertes, G.; Soto, I.; Carrasco, R.; Vargas, M.; Sabattin, J.; Lagos, C. Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety. J. Sens. 2016, 2016, 4046061. DOI: 10.1155/2016/4046061.
  • Millan-Sango, D.; Sammut, E.; Van Impe, J. F.; Valdramidis, V. P. Decontamination of Alfalfa and Mung Bean Sprouts by Ultrasound and Aqueous Chlorine Dioxide. LWT. 2017, 78, 90–96. DOI: 10.1016/j.lwt.2016.12.015.
  • Dirpan, A.; Latief, R.; Syarifuddin, A.; Rahman, A. N. F.; Putra, R. P.; Hidayat, S. H. The Use of Colour Indicator as a Smart Packaging System for Evaluating Mangoes Arummanis (Mangifera Ndica Var, L. The Use of Colour Indicator as A Smart Packaging System for Evaluating Mangoes Arummanis (Mangifera ndica. IOP Conf. S.: Earth Environ. Sci. 2018, 157, 012031. DOI: 10.1088/1755-1315/157/1/012031.
  • Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and Smart Biodegradable Packaging Based on Starch and Natural Extracts. Carbohydr. Polym. 2017, 176, 187–194. DOI: 10.1016/j.carbpol.2017.08.079.
  • Wang, C.; Yusufu, D.; Mills, A. A Smart Adhesive “Consume Within” (CW) Indicator for Food Packaging. Food Pack. Shelf Life. 2019, 22, 100395. DOI: 10.1016/j.fpsl.2019.100395.
  • Latos-Brozio, M.; Masek, A. The Application of Natural Food Colorants as Indicator Substances in Intelligent Biodegradable Packaging Materials. Food. Chem. Toxicol. 2020, 135, 110975. DOI: 10.1016/j.fct.2019.110975.
  • Onyeaka, H.; Miri, T.; Hart, A.; Anumudu, C.; Nwabor, O. F. Application of Ultrasound Technology in Food Processing with Emphasis on Bacterial Spores. Food Rev. Int. 2021, 1–13. DOI: 10.1080/87559129.2021.2013255.
  • Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. DOI: 10.1016/j.ultsonch.2020.105325.
  • Bhargava, N.; Mor, R. S.; Kumar, K.; Sharanagat, V. S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70, 105293. DOI: 10.1016/j.ultsonch.2020.105293.
  • Jiang, L.; Yang, Y.; Chen, Y.; Zhou, Q. Ultrasound-Induced Wireless Energy Harvesting: From Materials Strategies to Functional Applications. Nano. Energy. 2020, 77, 105131. DOI: 10.1016/j.nanoen.2020.105131.
  • Cuéllar-Villarreal, M. R.; Ortega-Hernández, E.; Becerra-Moreno, A.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D. A. Effects of Ultrasound Treatment and Storage Time on the Extractability and Biosynthesis of Nutraceuticals in Carrot (Daucus carota). Postharvest. Biol. Technol. 2016, 119, 18–26. DOI: 10.1016/j.postharvbio.2016.04.013.
  • Millan-Sango, D.; Garroni, E.; Farrugia, C.; Van Impe, J. F.; Valdramidis, V. P. Determination of the Efficacy of Ultrasound Combined with Essential Oils on the Decontamination of Salmonella Inoculated Lettuce Leaves. LWT. 2016, 73, 80–87. DOI: 10.1016/j.lwt.2016.05.039.
  • Xin, Y.; Zhang, M.; Adhikari, B. Ultrasound Assisted Immersion Freezing of Broccoli (Brassica Oleracea L. Var. Botrytis L.). Ultrason. Sonochem. 2014, 21(5), 1728–1735. DOI: 10.1016/j.ultsonch.2014.03.017.
  • Tu, J.; Zhang, M.; Xu, B.; Liu, H. Effects of Different Freezing Methods on the Quality and Microstructure of Lotus (Nelumbo nucifera) Root. Int. J. Refrig. 2015, 52, 59–65. DOI: 10.1016/j.ijrefrig.2014.12.015.
  • Mu, Y.; Feng, Y.; Wei, L.; Li, C.; Cai, G.; Zhu, T. Combined Effects of Ultrasound and Aqueous Chlorine Dioxide Treatments on Nitrate Content During Storage and Postharvest Storage Quality of Spinach (Spinacia Oleracea L.). Food Chem. 2020, 333, 127500.
  • Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) Against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Appl. Sci. 2020, 12(4), 2202. DOI: 10.3390/app12042202.
  • Dong, P.; Kong, M.; Yao, J.; Zhang, Y.; Liao, X.; Hu, X.; Zhang, Y. The Effect of High Hydrostatic Pressure on the Microbiological Quality and Physicochemical Properties of Lotus Root During Refrigerated Storage. Innov. Food Sci. Emerg. Technol. 2013, 19, 79–84. DOI: 10.1016/j.ifset.2013.03.004.
  • Mieszczakowska-Frąc, M.; Celejewska, K.; Płocharski, W. Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants. 2021, 10(1), 54. DOI: 10.3390/antiox10010054.
  • Hradecky, J.; Kludska, E.; Belkova, B.; Wagner, M.; Hajslova, J. Ohmic Heating: A Promising Technology to Reduce Furan Formation in Sterilized Vegetable and Vegetable/Meat Baby Foods. Innov. Food Sci. Emerg. Technol. 2017, 43, 1–6. DOI: 10.1016/j.ifset.2017.07.018.
  • Wang, M. S.; Wang, L. H.; Bekhit, A. E. D. A.; Yang, J.; Hou, Z. P.; Wang, Y. Z.; Dai, Q. Z.; Zeng, X. A. A Review of Sublethal Effects of Pulsed Electric Field on Cells in Food Processing. J. Food Eng. 2018, 223, 32–41. DOI: 10.1016/j.jfoodeng.2017.11.035.
  • Wu, X.; Wang, C.; Guo, Y. Effects of the High-Pulsed Electric Field Pretreatment on the Mechanical Properties of Fruits and Vegetables. J. Food Eng. 2020, 274, 109837. DOI: 10.1016/j.jfoodeng.2019.109837.
  • Sharma, R. R.; Reddy, S. V. R.; Sethi, S. Cold Plasma Technology for Surface Disinfection of Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Cambridge, USA: Academic Press, 2018; pp. 197–209.
  • Admane, N.; Genovese, F.; Altieri, G.; Tauriello, A.; Trani, A.; Gambacorta, G.; Verrastro, V.; Di Renzo, G. C. Effect of Ozone or Carbon Dioxide Pre-Treatment During Long-Term Storage of Organic Table Grapes with Modified Atmosphere Packaging. LWT. 2018, 98, 170–178. DOI: 10.1016/j.lwt.2018.08.041.
  • Sethi, S.; Joshi, A.; Arora, B. UV Treatment of Fresh Fruits and Vegetables. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Cambridge, USA: Academic Press, 2018; pp. 137–157.
  • Severo, J.; De Oliveira, I. R.; Tiecher, A.; Chaves, F. C.; Rombaldi, C. V. Postharvest UV-C Treatment Increases Bioactive, Ester Volatile Compounds and a Putative Allergenic Protein in Strawberry. LWT. 2015, 64(2), 685–692. DOI: 10.1016/j.lwt.2015.06.041.
  • Severo, J.; de Oliveira, I. R.; Bott, R.; Le Bourvellec, C.; Renard, C. M. G. C.; Page, D.; Chaves, F. C.; Rombaldi, C. V. Preharvest UV-C Radiation Impacts Strawberry Metabolite Content and Volatile Organic Compound Production. LWT. 2017, 85, 390–393. DOI: 10.1016/j.lwt.2016.10.032.
  • Babu, P. J.; Longchar, B.; Rajasekhar, A. Nanobiotechnology-Mediated Sustainable Agriculture and Post-Harvest Management. Curr. Res. Biotechnol. 2022, 4, 326–336. DOI: 10.1016/j.crbiot.2022.07.004.
  • Simunovic, J.; Sandeep, K. P. Key Technological Advances and Industrialization of Continuous Flow Microwave Processing for Foods and Beverages. In Food Engineering Innovations Across the Food Supply Chain; Juliano, P., Buckow, R., Nguyen, M.H., Knoerzer, K. and Sellahewa, J., Eds.; Cambridge, USA: Academic Press, 2022; pp. 149–162.
  • Tan, G. H.; Ali, A.; Siddiqui, Y. C. S. Perspectives and Challenges in Management and Control of Postharvest Diseases of Papaya. Sci. Hortic. 2022, 301, 111139. DOI: 10.1016/j.scienta.2022.111139.
  • Fung, F.; Wang, H. S.; Menon, S. Food Safety in the 21st Century. BioMed. J. 2018, 41(2), 88–95. DOI: 10.1016/j.bj.2018.03.003.
  • Knoerzer, K. Food Process Engineering. Reference Module in Food Sci. 2016. DOI: 10.1016/B978-0-08-100596-5.03333-3.
  • Moreno-Vilet, L.; Hernández-Hernández, H. M.; Villanueva-Rodríguez, S. J. Current Status of Emerging Food Processing Technologies in Latin America: Novel Thermal Processing. Innov. Food Sci. Emerg. Technol. 2018, 50, 196–206. DOI: 10.1016/j.ifset.2018.06.013.
  • Gupta, S.; Variyar, P. S. Radiation Processing: An Emerging Post Harvest Preservation Method for Improving Food Safety and Quality. In Innovative Food Science and Emerging Technologies; Thomas, S., Rajkumari, R., George, A. and Kalarikkal, N., Eds.; Cambridge, USA: Apple Academic Press, 2018; pp. 34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.