2,060
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Chemical Indicators of Atlantic Salmon Quality

, &

References

  • Schoffmann, J. Trout and salmon of the genus Salmo; Bethesda, Maryland: American Fisheries Society, 2021.
  • FAO. Salmo Salar. Cultured Aquatic Species Information Programme [Fact Sheet]; Rome: FAO, 2022.
  • Myrvold, K. M.; Mawle, G. W.; Andersen, O.; Aas, Ø. The Social, Economic and Cultural Values of Wild Atlantic Salmon; Norwegian Institute for Nature Research: Lillehammer, 2019.
  • Misund, B.; Nygård, R. Big Fish: Valuation of the World’s Largest Salmon Farming Companies. Mar. Resour. Econ. 2018, 33(3), 245–261. DOI: 10.1086/698447.
  • Dahl, R. E.; Oglend, A.; Yahya, M. Salmon Stock Market Prices Revealing Salmon Price Information. Mar. Resour. Econ. 2021, 36(2), 173–190. DOI: 10.1086/713769.
  • Simopoulos, A. P. The Importance of the Omega-6/omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Experiment. Biol. Med. 2008, 233(6), 674–688. DOI: 10.3181/0711-MR-311.
  • Wall, R.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C. Fatty Acids from Fish: The Anti-Inflammatory Potential of Long-Chain Omega-3 Fatty Acids. Nutr. Rev. 2010, 68(5), 280–289. DOI: 10.1111/j.1753-4887.2010.00287.x.
  • Swanson, D.; Block, R.; Mousa, S. A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3(1), 1–7. DOI: 10.3945/an.111.000893.
  • FAO. The State of World Fisheries and Aquaculture 2022; Rome, Italy: FAO, 2022.
  • FAO. The State of World Fisheries and Aquaculture 2018 - Meeting the Sustainable Development Goals; Rome: FAO, 2018.
  • FAOSTAT. FAO Global Fishery and Aquaculture Production Statistics; Rome: FAO Fisheries and Aquaculture Division & FAO Statistics and Information Branch, 2022.
  • Asche, F.; Roll, K. H.; Sandvold, H. N.; Sørvig, A.; Zhang, D. Salmon Aquaculture: Larger Companies and Increased Production. Aquac. Econ. Manag. 2013, 17(3), 322–339. DOI: 10.1080/13657305.2013.812156.
  • Fauske, M. Key Figures from Norwegian Aquaculture Industry 2020; Editor., S. Department. Directorate of Fisheries: Nowary, 2021 p. 28.
  • Mobsby, D. Australian Fisheries and Aquaculture Statistics 2017; A.B.o.A.a.R.E.a. Sciences. Editor.; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, 2018.
  • Steven, A. H.; Dylewski, M.; Curtotti, R. Australian disheries and aquaculture statistics 2020. ABARES: Canberra, 2021. DOI: 10.25814/0wzy-re76.
  • Mobsby, D.; Curtotti, R. Snapshot of Australia‘s commerical fisheries and aquaculture. ABARES: Canberra, 2018.
  • Johnston, I. A.; Li, X.; Vieira, V. L. A.; Nickell, D.; Dingwall, A.; Alderson, R.; Campbell, P.; Bickerdike, R. Muscle and Flesh Quality Traits in Wild and Farmed Atlantic Salmon. Aquaculture. 2006, 256(1–4), 323–336. DOI: 10.1016/j.aquaculture.2006.02.048.
  • Schiedt, K.; Foss, P.; Storebakken, T.; Liaane-Jensen, S. Metabolism of Carotenoids in Salmon-I. Idoxanthin, a Metabolite of Astaxanthin in the Flesh of Atlanic Salmon (Salmo Salar, L.) Under Varying External Conditions. Comp. Biochem. Physiol. B: Comp. Biochem. 1989, 92(2), 277–281. DOI: 10.1016/0305-0491(89)90278-2.
  • Jensen, I. J.; Eilertsen, K. E.; Otnaes, C. H. A.; Maehre, H. K.; Elvevoll, E. O. An Update on the Content of Fatty Acids, Dioxins, PCBs and Heavy Metals in Farmed, Escaped and Wild Atlantic Salmon (Salmo Salar L.) in Norway. Foods. 2020, 9(12), 1901. DOI: 10.3390/foods9121901.
  • Sprague, M.; Fawcett, S.; Betancor, M. B.; Struthers, W.; Tocher, D. R. Variation in the Nutritional Composition of Farmed Atlantic Salmon (Salmo Salar L.) Fillets with Emphasis on EPA and DHA Contents. J. Food Compost. Anal. 2020, 94, 94. DOI: 10.1016/j.jfca.2020.103618.
  • Jakobsen, J.; Smith, C.; Bysted, A.; Cashman, K. D. Vitamin D in Wild and Farmed Atlantic Salmon (Salmo Salar)-What Do We Know? Nutrients. 2019, 11(5), 982. DOI: 10.3390/nu11050982.
  • Sylvia, G.; Morrissey, M. T.; Graham, T.; Garcia, S. Changing Trends in Seafood Markets. J. Food Prod. Mark. 1996, 3(2), 49–63. DOI: 10.1300/J038v03n02_05.
  • Pulcini, D.; Franceschini, S.; Buttazzoni, L.; Giannetti, C.; Capoccioni, F. Consumer Preferences for Farmed Seafood: An Italian Case Study. J. Aquat. Food Prod. Technol. 2020, 29(5), 445–460. DOI: 10.1080/10498850.2020.1749201.
  • Bronnmann, J.; Asche, F. Sustainable Seafood from Aquaculture and Wild Fisheries: Insights from a Discrete Choice Experiment in Germany. Ecol. Econ. 2017, 142, 113–119. DOI: 10.1016/j.ecolecon.2017.06.005.
  • Zhou, S.; Ackman, R. G.; Morrison, C. Storage of Lipids in the Myosepta of Atlantic Salmon. Fish Physiol. Biochem. 1995, 14(2), 171–178. DOI: 10.1007/BF00002460.
  • Segtnan, V. H.; Høy, M.; Lundby, F.; Narum, B.; Wold, J. P. Fat Distribution Analysis in Salmon Fillets Using Non-Contact Near Infrared Interactance Imaging: A Sampling and Calibration Strategy. J. Near Infrared Spectrosc. 2009, 17(5), 247–253. DOI: 10.1255/jnirs.851.
  • Dinicolantonio, J. J.; O’Keefe, J. H. The Importance of Marine Omega-3s for Brain Development and the Prevention and Treatment of Behavior, Mood, and Other Brain Disorders. Nutrients. 2020, 12(8), 2333. DOI: 10.3390/nu12082333.
  • Satizabal, C. L.; Himali, J. J.; Beiser, A. S.; Ramachandran, V.; Melo van Lent, D.; Himali, D.; Aparicio, H. J.; Maillard, P.; DeCarli, C. S.; Harris, W., et al. Association of Red Blood Cell Omega-3 Fatty Acids with MRI Markers and Cognitive Function in Midlife: The Framingham Heart Study; Neurology, 2022. DOI:10.1212/WNL.0000000000201296.
  • Khan, S. U.; Lone, A. N.; Khan, M. S.; Virani, S. S.; Blumenthal, R. S.; Nasir, K.; Miller, M.; Michos, E. D.; Ballantyne, C. M.; Boden, W. E., et al. Effect of Omega-3 Fatty Acids on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. eClinicalmedicine. 2021, 38, 100997. DOI: 10.1016/j.eclinm.2021.100997.
  • Taşbozan, O.; Gökçe, M. A. Fatty Acids in Fish. In Fatty Acids; A. Catala, Ed.; InTech, 2017.
  • Jobling, M.; Larsen, A. V.; Andreassen, B.; Sigholt, T.; Olsen, R. L. Influence of a Dietary Shift on Temporal Changes in Fat Deposition and Fatty Acid Composition of Atlantic Salmon Post-Smolt During the Early Phase of Seawater Rearing. Aquacult. Res. 2002, 33(11), 875–889. DOI: 10.1046/j.1365-2109.2002.00727.x.
  • Sanden, M.; Stubhaug, I.; Berntssen, M. H.; Lie, O.; Torstensen, B. E. Atlantic Salmon (Salmo Salar L.) as a Net Producer of Long-Chain Marine Omega-3 Fatty Acids. J. Agric. Food Chem. 2011, 59(23), 12697–12706. DOI: 10.1021/jf203289s.
  • Mock, T. S.; Francis, D. S.; Drumm, D. W.; Versace, V. L.; Glencross, B. D.; Smullen, R. P.; Jago, M. K.; Turchini, G. M. A Systematic Review and Analysis of Long-Term Growth Trials on the Effect of Diet on Omega-3 Fatty Acid Levels in the Fillet Tissue of Post-Smolt Atlantic Salmon. Aquaculture. 2020, 516, 734643. DOI: 10.1016/j.aquaculture.2019.734643.
  • Glencross, B.; Carr, I.; Santigosa, E. Distribution, Deposition, and Modelling of Lipid and Long-Chain Polyunsaturated Fatty Acids in Atlantic Salmon Fillets. Rev. Fish. Sci. Aquac. 2022, 1–22. doi: 10.1080/23308249.2022.2090831.
  • Robb, D. H. F.; Kestin, S. C.; Warriss, P. D.; Nute, G. R. Muscle Lipid Content Determines the Eating Quality of Smoked and Cooked Atlantic Salmon (Salmo Salar). Aquaculture. 2002, 205(3–4), 345–358. DOI: 10.1016/S0044-8486(01)00710-4.
  • Jónsson, Á.; Pálmadóttir, H.; Kristbergsson, K. Fatty Acid Composition in Ocean-Ranched Atlantic Salmon (Salmo Salar). International Journal Of Food Science & Technology. 1997, 32(6), 547–551. DOI: 10.1111/j.1365-2621.1997.tb02130.x.
  • Molversmyr, E.; Devle, H. M.; Naess-Andresen, C. F.; Ekeberg, D. Identification and Quantification of Lipids in Wild and Farmed Atlantic Salmon (Salmo Salar), and Salmon Feed by GC-MS. Food Science & Nutrition. 2022, 10(9), 3117–3127. DOI: 10.1002/fsn3.2911.
  • Skilbrei, O. T.; Normann, E.; Meier, S.; Olsen, R. E. Use of Fatty Acid Profiles to Monitor the Escape History of Farmed Atlantic Salmon. Aquac. Environ. Interact. 2015, 7(1), 1–13. DOI: 10.3354/aei00132.
  • Turchini, G. M.; Torstensen, B. E.; Ng, W.-K. Fish Oil Replacement in Finfish Nutrition. Rev. Aquac. 2009, 1(1), 10–57. DOI: 10.1111/j.1753-5131.2008.01001.x.
  • Rosenlund, G.; Torstensen, B. E.; Stubhaug, I.; Usman, N.; Sissener, N. H. Atlantic Salmon Require Long-Chain N-3 Fatty Acids for Optimal Growth Throughout the Seawater Period. J. Nutr. Sci. 2016, 5, e19. DOI: 10.1017/jns.2016.10.
  • Foroutani, M. B.; Parrish, C. C.; Wells, J.; Taylor, R. G.; Rise, M. L.; Shahidi, F. Minimizing Marine Ingredients in Diets of Farmed Atlantic Salmon (Salmo Solar): Effects on Growth Performance and Muscle Lipid and Fatty Acid Composition. PLoS One. 2018, 13(9), e0198538. DOI: 10.1371/journal.pone.0198538.
  • Bell, J. G.; McEvoy, J.; Tocher, D. R.; McGhee, F.; Campbell, P. J.; Sargent, J. R. Replacement of Fish Oil with Rapeseed Oil in Diets of Atlandtic Salmon Affects Tissue Lipid Compositions and Hepatocyte Fatty Acid Metabolism. J. Nutr. Metab. 2001, 131(5), 1535–1543. DOI: 10.1093/jn/131.5.1535.
  • Bell, J. G.; Henderson, R. J.; Tocher, D. R.; McGhee, F.; Dick, J. R.; Porter, A.; Smullen, R., P, and Sargent, J. R. Substituting Fish Oil with Crude Palm Oil in the Diet of Atlantic Salmon Affect Muscle Fatty Acid Composition and Hepatic Fatty Acid Metabolism. J. Nutr. Requirements. 2002, 132(2), 222–230. DOI: 10.1093/jn/132.2.222.
  • Torstensen, B. E.; Bell, J. G.; Rosenlund, G.; Henderson, R. J.; Graff, I. E.; Tocher, D. R.; Lie, O.; Sargent, J. R. Tailoring of Atlantic Salmon (Salmo Salar L.) Flesh Lipid Composition and Sensory Quality by Replacing Fish Oil with a Vegetable Oil Blend. J. Agric. Food Chem. 2005, 53(26), 10166–10178. DOI: 10.1021/jf051308i.
  • Pratoomyot, J.; Bendiksen, E. A.; Bell, J. G.; Tocher, D. R. Comparison of Effects of Vegetable Oils Blended with Southern Hemisphere Fish Oil and Decontaminated Northern Hemisphere Fish Oil on Growth Performance, Composition and Gene Expression in Atlantic Salmon (Salmo Salar L.). Aquaculture. 2008, 280(1–4), 170–178. DOI: 10.1016/j.aquaculture.2008.04.028.
  • Pratoomyot, J.; Bendiksen, E. A.; Bell, J. G.; Tocher, D. R. Effects of Increasing Replacement of Dietary Fishmeal with Plant Protein Sources on Growth Performance and Body Lipid Composition of Atlantic Salmon (Salmo Salar L.). Aquaculture. 2010, 305(1–4), 124–132. DOI: 10.1016/j.aquaculture.2010.04.019.
  • Codabaccus, M. B.; Bridle, A. R.; Nichols, P. D.; Carter, C. G. Effect of Feeding Atlantic Salmon (Salmo Salar L.) a Diet Enriched with Stearidonic Acid from Parr to Smolt on Growth and N-3 Long-Chain PUFA Biosynthesis. Br. J. Nutr. 2011, 105(12), 1772–1782. DOI: 10.1017/S0007114510005714.
  • Hatlen, B.; Larsson, T.; Østbye, T. K.; Romarheim, O. H.; Rubio, L. M.; Ruyter, B. Improved Fillet Quality in Harvest-Size Atlantic Salmon Fed High N-3 Canola Oil as aDHA-Source. Aquac. 2022, 560. DOI: 10.1016/j.aquaculture.2022.738555.
  • Nanton, D. A.; Vegusdal, A.; Rørå, A. M. B.; Ruyter, B.; Baeverfjord, G.; Torstensen, B. E. Muscle Lipid Storage Pattern, Composition, and Adipocyte Distribution in Different Parts of Atlantic Salmon (Salmo Salar) Fed Fish Oil and Vegetable Oil. Aquaculture. 2007, 265(1–4), 230–243. DOI: 10.1016/j.aquaculture.2006.03.053.
  • Torrissen, O. J.; Naevdal, G. Pigmentation of Salmonids — Variation in Flesh Carotenoids of Atlantic Salmon. Aquaculture. 1988, 68(4), 305–310. DOI: 10.1016/0044-8486(88)90244-X.
  • Helgeland, H.; Sodeland, M.; Zoric, N.; Torgersen, J. S.; Grammes, F.; von Lintig, J.; Moen, T.; Kjøglum, S.; Lien, S.; Våge, D. I. Genomic and Functional Gene Studies Suggest a Key Role of Beta-Carotene Oxygenase 1 Like (Bco1l) Gene in Salmon Flesh Color. Sci. Rep. 2019, 9(1), 20061. DOI: 10.1038/s41598-019-56438-3.
  • Wathne, E.; Bjerkeng, B.; Storebakken, T.; Vassvik, V.; Odland, A. B. Pigmentation of Atlantic Salmon (Salmo Salar) Fed Astaxanthin in All Meals or in Alternating Meals. Aquaculture. 1998, 159(3–4), 217–231. DOI: 10.1016/S0044-8486(97)00218-4.
  • March, B. E.; Macmillan, C. Muscle Pigmentation and Plasma Concentrations of Astaxanthin in Rainbow Trout, Chinook Salmon, and Atlantic Salmon in Response to Different Dietary Levels of Astaxanthin. Prog. Fish-Cult. 1996, 58(3), 178–186. DOI: 10.1577/1548-8640(1996)058<0178:MPAPCO>2.3.CO;2.
  • Jacobsen, J. Feeding Habits of Wild and Escaped Farmed Atlantic Salmon, Salmo Salar L., in the Northeast Atlantic. ICES J. Mar. Sci. 2001, 58(4), 916–933. DOI: 10.1006/jmsc.2001.1084.
  • Lim, K. C.; Yusoff, F. M.; Shariff, M.; Kamarudin, M. S. Astaxanthin as Feed Supplement in Aquatic Animals. Rev. Aquac. 2018, 10(3), 738–773. DOI: 10.1111/raq.12200.
  • Rajasingh, H.; Oyehaug, L.; Vage, D. I.; Omholt, S. W. Carotenoid Dynamics in Atlantic Salmon. BMC Biol. 2006, 4(1), 10. DOI: 10.1186/1741-7007-4-10.
  • Matthews, S. J.; Ross, N. W.; Lall, S. P.; Gill, T. A. Astaxanthin Binding Protein in Atlantic Salmon. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 2006, 144(2), 206–214. DOI: 10.1016/j.cbpb.2006.02.007.
  • Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2020, 74(1), 1–16. DOI: 10.1007/s11418-019-01364-x.
  • Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F. M. Astaxanthin: A Review of Its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46(2), 185–196. DOI: 10.1080/10408690590957188.
  • Liu, J.; Sun, Z.; Gerken, H.; Liu, Z.; Jiang, Y.; Chen, F. Chlorella Zofingiensis as an Alternative Microalgal Producer of Astaxanthin: Biology and Industrial Potential. Mar. Drugs. 2014, 12(6), 3487–3515. DOI: 10.3390/md12063487.
  • Ytrestøyl, T.; Struksnæs, G.; Rørvik, K. A.; Koppe, W.; Bjerkeng, B. Astaxanthin Digestibility as Affected by Ration Levels for Atlantic Salmon. Salmo salar. Aquaculture. 2006, 261(1), 215–224. DOI: 10.1016/j.aquaculture.2006.06.046.
  • Brotosudarmo, T. H. P.; Limantara, L.; Setiyono, E.; Heriyanto. Structures of Astaxanthin and Their Consequences for Therapeutic Application. Int. J. Food Sci. 2020, 2020, 2156582. DOI: 10.1155/2020/2156582.
  • Bjerkeng, B.; Berge, G. M. Apparent Digestibility Coefficients and Accumulation of Astaxanthin E/Z Isomers in Atlantic Salmon (Salmo Salar L.) and Atlantic Halibut (Hippoglossus Hippoglossus L.). Comp. Biochem. Physiol. B. 2000, 127(3), 423–432. DOI: 10.1016/S0305-0491(00)00278-9.
  • Buttle, L. G.; Crampton, V. O.; Williams, P. D. The Effect of Feed Pigment Type on Flesh Pigment Deposition and Colour in Farmed Atlantic Salmon, Salmo Salar L. Salmo Salar L. Aquac. Res. 2001, 32(2), 103–111. DOI: 10.1046/j.1365-2109.2001.00536.x.
  • Baker, R. T. M.; Pfeiffer, A. M.; Schoner, F. J.; Smith-Lemmon, L. Pigmenting Efficacy of Astaxanthin and Canthanxanthin in Fresh-Water Reaered Atlantic Salmon, Salmo Salar. Animal Feed Science And Technology. 2002, 99(1–4), 97–106. DOI: 10.1016/S0377-8401(02)00116-5.
  • Ytrestoyl, T.; Coral-Hinostroza, G.; Hatlen, B.; Robb, D. H.; Bjerkeng, B. Carotenoid and Lipid Content in Muscle of Atlantic Salmon, Salmo Salar, Transferred to Seawater as 0+ or 1+ Smolts. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 138(1), 29–40. DOI: 10.1016/j.cbpc.2004.01.011.
  • Young, A.; Morris, P. C.; Huntingford, F. A.; Sinnott, R. Replacing Fish Oil with Pre-Extruded Carbohydrate in Diets for Atlantic Salmon, Salmo Salar, During Their Entire Marine Grow-Out Phase: Effects on Growth, Composition and Colour. Aquaculture. 2006, 253(1–4), 531–546. DOI: 10.1016/j.aquaculture.2005.08.006.
  • Olsen, R. E.; Baker, R. T. M. Lutein Does Not Influence Flesh Astaxanthin Pigmentation in the Atlantic Salmon (Salmo Salar L.). Aquaculture. 2006, 258(1–4), 558–564. DOI: 10.1016/j.aquaculture.2006.03.031.
  • Bjerkeng, B.; Peisker, M.; von Schwartzenberg, K.; Ytrestøyl, T.; Åsgård, T. Digestibility and Muscle Retention of Astaxanthin in Atlantic Salmon, Salmo Salar, Fed Diets with the Red Yeast Phaffia rhodozyma in Comparison with Synthetic Formulated Astaxanthin. Aquaculture. 2007, 269(1–4), 476–489. DOI: 10.1016/j.aquaculture.2007.04.070.
  • Hynes, N.; Egeland, E. S.; Koppe, W.; Baardsen, G.; Kiron, V. Calanusoil as a Natural Source for Flesh Pigmentation in Atlantic Salmon (Salmo salarL.). Aquac. Nutr. 2009, 15(2), 202–208. DOI: 10.1111/j.1365-2095.2008.00584.x.
  • Johnsen, C. A.; Hagen, O.; Adler, M.; Jonsson, E.; Kling, P.; Bickerdike, R.; Solberg, C.; Bjornsson, B. T.; Bendiksen, E. A. Effects of Feed, Feeding Regime and Growth Rate on Flesh Quality, Connective Plasma Hormones in Farmed Atlantic Salmon (Salmo Salar L.). Aquaculture. 2011, 318(3–4), 343–354. DOI: 10.1016/j.aquaculture.2011.05.040.
  • Johnsen, C. A.; Hagen, Ø.; Solberg, C.; Björnsson, B. T. H.; Jönsson, E.; Johansen, S. J. S.; Bendiksen, E. Å. Seasonal Changes in Muscle Structure and Flesh Quality of 0+ and 1+ Atlantic Salmon (Salmo salarL.): Impact of Feeding Regime and Possible Roles of Ghrelin. Aquac. Nutr. 2013, 19(1), 15–34. DOI: 10.1111/j.1365-2095.2011.00927.x.
  • Albrektsen, S.; Ostbye, T. K.; Pedersen, M.; Ytteborg, E.; Ruyter, B.; Ytrestoyl, T. Dietary Impacts of Sulphuric Acid Extracted Fish Bone Compounds on Astaxanthin Utilization and Muscle Quality in Atlantic Salmon (Salmo Salar). Aquaculture. 2018, 495, 255–266. DOI: 10.1016/j.aquaculture.2018.05.047.
  • Lutfi, E.; Berge, G. M.; Bæverfjord, G.; Sigholt, T.; Bou, M.; Larsson, T.; Mørkøre, T.; Evensen, Ø.; Sissener, N. H.; Rosenlund, G., et al. Increasing Dietary Levels of the N-3 Long-Chain PUFA, EPA and DHA, Improves the Growth, Welfare, Robustness and Fillet Quality of Atlantic Salmon in Sea Cages. Br. J. Nutr. 2022, 129(1), 1–19. DOI: 10.1017/S0007114522000642.
  • Storebakken, T.; Foss, P.; Schiedt, K.; Austreng, E.; Liaane-Jensen, S.; Manz, U. Carotenoids in Diets for Salmonids IV. Pigmentation of Atlantic Salmon with Astaxanthin, Astaxanthin Dipalmitate and Canthaxanthin. Aquac. 1987, 65, 279–292.
  • Kiessling, A.; Olsen, R. E.; Buttle, L. Given the Same Dietary Carotenoid Inclusion, Atlantic Salmon,salmo Salar(l.) Display Higher Blood Levels of Canthaxanthin Than Astaxanthin. Aquac. Nutr. 2003, 9(4), 253–261. DOI: 10.1046/j.1365-2095.2003.00251.x.
  • Sheehan, E. M.; O’Connor, T. P.; Sheehy, P. J. A.; Buckley, D. J.; FitzGerald, R. Stability of Astaxanthin and Canthaxanthin in Raw and Smoked Atlantic Salmon (Salmo Salar) During Frozem Storage. Food Chem. 1998, 63(3), 313–317. DOI: 10.1016/S0308-8146(98)00048-X.
  • Schmeisser, J.; Verlhac-Trichet, V.; Madaro, A.; Lall, S. P.; Torrissen, O.; Olsen, R. E. Molecular Mechanism Involved in Carotenoid Metabolism in Post-Smolt Atlantic Salmon: Astaxanthin Metabolism During Flesh Pigmentation and Its Antioxidant Properties. Mar. Biotechnol. 2021, 23(4), 653–670. DOI: 10.1007/s10126-021-10055-2.
  • Courtot, E.; Musson, D.; Stratford, C.; Blyth, D.; Bourne, N. A.; Rombenso, A. N.; Simon, C. J.; Wu, X.; Wade, N. Dietary Fatty Acid Composition Affects the Apparent Digestibility of Algal Carotenoids in Diets for Atlantic Salmon, Salmo salar. Aquacult. Res. 2022, 53(6), 2343–2353. DOI: 10.1111/are.15753.
  • Johnsen, C. A.; Hagen, Ø.; Bendiksen, E. Å. Long-Term Effects of High-Energy, Low-Fishmeal Feeds on Growth and Flesh Characteristics of Atlantic Salmon (Salmo Salar L.). Aquaculture. 2011, 312(1–4), 109–116. DOI: 10.1016/j.aquaculture.2010.12.012.
  • Nordgarden, U.; Ornsrud, R.; Hansen, T.; Hemre, G. I. Seasonal Changes in Selected Muscle Quality Parameters in Atlantic Salmon (Salmo Salar L.) Reared Under Natural and Continuous Light. Aquac. Nutr. 2003, 9(3), 161–168. DOI: 10.1046/j.1365-2095.2003.00236.x.
  • Ytrestoyl, T.; Struksnaes, G.; Koppe, W.; Bjerkeng, B. Effects of Temperature and Feed Intake on Astaxanthin Digestibility and Metabolism in Atlantic Salmon, Salmo Salar. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 2005, 142(4), 445–455. DOI: 10.1016/j.cbpb.2005.09.004.
  • Grunenwald, M.; Adams, M. B.; Carter, C. G.; Nichols, D. S.; Koppe, W.; Verlhac-Trichet, V.; Schierle, J.; Adams, L. R. Pigment-Depletion in Atlantic Salmon (Salmo Salar) Post-Smolt Starved at Elevated Temperature is Not Influenced by Dietary Carotenoid Type and Increasing Alpha-Tocopherol Level. Food Chem. 2019, 299, 125140. DOI: 10.1016/j.foodchem.2019.125140.
  • Hamre, K.; Micallef, G.; Hillestad, M.; Johansen, J.; Remø, S.; Zhang, W.; Ødegård, E.; Araujo, P.; Prabhu Philip, A. J.; Waagbø, R. Changes in Daylength and Temperature from April Until August for Atlantic Salmon (Salmo Salar) Reared in Sea Cages, Increase Growth, and May Cause Consumption of Antioxidants, Onset of Cataracts and Increased Oxidation of Fillet Astaxanthin. Aquaculture. 2022, 551, 737950. DOI: 10.1016/j.aquaculture.2022.737950.
  • Grunenwald, M. Factors affecting pigmentation quality in Atlantic salmon (Salmo salar L.) at evelated temperature. University of Tasmania, 2018. DOI: 10.25959/23238263.v1.
  • Grünenwald, M.; Carter, C. G.; Nichols, D. S.; Adams, M. B.; Adams, L. R. Heterogeneous Astaxanthin Distribution in the Fillet of Atlantic Salmon Post-Smolt at Elevated Temperature is Not Affected by Dietary Fatty Acid Composition, Metabolic Conversion of Astaxanthin to Idoxanthin, or Oxidative Stress. Aquaculture. 2020, 521, 735096. DOI: 10.1016/j.aquaculture.2020.735096.
  • Vo T.; T. Tran, G.; Amoroso, T.; Ventura, A., Elizur. Analysis of carotenoids and fatty acid compositions in Atlantic salmon exposed to elevated temperatures and displaying flesh color loss. Food Chemistry, 2023,417, 135867. DOI: 10.1016/j.foodchem.2023.135867.
  • Vo, T.; G.; Amoroso, T.; Ventura, A.; Elizur. Histological and transcriptomic analysis of muscular atrophy associated with depleted flesh pigmentation in Atlantic salmon (Salmo salar) exposed to elevated seawater temperatures. Sci Rep. 2023, 13(1), DOI: 10.1038/s41598-023-31242-2.
  • Bekhit, A. E.-D. A.; Holman, B. W. B.; Giteru, S. G.; Hopkins, D. L. Total Volatile Basic Nitrogen (TVB-N) and Its Role in Meat Spoilage: A Review. Trends Food Sci. Technol. 2021, 109, 280–302. DOI: 10.1016/j.tifs.2021.01.006.
  • Claudia Ruiz-Capillas, F. J.-C.; Fidel, T. Biogenic Amines in Seafood Products. In Handbook of Seafood and Seafood Products Analysis; L. Nollet and F. Toldrá, Eds.; Taylor & Francis Group: Boca Raton, FL, 2010; pp. 743–760. DOI:10.1201/EBK1439848173-30.
  • European Commision, COMMISSION REGULATION (EC) No 2074/2005. 2005.
  • Castro, P.; Padrón, J. C. P.; Cansino, M. J. C.; Velázquez, E. S.; Larriva, R. M. D. Total Volatile Base Nitrogen and Its Use to Assess Freshness in European Sea Bass Stored in Ice. Food Control. 2006, 17(4), 245–248. DOI: 10.1016/j.foodcont.2004.10.015.
  • Halasz, A.; Barath, A.; Simon-Sarkadi, L.; Holzapfel, W. Biogenic Amines and Their Production by Microorganisms in Food. Trends Food Sci. Technol. 1994, 5(2), 42–49. DOI: 10.1016/0924-2244(94)90070-1.
  • Attaran, R. R.; Probst, F. Histamine Fish Poisoning: A Common but Frequently Misdiagnosed Condition. Emerg Med J. 2002, 19(5), 474–475. DOI: 10.1136/emj.19.5.474.
  • Goulding, I. Histamine in Salmonids. FAO WHO: Rome, 2018.
  • Buňka, F.; Budinský, P.; Zimáková, B.; Merhaut, M.; Flasarová, R.; Pachlová, V.; Kubáň, V.; Buňková, L. Biogenic Amines Occurrence in Fish Meat Sampled from Restaurants in Region of Czech Republic. Food Control. 2013, 31(1), 49–52. DOI: 10.1016/j.foodcont.2012.09.044.
  • Garmienė, G.; Zaborskienė, G.; Šalaševičienė, A. Fish Product Safety in Lithuania: Assessment of Histamine Levels. Annals Food Sci. Technol. 2014, 15(2), 353–360.
  • Pawul-Gruba, M.; Osek, J. Identification of Histamine in Fish and Fish Products in Poland During 2014-2018. J. Vet. Res. 2021, 65(4), 483–486. DOI: 10.2478/jvetres-2021-0066.
  • Visciano, P.; Schirone, M.; Tofalo, R.; Suzzi, G. Histamine Poisoning and Control Measures in Fish and Fishery Products. Front. Microbiol. 2014, 5, 500. DOI: 10.3389/fmicb.2014.00500.
  • Lovdal, T. The Microbiology of Cold Smoked Salmon. Food Control. 2015, 54, 360–373. DOI: 10.1016/j.foodcont.2015.02.025.
  • Franco-Duarte, R.; Cernakova, L.; Kadam, S.; Kaushik, K. S.; Salehi, B.; Bevilacqua, A.; Corbo, M. R.; Antolak, H.; Dybka-Stepien, K.; Leszczewicz, M., et al. Advances in Chemical and Biological Methods to Identify Microorganisms-From Past to Present. Microorganisms. 2019, 7(5), 130. DOI: 10.3390/microorganisms7050130.
  • Tito, N. B.; Rodemann, T.; Powell, S. M. Use of Near Infrared Spectroscopy to Predict Microbial Numbers on Atlantic Salmon. Food Microbiol. 2012, 32(2), 431–436. DOI: 10.1016/j.fm.2012.07.009.
  • Fogarty, C.; Whyte, P.; Brunton, N.; Lyng, J.; Smyth, C.; Fagan, J.; Bolton, D. Spoilage Indicator Bacteria in Farmed Atlantic Salmon (Salmo Salar) Stored on Ice for 10 Days. Food Microbiol. 2019, 77, 38–42. DOI: 10.1016/j.fm.2018.08.001.
  • Sveinsdottir, K.; Martinsdottir, E.; Hyldig, G.; Jorgensen, B.; Kristbergsson, K. Application of Quality Index Method (QIM) Scheme in Shelf-Life Study of Farmed Atlantic Salmon (Salmo Salar). J. Food Sci. 2002, 67(4), 1570–1579. DOI: 10.1111/j.1365-2621.2002.tb10324.x.
  • Moretro, T.; Moen, B.; Heir, E.; Hansen, A. A.; Langsrud, S. Contamination of Salmon Fillets and Processing Plants with Spoilage Bacteria. Int. J. Food Microbiol. 2016, 237, 98–108. DOI: 10.1016/j.ijfoodmicro.2016.08.016.
  • Miks-Krajnik, M.; Yoon, Y. J.; Ukuku, D. O.; Yuk, H. G. Volatile Chemical Spoilage Indexes of Raw Atlantic Salmon (Salmo Salar) Stored Under Aerobic Condition in Relation to Microbiological and Sensory Shelf Lives. Food Microbiol. 2016, 53(Pt B), 182–191. DOI: 10.1016/j.fm.2015.10.001.
  • Kuuliala, L.; Sader, M.; Solimeo, A.; Perez-Fernandez, R.; Vanderroost, M.; De Baets, B.; De Meulenaer, B.; Ragaert, P.; Devlieghere, F. Spoilage Evaluation of Raw Atlantic Salmon (Salmo Salar) Stored Under Modified Atmospheres by Multivariate Statistics and Augmented Ordinal Regression. Int. J. Food Microbiol. 2019, 303, 46–57. DOI: 10.1016/j.ijfoodmicro.2019.04.011.
  • Thompson, L. A.; Darwish, W. S. Environmental Chemical Contaminants in Food: Review of a Global Problem. Journal Of Toxicology. 2019, 2019, 1–14. DOI: 10.1155/2019/2345283.
  • Foran, J. A.; Good, D. H.; Carpenter, D. O.; Hamilton, M. C.; Knuth, B. A.; Schwager, S. J. Quantitative Analysis of the Benefits and Risks of Consuming Farmed and Wild Salmon. J. Nutr. 2005, 135(11), 2639–2643. DOI: 10.1093/jn/135.11.2639.
  • Easton, M. D. L.; Luszniak, D.; Von der Geest, E. Preliminary Examination of Contaminant Loadings in Farmed Salmon, Wild Salmon and Commercial Salmon Feed. Chemosphere. 2002, 46(7), 1053–1074. DOI: 10.1016/S0045-6535(01)00136-9.
  • Friesen, E. N.; Ikonomou, M. G.; Higgs, D. A.; Ang, K. P.; Dubetz, C. Use of Terrestrial Based Lipids in Aquaculture Feeds and the Effects on Flesh Organohalogen and Fatty Acid Concentrations in Farmed Atlantic Salmon. Environ. Sci. Technol. 2008, 42(10), 3519–3523. DOI: 10.1021/es0714843.
  • Berntssen, M. H.; Julshamn, K.; Lundebye, A. K. Chemical Contaminants in Aquafeeds and Atlantic Salmon (Salmo Salar) Following the Use of Traditional- versus Alternative Feed Ingredients. Chemosphere. 2010, 78(6), 637–646. DOI: 10.1016/j.chemosphere.2009.12.021.
  • Looser, R.; Froescheis, O.; Cailliet, G. M.; Jarman, W. M.; Ballschmiter, K. The Deep-Sea as a Final Global Sink of Semivolatile Persistent Organic Pollutants? Part II: Organochlorine Pesticides in Surface and Deep-Sea Dwelling Fish of the North and South Atlantic and the Monterey Bay Canyon (California). Chemosphere. 2000, 40(6), 661–670. DOI: 10.1016/S0045-6535(99)00462-2.
  • Froescheis, O.; Looser, R.; Cailliet, G. M.; Jarman, W. M.; Ballschmiter, K. The Deep-Sea as a Final Global Sink of Semivolatile Persistent Organic Pollutants? Part I: PCBs in Surface and Deep-Sea Dwelling Fish of the North and South Atlantic and the Monterey Bay Canyon (California). Chemosphere. 2000, 40(6), 651–660. DOI: 10.1016/S0045-6535(99)00461-0.
  • Nostbakken, O. J.; Hove, H. T.; Duinker, A.; Lundebye, A. K.; Berntssen, M. H.; Hannisdal, R.; Lunestad, B. T.; Maage, A.; Madsen, L.; Torstensen, B. E., et al. Contaminant Levels in Norwegian Farmed Atlantic Salmon (Salmo Salar) in the 13-Year Period from 1999 to 2011. Environ. Int. 2015, 74, 274–280. DOI: 10.1016/j.envint.2014.10.008.
  • Lundebye, A. K.; Lock, E. J.; Rasinger, J. D.; Nostbakken, O. J.; Hannisdal, R.; Karlsbakk, E.; Wennevik, V.; Madhun, A. S.; Madsen, L.; Graff, I. E., et al. Lower Levels of Persistent Organic Pollutants, Metals and the Marine Omega 3-Fatty Acid DHA in Farmed Compared to Wild Atlantic Salmon (Salmo Salar). Environ. Res. 2017, 155, 49–59. DOI: 10.1016/j.envres.2017.01.026.
  • Foran, J. A.; Hites, R. A.; Carpenter, D. O.; Hamilton, M. C.; Mathews-Amos, A.; Schwager, S. J. A Survey of Metals in Tissues of Farmed Atlantic and Wild Pacific Salmon. Environ. Toxicol. Chem. 2004, 23(9), 2108–2110. DOI: 10.1897/04-72.
  • Kelly, B. C.; Ikonomou, M. G.; Higgs, D. A.; Oakes, J.; Dubetz, C. Mercury and Other Trace Elements in Farmed and Wild Salmon from British Columbia, Canada. Environ. Toxicol. Chem. 2008, 27(6), 1361–1370. DOI: 10.1897/07-527.1.
  • Jardine, L. B.; Burt, M. D. B.; Arp, P. A.; Diamond, A. W. Mercury Comparisons Between Farmed and Wild Atlantic Salmon (Salmo salarL.) and Atlantic Cod (Gadus morhuaL.). Aquacult. Res. 2009, 40(10), 1148–1159. DOI: 10.1111/j.1365-2109.2009.02211.x.
  • Svendsen, T. C.; Vorkamp, K.; Ronsholdt, B.; Frier, J. O. Organochlorines and Polybrominated Diphenyl Ethers in Four Geographically Separated Populations of Atlantic Salmon (Salmo Salar). J. Environ. Monit. 2007, 9(11), 1213–1219. DOI: 10.1039/b707658d.
  • Shaw, S. D.; Brenner, D.; Berger, M. L.; Carpenter, D. O.; Hong, C. S.; Kannan, K. PCBs, PCDD/Fs, and Organochlorine Pesticides in Farmed Atlantic Salmon from Maine, Eastern Canada, and Norway, and Wild Salmon from Alaska. Environ. Sci. Technol. 2006, 40(17), 5347–5354. DOI: 10.1021/es061006c.
  • Shaw, S. D.; Berger, M. L.; Brenner, D.; Carpenter, D. O.; Tao, L.; Hong, C. S.; Kannan, K. Polybrominated Diphenyl Ethers (PBDEs) in Farmed and Wild Salmon Marketed in the Northeastern United States. Chemosphere. 2008, 71(8), 1422–1431. DOI: 10.1016/j.chemosphere.2008.01.030.
  • Kelly, B. C.; Ikonomou, M. G.; Higgs, D. A.; Oakes, J.; Dubetz, C. Flesh Residue Concentrations of Organochlorine Pesticides in Farmed and Wild Salmon from British Columbia, Canada. Environ. Toxicol. Chem. 2011, 30(11), 2456–2464. DOI: 10.1002/etc.662.
  • Morrison, W. R.; Smith, L. M. Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride–Methanol. Journal Of Lipid Research. 1964, 5(4), 600–608. DOI: 10.1016/S0022-2275(20)40190-7.
  • O’Fallon, J. V.; Busboom, J. R.; Nelson, M. L.; Gaskins, C. T. A Direct Method for Fatty Acid Methyl Ester Synthesis: Application to Wet Meat Tissues, Oils, and Feedstuffs. J. Anim. Sci. 2007, 85(6), 1511–1521. DOI: 10.2527/jas.2006-491.
  • Indarti, E.; Majid, M. I. A.; Hashim, R.; Chong, A. Direct FAME Synthesis for Rapid Total Lipid Analysis from Fish Oil and Cod Liver Oil. J. Food Compost. Anal. 2005, 18(2–3), 161–170. DOI: 10.1016/j.jfca.2003.12.007.
  • Shantha, N. C.; Napolitano, G. E. Gas Chromatography of Fatty Acids. J. Chromatography. A. 1992, 624(1–2), 37–51. DOI: 10.1016/0021-9673(92)85673-H.
  • Seppänen-Laakso, T.; Laakso, I.; Hiltunen, R. Analysis of Fatty Acids by Gas Chromatography, and Its Relevance to Research on Health and Nutrition. Analytica Chimica Acta. 2002, 465(1–2), 39–62. DOI: 10.1016/S0003-2670(02)00397-5.
  • Wold, J. P.; Marquardt, B. J.; Dable, B. K.; Robb, D.; Hatlen, B. Rapid Quantification of Carotenoids and Fat in Atlantic Salmon (Salmo Salar L.) by Raman Spectroscopy and Chemometrics. Applied Spectroscopy. 2004, 58(4), 395–403. DOI: 10.1366/000370204773580220.
  • Afseth, N. K.; Wold, J. P.; Segtnan, V. H. The Potential of Raman Spectroscopy for Characterisation of the Fatty Acid Unsaturation of Salmon. Analytica Chimica Acta. 2006, 572(1), 85–92. DOI: 10.1016/j.aca.2006.05.013.
  • Afseth, N. K.; Bloomfield, M.; Wold, J. P.; Matousek, P. A Novel Approach for Subsurface Through-Skin Analysis of Salmon Using Spatially Offset Raman Spectroscopy (SORS). Applied Spectroscopy. Applied Spectroscopy. 2014, 68(2), 255–262. DOI: 10.1366/13-07215.
  • Landry, J. D.; Torley, P. J.; Blanch, E. W. Quantitation of Carotenoids and Fatty Acids from Atlantic Salmon Using a Portable Raman Device. Analyst. 2022, 147(19), 4379–4388. DOI: 10.1039/D2AN01140A.
  • Bekhit, M. Y.; Grung, B.; Mjos, S. A. Determination of Omega-3 Fatty Acids in Fish Oil Supplements Using Vibrational Spectroscopy and Chemometric Methods. Applied Spectroscopy. 2014, 68(10), 1190–1200. DOI: 10.1366/13-07210.
  • Cascant, M. M.; Breil, C.; Fabiano-Tixier, A. S.; Chemat, F.; Garrigues, S.; de la Guardia, M. Determination of Fatty Acids and Lipid Classes in Salmon Oil by Near Infrared Spectroscopy. Food Chem. 2018, 239, 865–871. DOI: 10.1016/j.foodchem.2017.06.158.
  • Prado, E.; Eklouh-Molinier, C.; Enez, F.; Causeur, D.; Blay, C.; Dupont-Nivet, M.; Labbe, L.; Petit, V.; Moreac, A.; Taupier, G., et al. Prediction of Fatty Acids Composition in the Rainbow Trout Oncorhynchus Mykiss by Using Raman Micro-Spectroscopy. Analytica Chimica Acta. 2022, 1191, 339212. DOI: 10.1016/j.aca.2021.339212.
  • Amorim-Carrilho, K. T.; Cepeda, A.; Fente, C.; Regal, P. Review of Methods for Analysis of Carotenoids. TrAc Trends Anal. Chem. 2014, 56, 49–73. DOI: 10.1016/j.trac.2013.12.011.
  • Saini, R. K.; Keum, Y. S. Carotenoid Extraction Methods: A Review of Recent Developments. Food Chem. 2018, 240, 90–103. DOI: 10.1016/j.foodchem.2017.07.099.
  • Rasmussen, H. M.; Muzhingi, T.; Eggert, E. M. R.; Johnson, E. J. Lutein, Zeaxanthin, Meso-Zeaxanthin Content in Egg Yolk and Their Absence in Fish and Seafood. J. Food Compost. Anal. 2012, 27(2), 139–144. DOI: 10.1016/j.jfca.2012.04.009.
  • Moretti, V. M.; Mentasti, T.; Bellagamba, F.; Luzzana, U.; Caprino, F.; Turchini, G. M.; Giani, I.; Valfre, F. Determination of Astaxanthin Stereoisomers and Colour Attributes in Flesh of Rainbow Trout (Oncorhynchus Mykiss) as a Tool to Distinguish the Dietary Pigmentation Source. Food Addit. Contam. 2006, 23(11), 1056–1063. DOI: 10.1080/02652030600838399.
  • Rufer, C. E.; Moeseneder, J.; Briviba, K.; Rechkemmer, G.; Bub, A. Bioavailability of Astaxanthin Stereoisomers from Wild (Oncorhynchus Spp.) and Aquacultured (Salmo Salar) Salmon in Healthy Men: A Randomised, Double-Blind Study. Br. J. Nutr. 2008, 99(5), 1048–1054. DOI: 10.1017/S0007114507845521.
  • Rivera, S. M.; Christou, P.; Canela-Garayoa, R. Identification of Carotenoids Using Mass Spectrometry. Mass Spectrom. Rev. 2014, 33(5), 353–372. DOI: 10.1002/mas.21390.
  • Pathare, P. B.; Opara, U. L.; Al-Said, F. A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess. Technol. 2012, 6(1), 36–60. DOI: 10.1007/s11947-012-0867-9.
  • Christiansen, R.; Struksnæs, G.; Estermann, R.; Torrissen, O. J. Asssessment of Flesh Colour in Atlantic Salmon. Salmo salar L. Aquac. Res. 1995, 26(5), 311–321. DOI: 10.1111/j.1365-2109.1995.tb00919.x.
  • Skrede, G.; Risvik, E.; Huber, M.; Enersen, G.; Blümlein, L. Developing a Color Card for Raw Flesh of Astaxanthin-Fed Salmon. J. Food Sci. 1990, 55(2), 361–363. DOI: 10.1111/j.1365-2621.1990.tb06763.x.
  • Misimi, E.; Mathiassen, J. R.; Erikson, U. Computer Vision-Based Sorting of Atlantic Salmon (Salmo Salar) Fillets According to Their Color Level. J. Food Sci. 2007, 72(1), S030–5. DOI: 10.1111/j.1750-3841.2006.00241.x.
  • Quevedo, R. A.; Aguilera, J. M.; Pedreschi, F. Color of Salmon Fillets by Computer Vision and Sensory Panel. Food Bioprocess. Technol. 2008, 3(5), 637–643. DOI: 10.1007/s11947-008-0106-6.
  • Ermakov, I. V.; Kollias, N.; Ermakova, M. R.; Zeng, H.; Choi, B.; Gellermann, W.; Malek, R. S.; Wong, B. J.; Ilgner, J. F. R.; Trowers, E. A., 2006 Photonic Therapeutics and Diagnostics II, SPIE BiOS San Jose, California, United States, 22 February 2006 doi:10.1117/12.644783.
  • Hikima, J. I.; Ando, M.; Hamaguchi, H. O.; Sakai, M.; Maita, M.; Yazawa, K.; Takeyama, H.; Aoki, T. On-Site Direct Detection of Astaxanthin from Salmon Fillet Using Raman Spectroscopy. Mar. Biotechnol. 2017, 19(2), 157–163. DOI: 10.1007/s10126-017-9739-7.