275
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Properties and Biological Effects of Curcumin in Food Product Development

, , &

References

  • Krausz, A. E.; Adler, B. L.; Cabral, V.; Navati, M.; Doerner, J.; Charafeddine, R. A.; Chandra, D.; Liang, H.; Gunther, L.; Clendaniel, A., et al. Curcumin-Encapsulated Nanoparticles as Innovative Antimicrobial and Wound Healing Agent. Nanomedicine. 2015, 11(1), 195–206.
  • Schmidt, B. M.; Ribnicky, D. M.; Lipsky, P. E.; Raskin, I. Revisiting the Ancient Concept of Botanical Therapeutics. Nat. Chem. Biol. 2007, 3(7), 360–366. DOI: 10.1038/nchembio0707-360.
  • Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D. L.; Lee, S. J.; Min, T.; Kwon, T.; Jeong, D. K. Nanoformulations of Curcumin: An Emerging Paradigm for Improved Remedial Application. Oncotarget. 2017, 8(39), 66680–66698. DOI: 10.18632/oncotarget.19164.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4(6), 807–818. DOI: 10.1021/mp700113r.
  • Bishnoi, M.; Chopra, K.; Rongzhu, L.; Kulkarni, S. K. Protective Effect of Curcumin and Its Combination with Piperine (Bioavailability Enhancer) Against Haloperidol-Associated Neurotoxicity: Cellular and Neurochemical Evidence. Neurotox. Res. 2011, 20(3), 215–225. DOI: 10.1007/s12640-010-9229-4.
  • Reddy, N. N.; Mohan, Y. M.; Varaprasad, K.; Ravindra, S.; Joy, P. A.; Raju, K. M. Magnetic and Electric Responsive Hydrogel–Magnetic Nanocomposites for Drug-Delivery Application. J. Appl. Polym. Sci. 2011, 122(2), 1364–1375. DOI: 10.1002/app.34016.
  • Wang, Y.; Lu, Z.; Wu, H.; Lv, F. Study on the Antibiotic Activity of Microcapsule Curcumin Against Foodborne Pathogens. Int. J. Food Microbiol. 2009, 136(1), 71–74. DOI: 10.1016/j.ijfoodmicro.2009.09.001.
  • Gupta, R. K.; Balasubrahmanyam, L. The Turmeric Effect. World Pat. Info. 1998, 20(3–4), 185–191. DOI: 10.1016/S0172-2190(98)00045-3.
  • Sugiyama, Y.; Kawakishi, S.; Osawa, T. Involvement of the Β-Diketone Moiety in the Antioxidative Mechanism of Tetrahydrocurcumin. Biochem Pharmacol. 1996, 52(4), 519–525. DOI: 10.1016/0006-2952(96)00302-4.
  • Babaei, E.; Sadeghizadeh, M.; Hassan, Z. M.; Feizi, M. A. H.; Najafi, F.; Hashemi, S. M. Dendrosomal Curcumin Significantly Suppresses Cancer Cell Proliferation in vitro and in vivo. Int. Immunopharmacol. 2012, 12(1), 226–234. DOI: 10.1016/j.intimp.2011.11.015.
  • Tayyem, R. F.; Heath, D. D.; Al-Delaimy, W. K.; Rock, C. L. Curcumin Content of Turmeric and Curry Powders. Nutr. Cancer. 2006, 55(2), 126–131. DOI: 10.1207/s15327914nc5502_2.
  • Heger, M.; van Golen, R. F.; Broekgaarden, M.; Michel, M. C.; Sibley, D. R. The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer. Pharmacol. Rev. 2014, 66(1), 222–307. DOI: 10.1124/pr.110.004044.
  • Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S. M. Application of Different Nanocarriers for Encapsulation of Curcumin. Crit. Rev. Food Sci. Nutr. 2019, 59(21), 3468–3497. DOI: 10.1080/10408398.2018.1495174.
  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the Re-Evaluation of Curcumin (E 100) as a Food Additive. Efsa J. 2010, 8(9), 1–46. doi:10.2903/j.efsa.2010.1679.
  • Wang, L.; Wu, M.; He, M. The Bioavailability of Curcumin and Its Application Prospects in the Food Industry. Anhui Agric. Sci. 2015, 43, 172–174.
  • Sikora, E.; Scapagnini, G.; Barbagallo, M. C. Inflammation, Ageing and Age-Related Diseases. Immun. Ageing. 2010, 7(1), 1. DOI: 10.1186/1742-4933-7-1.
  • Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent Advances in Emulsion-Based Delivery Approaches for Curcumin: From Encapsulation to Bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. DOI: 10.1016/j.tifs.2017.11.009.
  • Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S. M. Application of Curcumin-Loaded Nanocarriers for Food, Drug and Cosmetic Purposes. Trends Food Sci. Technol. 2019, 88, 445–458. DOI: 10.1016/j.tifs.2019.04.017.
  • Nelson, K. M.; Dahlin, J. L.; Bisson, J.; Graham, J.; Pauli, G. F.; Walters, M. A. The Essential Medicinal Chemistry of Curcumin: Miniperspective. J. Med. Chem. 2017, 60(5), 1620–1637. DOI: 10.1021/acs.jmedchem.6b00975.
  • Priyadarsini, K. I.; Maity, D. K.; Naik, G. H.; Kumar, M. S.; Unnikrishnan, M. K.; Satav, J. G.; Mohan, H. Role of Phenolic O-H and Methylene Hydrogen on the Free Radical Reactions and Antioxidant Activity of Curcumin. Free Radic Biol Med. 2003, 35(5), 475–484. DOI: 10.1016/S0891-5849(03)00325-3.
  • Borsari, M.; Ferrari, E.; Grandi, R.; Saladini, M. Curcumin as Potential New Iron- Agents: Spectroscopic, Polarographic and Potentiometric Study on Their Fe(ii) Complexing Ability. Inorg. Chem. Acta. 2002, 328(1), 61–68. DOI: 10.1016/S0020-1693(01)00687-9.
  • Lestari, M. L.; Indrayanto, G. C. Profiles of Drug Substances, Excipients and Related Methodology, Academic Press, 2014; Vol. 39, pp. 113–204.
  • Esatbeyoglu, T.; Huebbe, P.; Ernst, I. M. A.; Chin, D.; Wagner, A. E.; Rimbach, G. Curcumin-From Molecule to Biological Function. Angew. Chem. Int. Ed. Engl. 2012, 51(22), 5308–5332. DOI: 10.1002/anie.201107724.
  • Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; De Lillo, A.; Laino, L.; Lo Muzio, L. Biological and Therapeutic Activities, and Anticancer Properties of Curcumin. Exp. Ther. Med. 2015, 10(5), 1615–1623. DOI: 10.3892/etm.2015.2749.
  • Goel, A.; Kunnumakkara, A. B.; Aggarwal, B. B. Curcumin as “Curecumin”: From Kitchen to Clinic. Biochem Pharmacol. 2008, 75(4), 787–809. DOI: 10.1016/j.bcp.2007.08.016.
  • Anand, P.; Sung, B.; Kunnumakkara, A. B.; Rajasekharan, K. N.; Aggarwal, B. B. Retracted: Suppression of Pro-Inflammatory and Proliferative Pathways by Diferuloylmethane (Curcumin) and Its Analogues Dibenzoylmethane, Dibenzoylpropane, and Dibenzylideneacetone: Role of Michael Acceptors and Michael Donors. Biochem Pharmacol. 2011, 82(12), 1901–1909. DOI: 10.1016/j.bcp.2011.09.001.
  • Priyadarsini, K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19(12), 20091–20112. DOI: 10.3390/molecules191220091.
  • Minear, S.; O’Donnell, A. F.; Ballew, A.; Giaever, G.; Nislow, C.; Stearns, T.; Cyert, M. S. Curcumin Inhibits Growth of Saccharomyces Cerevisiae Through Iron Chelation. Eukaryot. Cell. 2011, 10(11), 1574–1581. DOI: 10.1128/EC.05163-11.
  • Jiao, Y.; Wilkinson, J. T.; Christine Pietsch, E.; Buss, J. L.; Wang, W.; Planalp, R.; Torti, F. M.; Torti, S. V. Iron Chelation in the Biological Activity of Curcumin. Free Radic Biol Med. 2006, 40(7), 1152–1160. DOI: 10.1016/j.freeradbiomed.2005.11.003.
  • Ak, T.; Gülçin, İ. Antioxidant and Radical Scavenging Properties of Curcumin. Chem. Biol. Interact. 2008, 174(1), 27–37. DOI: 10.1016/j.cbi.2008.05.003.
  • Masuda, T.; Hidaka, K.; Shinohara, A.; Maekawa, T.; Takeda, Y.; Yamaguchi, H. Chemical Studies on Antioxidant Mechanism of Curcuminoid: Analysis of Radical Reaction Products from Curcumin. J. Agric. Food. Chem. 1999, 47(1), 71–77. DOI: 10.1021/jf9805348.
  • Dinkova-Kostova, A. T.; Abeygunawardana, C.; Talalay, P. Chemoprotective Properties of Phenylpropenoids, Bis(benzylidene)cycloalkanones, and Related Michael Reaction Acceptors: Correlation of Potencies as Phase 2 Enzyme Inducers and Radical Scavengers. J. Med. Chem. 1998, 41(26), 5287–5296. DOI: 10.1021/jm980424s.
  • Jagannathan, R.; Abraham, P. M.; Poddar, P. Temperature-Dependent Spectroscopic Evidences of Curcumin in Aqueous Medium: A Mechanistic Study of Its Solubility and Stability. J. Phys. Chem B. 2012, 116(50), 14533–14540. DOI: 10.1021/jp3050516.
  • Kapoor, S.; Priyadarsini, K. I. Protection of Radiation-Induced Protein Damage by Curcumin. Biophys. Chem. 2001, 92(1–2), 119–126. DOI: 10.1016/S0301-4622(01)00188-0.
  • Priyadarsini, K. I. Free Radical Reactions of Curcumin in Membrane Models. Free Radic Biol Med. 1997, 23(6), 838–843. DOI: 10.1016/S0891-5849(97)00026-9.
  • Jovanovic, S. V.; Steenken, S.; Borne, C. W.; Simic, M. G. H-Atom Transfer is a Preferred Antioxidant Mechanism of Curcumin. J. Am. Chem. Soc. 1999, 121(41), 9677–9681. DOI: 10.1021/ja991446m.
  • Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma Longa) and Its Major Constituent (Curcumin) as Nontoxic and Safe Substances: Review. Phytother. Res. 2018, 32(6), 985–995. DOI: 10.1002/ptr.6054.
  • Sharifi, S.; Zununi Vahed, S.; Ahmadian, E.; Maleki Dizaj, S.; Abedi, A.; Hosseiniyan Khatibi, S. M.; Samiei, M. Stem Cell Therapy: Curcumin Does the Trick. Phytother. Res. 2019, 33(11), 2927–2937. DOI: 10.1002/ptr.6482.
  • Wilken, R.; Veena, M. S.; Wang, M. B.; Srivatsan, E. S. Curcumin: A Review of Anti-Cancer Properties and Therapeutic Activity in Head and Neck Squamous Cell Carcinoma. Mol. Cancer. 2011, 10(1), 12. DOI: 10.1186/1476-4598-10-12.
  • Shehzad, A.; Wahid, F.; Lee, Y. S. Curcumin in Cancer Chemoprevention: Molecular Targets, Pharmacokinetics, Bioavailability, and Clinical Trials. Arch. Pharm. (Weinheim). 2010, 343(9), 489–499. DOI: 10.1002/ardp.200900319.
  • Sharma, R. A.; McLelland, H. R.; Hill, K. A.; Ireson, C. R.; Euden, S. A.; Manson, M. M.; Pirmohamed, M.; Marnett, L. J.; Gescher, A. J.; Steward, W. P. Pharmacodynamic and Pharmacokinetic Study of Oral Curcuma Extract in Patients with Colorectal Cancer. Clin. Cancer Res. 2001, 7(7), 1894–1900.
  • Aggarwal, S.; Ndinguri, M. W.; Solipuram, R.; Wakamatsu, N.; Hammer, R. P.; Ingram, D.; Hansel, W. [DLys6]-luteinizing Hormone Releasing Hormone-Curcumin Conjugate Inhibits Pancreatic Cancer Cell Growth in vitro and in vivo. Int, J, Cancer. 2011, 129(7), 1611–1623. DOI: 10.1002/ijc.26132.
  • Johnson, J.; de Mejia, E. G. Dietary Factors and Pancreatic Cancer: The Role of Food Bioactive Compounds. Mol. Nutr Food Res. 2011, 55(1), 58–73. DOI: 10.1002/mnfr.201000420.
  • Luo, F.; Song, X.; Zhang, Y.; Chu, Y. Low-Dose Curcumin Leads to the Inhibition of Tumor Growth via Enhancing Ctl-Mediated Antitumor Immunity. Int. Immunopharmacol. 2011, 11(9), 1234–1240. DOI: 10.1016/j.intimp.2011.04.002.
  • Jaruga, E.; Salvioli, S.; Dobrucki, J.; Chrul, S.; Bandorowicz-Pikuła, J.; Sikora, E.; Franceschi, C.; Cossarizza, A.; Bartosz, G. A.-L. Apoptosis-Like, Reversible Changes in Plasma Membrane Asymmetry and Permeability, and Transient Modifications in Mitochondrial Membrane Potential Induced by Curcumin in Rat Thymocytes. FEBS Lett. 1998, 433(3), 287–293. DOI: 10.1016/S0014-5793(98)00919-3.
  • Prasad, S.; Tyagi, A. K.; Aggarwal, B. B. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice. Cancer Res. Treat. 2014, 46(1), 2–18. DOI: 10.4143/crt.2014.46.1.2.
  • Patro, B. S.; Rele, S.; Chintalwar, G. J.; Chattopadhyay, S.; Adhikari, S.; Mukherjee, T. Protective Activities of Some Phenolic 1, 3‐Diketones Against Lipid Peroxidation: Possible Involvement of the 1, 3‐Diketone Moiety. ChemBiochem. 2002, 3(4), 364–370. DOI: 10.1002/1439-7633(20020402)3:4<364:AID-CBIC364>3.0.CO;2-S.
  • Akhilender Naidu, K.; Thippeswamy, N. B. Inhibition of Human Low Density Lipoprotein Oxidation by Active Principles from Spices. Mol. Cell. Biochem. 2002, 229(1/2), 19–23. DOI: 10.1023/A:1017930708099.
  • Masuda, T.; Bando, H.; Maekawa, T.; Takeda, Y.; Yamaguchi, H. A Novel Radical Terminated Compound Produced in the Antioxidation Process of Curcumin Against Oxidation of a Fatty Acid Ester. Tetrahedron Lett. 2000, 41(13), 2157–2160. DOI: 10.1016/S0040-4039(00)00123-4.
  • Masuda, T.; Maekawa, T.; Hidaka, K.; Bando, H.; Takeda, Y.; Yamaguchi, H. Chemical Studies on Antioxidant Mechanism of Curcumin: Analysis of Oxidative Coupling Products from Curcumin and Linoleate. J. Agric. Food. Chem. 2001, 49(5), 2539–2547. DOI: 10.1021/jf001442x.
  • Lai, W. F. Design of Polymeric Films for Antioxidant Active Food Packaging. Int. J. Mol. Sci. 2021, 23(1), 12. DOI: 10.3390/ijms23010012.
  • Guillen, M. D.; Goicoechea, E. Formation of Oxygenated α,β-Unsaturated Aldehydes and Other Toxic Compounds in Sunflower Oil Oxidation at Room Temperature in Closed Receptacles. Food Chem. 2008, 111(1), 157–164. DOI: 10.1016/j.foodchem.2008.03.052.
  • Barden, L.; Decker, E. A. Lipid Oxidation in Low-Moisture Food: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56(15), 2467–2482. DOI: 10.1080/10408398.2013.848833.
  • Brewer, M. S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. F. 2011, 10(4), 221–247. DOI: 10.1111/j.1541-4337.2011.00156.x.
  • Tian, F.; Decker, E. A.; Goddard, J. M. Controlling Lipid Oxidation of Food by Active Packaging Technologies. Food Funct. 2013, 4(5), 669–680. DOI: 10.1039/c3fo30360h.
  • Huang, M. T.; Ferraro, T. Phenolic Compounds in Food and Cancer Prevention. In Phenolic Compounds in Food and Their Effects on Health II, American Chemical Society: US, 1992; pp. 8–34. DOI: 10.1021/bk-1992-0507.ch002.
  • Harman, D. Free Radical Theory of Aging. Mutat. Res. 1992, 275(3–6), 257–266. DOI: 10.1016/0921-8734(92)90030-S.
  • Sikora, E.; Bielak-Zmijewska, A.; Mosieniak, G.; Piwocka, K. The Promise of Slow Down Ageing May Come from Curcumin. Curr. Pharm. Des. 2010, 16(7), 884–892. DOI: 10.2174/138161210790883507.
  • Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39(1), 44–84. DOI: 10.1016/j.biocel.2006.07.001.
  • Chen, W. F.; Deng, S. L.; Zhou, B.; Yang, L.; Liu, Z. L. Curcumin and Its Analogues as Potent Inhibitors of Low Density Lipoprotein Oxidation: H-Atom Abstraction from the Phenolic Groups and Possible Involvement of the 4-Hydroxy-3-Methoxyphenyl Groups. Free Radic Biol Med. 2006, 40(3), 526–535. DOI: 10.1016/j.freeradbiomed.2005.09.008.
  • Lee, K. S.; Lee, B. S.; Semnani, S.; Avanesian, A.; Um, C. Y.; Jeon, H. J.; Seong, K. M.; Yu, K.; Min, K. J.; Jafari, M. Curcumin Extends Life Span, Improves Health Span, and Modulates the Expression of Age-Associated Aging Genes in Drosophila Melanogaster. Rejuvenation Res. 2010, 13(5), 561–570. DOI: 10.1089/rej.2010.1031.
  • Bower, M. R.; Aiyer, H. S.; Li, Y.; Martin, R. C. G. Chemoprotective Effects of Curcumin in Esophageal Epithelial Cells Exposed to Bile Acids. World J. Gastroenterol. 2010, 16(33), 4152–4158. DOI: 10.3748/wjg.v16.i33.4152.
  • Motterlini, R.; Foresti, R.; Bassi, R.; Green, C. J. Curcumin, an Antioxidant and Anti-Inflammatory Agent, Induces Heme Oxygenase-1 and Protects Endothelial Cells Against Oxidative Stress. Free Radic Biol Med. 2000, 28(8), 1303–1312. DOI: 10.1016/S0891-5849(00)00294-X.
  • Barik, A.; Mishra, B.; Shen, L.; Mohan, H.; Kadam, R. M.; Dutta, S.; Zhang, H. Y.; Indira Priyadarsini, K. Evaluation of a New Copper(ii)–Curcumin Complex as Superoxide Dismutase Mimic and Its Free Radical Reactions. Free Radic Biol Med. 2005, 39(6), 811–822. DOI: 10.1016/j.freeradbiomed.2005.05.005.
  • Sahu, P. K.; Sahu, P. K.; Sahu, P. L.; Agarwal, D. D. Structure Activity Relationship, Cytotoxicity and Evaluation of Antioxidant Activity of Curcumin Derivatives. Bioorg. Med. Chem. Lett. 2016, 26(4), 1342–1347. DOI: 10.1016/j.bmcl.2015.12.013.
  • Lal, J.; Gupta, S. K.; Thavaselvam, D.; Agarwal, D. D. Synthesis and Pharmacological Activity Evaluation of Curcumin Derivatives. Chin. Chem. Lett. 2016, 27(7), 1067–1072. DOI: 10.1016/j.cclet.2016.03.032.
  • Zhang, R.; Zhao, T.; Zheng, B.; Zhang, Y.; Li, X.; Zhang, F.; Cen, J.; Duan, S. Curcumin Derivative Cur20 Attenuated Cerebral Ischemic Injury by Antioxidant Effect and Hif-1α/vegf/tfeb-Activated Angiogenesis. Front Pharmacol. 2021, 12, 665. DOI: 10.3389/fphar.2021.648107.
  • Aggarwal, B. B.; Harikumar, K. B. Potential Therapeutic Effects of Curcumin, the Anti-Inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases. Int. J. Biochem. Cell Biol. 2009, 41(1), 40–59. DOI: 10.1016/j.biocel.2008.06.010.
  • Cragg, G. M.; Newman, D. J. Medicinals for the Millennia. The Historical Record. Ann. N Y Acad. Sci. 2001, 953a(1 NEW VISTAS IN), 3–25. DOI: 10.1111/j.1749-6632.2001.tb11356.x.
  • Lee, Y. K.; Lee, W. S.; Hwang, J. T.; Kwon, D. Y.; Surh, Y. J.; Park, O. J. Curcumin Exerts Antidifferentiation Effect Through AMPKα-PPAR-γ in 3T3-L1 Adipocytes and Antiproliferatory Effect Through AMPKα-COX-2 in Cancer Cells. J. Agric. Food. Chem. 2009, 57(1), 305–310. DOI: 10.1021/jf802737z.
  • Maheshwari, R. K.; Singh, A. K.; Gaddipati, J.; Srimal, R. C. Multiple Biological Activities of Curcumin: A Short Review. Life. sci. 2006, 78(18), 2081–2087. DOI: 10.1016/j.lfs.2005.12.007.
  • Duvoix, A.; Blasius, R.; Delhalle, S.; Schnekenburger, M.; Morceau, F.; Henry, E.; Dicato, M.; Diederich, M. Chemopreventive and Therapeutic Effects of Curcumin. Cancer Lett. 2005, 223(2), 181–190. DOI: 10.1016/j.canlet.2004.09.041.
  • Nair, H. B.; Sung, B.; Yadav, V. R.; Kannappan, R.; Chaturvedi, M. M.; Aggarwal, B. B. Delivery of Anti inflammatory Nutraceuticals by Nanoparticles for the Prevention and Treatment of Cancer. Biochem Pharmacol. 2010, 80(12), 1833–1843. DOI: 10.1016/j.bcp.2010.07.021.
  • Tyagi, A. K.; Prasad, S.; Yuan, W.; Li, S.; Aggarwal, B. B. Identification of a Novel Compound (Β-Sesquiphellandrene) from Turmeric (Curcuma Longa) with Anticancer Potential: Comparison with Curcumin. Invest. New Drugs. 2015, 33(6), 1175–1186. DOI: 10.1007/s10637-015-0296-5.
  • Park, B. S.; Kim, J. G.; Kim, M. R.; Lee, S. E.; Takeoka, G. R.; Oh, K. B.; Kim, J. H.; Curcuma, L. L. Constituents Inhibit Sortase a and Staphylococcus Aureus Cell Adhesion to Fibronectin. J. Agric. Food. Chem. 2005, 53(23), 9005–9009. DOI: 10.1021/jf051765z.
  • Mazmanian, S. K.; Liu, G.; Jensen, E. R.; Lenoy, E.; Schneewind, O. Staphylococcus Aureus Sortase Mutants Defective in the Display of Surface Proteins and in the Pathogenesis of Animal Infections. Proc. Natl. Acad. Sci. U. S. A. 2000, 97(10), 5510–5515. DOI: 10.1073/pnas.080520697.
  • Jonsson, I. M.; Mazmanian, S. K.; Schneewind, O.; Bremell, T.; Tarkowski, A. The Role of Staphylococcus Aureus Sortase a and Sortase B in Murine Arthritis. Microbes Infect. 2003, 5(9), 775–780. DOI: 10.1016/S1286-4579(03)00143-6.
  • Gutierrez, D.; Delgado, S.; Vazquez-Sanchez, D.; Martinez, B.; Cabo, M. L.; Rodriguez, A.; Herrera, J. J.; Garcia, P. Incidence of Staphylococcus Aureus and Analysis of Associated Bacterial Communities on Food Industry Surfaces. Appl. Environ. Microbiol. 2012, 78(24), 8547–8554. DOI: 10.1128/AEM.02045-12.
  • From, C.; Hormazabal, V.; Hardy, S. P.; Granum, P. E. Cytotoxicity in Bacillus Mojavensis is Abolished Following Loss of Surfactin Synthesis: Implications for Assessment of Toxicity and Food Poisoning Potential. Int. J. Food Microbiol. 2007, 117(1), 43–49. DOI: 10.1016/j.ijfoodmicro.2007.01.013.
  • Rai, D.; Singh Jay, K.; Roy, N.; Panda, D. Curcumin Inhibits Ftsz Assembly: An Attractive Mechanism for Its Antibacterial Activity. Biochem J. 2008, 410(1), 147–155. DOI: 10.1042/BJ20070891.
  • Kim, M. K.; Choi, G. J.; Lee, H. S. Fungicidal Property of Curcuma Longa L. Rhizome-Derived Curcumin Against Phytopathogenic Fungi in a Greenhouse. J. Agric. Food. Chem. 2003, 51(6), 1578–1581. DOI: 10.1021/jf0210369.
  • Martins, C. V. B.; da Silva, D. L.; Neres, A. T. M.; Magalhaes, T. F. F.; Watanabe, G. A.; Modolo, L. V.; Sabino, A. A.; de Fatima, A.; de Resende, M. A. Curcumin as a Promising Antifungal of Clinical Interest. J. Antimicrob. Chemother. 2009, 63(2), 337–339. DOI: 10.1093/jac/dkn488.
  • Sharma, M.; Manoharlal, R.; Puri, N.; Prasad, R. Antifungal Curcumin Induces Reactive Oxygen Species and Triggers an Early Apoptosis but Prevents Hyphae Development by Targeting the Global Repressor Tup1 in Candida Albicans. Biosci. Rep. 2010, 30(6), 391–404. DOI: 10.1042/BSR20090151.
  • Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N. N. I. M.; Begum, M. Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R., et al. A Comprehensive Review on the Therapeutic Potential of Curcuma Longa Linn. In Relation to Its Major Active Constituent Curcumin. Front Pharmacol. 2022, 13, 820806. DOI: 10.3389/fphar.2022.820806.
  • Kawamori, T.; Lubet, R.; Steele, V. E.; Kelloff, G. J.; Kaskey, R. B.; Rao, C. V.; Reddy, B. S. Chemopreventive Effect of Curcumin, a Naturally Occurring Anti-Inflammatory Agent, During the Promotion/Progression Stages of Colon Cancer. Cancer Res. 1999, 59(3), 597–601.
  • Kim, K.-C.; Baek, S.-H.; Lee, C. Curcumin-Induced Downregulation of Axl Receptor Tyrosine Kinase Inhibits Cell Proliferation and Circumvents Chemoresistance in Non-Small Lung Cancer Cells. Int. J. Oncol. 2015, 47(6), 2296–2303. DOI: 10.3892/ijo.2015.3216.
  • Şueki, F.; Ruhi, M. K.; Gülsoy, M. The Effect of Curcumin in Antitumor Photodynamic Therapy: In Vitro Experiments with Caco-2 and Pc-3 Cancer Lines. Photodiagnosis. Photodyn. Ther. 2019, 27, 95–99. DOI: 10.1016/j.pdpdt.2019.05.012.
  • Ganassin, R.; Oliveira, G. R. T.; da Rocha, M. C. O.; Morais, J. A. V.; Rodrigues, M. C.; Motta, F. N.; Azevedo, R. B.; Muehlmann, L. A. Curcumin Induces Immunogenic Cell Death in Murine Colorectal Carcinoma Ct26 Cells. Pharmacol. Res. Mod. Chin. Med. 2022, 2, 100046. DOI: 10.1016/j.prmcm.2022.100046.
  • Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget. 2018, 9(6), 7204. DOI: 10.18632/oncotarget.23208.
  • Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des. Devel. Ther. 2021, 15, 4503. DOI: 10.2147/DDDT.S327378.
  • Divya, C. S.; Pillai, M. R. Antitumor Action of Curcumin in Human Papillomavirus Associated Cells Involves Downregulation of Viral Oncogenes, Prevention of Nfkb and Ap-1 Translocation, and Modulation of Apoptosis. Mol. Carcinog. 2006, 45(5), 320–332. DOI: 10.1002/mc.20170.
  • Yu, Y.; Shen, Q.; Lai, Y.; Park, S. Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-Inflammatory Effects of Curcumin in Microglial Cells. Front Pharmacol. 2018, 9, 386. DOI: 10.3389/fphar.2018.00386.
  • Rahimi, K.; Ahmadi, A.; Hassanzadeh, K.; Soleimani, Z.; Sathyapalan, T.; Mohammadi, A.; Sahebkar, A. Targeting the Balance of T Helper Cell Responses by Curcumin in Inflammatory and Autoimmune States. Autoimmun. Rev. 2019, 18(7), 738–748. DOI: 10.1016/j.autrev.2019.05.012.
  • Fischer, H.-G.; Reichmann, G. Brain Dendritic Cells and Macrophages/Microglia in Central Nervous System Inflammation. J. Immunol. 2001, 166(4), 2717–2726. DOI: 10.4049/jimmunol.166.4.2717.
  • Kim, H. Y.; Park, E. J.; Joe, E.-H.; Jou, I. Curcumin Suppresses Janus Kinase-Stat Inflammatory Signaling Through Activation of Src Homology 2 Domain-Containing Tyrosine Phosphatase 2 in Brain Microglia. J. Immunol. 2003, 171(11), 6072–6079. DOI: 10.4049/jimmunol.171.11.6072.
  • Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D. A.; Schneider, C. Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin. J. Biol. Chem. 2011, 286(2), 1114–1124. DOI: 10.1074/jbc.M110.178806.
  • Liu, W.; Zhai, Y.; Heng, X.; Che, F. Y.; Chen, W.; Sun, D.; Zhai, G. Oral Bioavailability of Curcumin: Problems and Advancements. J. Drug Target. 2016, 24(8), 694–702. DOI: 10.3109/1061186X.2016.1157883.
  • Schneider, C.; Gordon, O. N.; Edwards, R. L.; Luis, P. B. Degradation of Curcumin: From Mechanism to Biological Implications. J. Agric. Food. Chem. 2015, 63(35), 7606–7614. DOI: 10.1021/acs.jafc.5b00244.
  • Tan, S.; Rupasinghe, T. W.; Tull, D. L.; Boughton, B.; Oliver, C.; McSweeny, C.; Gras, S. L.; Augustin, M. A. Degradation of Curcuminoids by in vitro Pure Culture Fermentation. J. Agric. Food. Chem. 2014, 62(45), 11005–11015. DOI: 10.1021/jf5031168.
  • Hassaninasab, A.; Hashimoto, Y.; Tomita-Yokotani, K.; Kobayashi, M. Discovery of the Curcumin Metabolic Pathway Involving a Unique Enzyme in an Intestinal Microorganism. Proc. Natl. Acad. Sci. U. S. A. 2011, 108(16), 6615–6620. DOI: 10.1073/pnas.1016217108.
  • Ireson, C.; Orr, S.; Jones, D. J.; Verschoyle, R.; Lim, C.-K.; Luo, J. L.; Howells, L.; Plummer, S.; Jukes, R.; Williams, M. Characterization of Metabolites of the Chemopreventive Agent Curcumin in Human and Rat Hepatocytes and in the Rat in Vivo, and Evaluation of Their Ability to Inhibit Phorbol Ester-Induced Prostaglandin E2 Production. Cancer Res. 2001, 61(3), 1058–1064.
  • Ireson, C. R.; Jones, D. J.; Orr, S.; Coughtrie, M. W.; Boocock, D. J.; Williams, M. L.; Farmer, P. B.; Steward, W. P.; Gescher, A. J. Metabolism of the Cancer Chemopreventive Agent Curcumin in Human and Rat Intestine. Cancer Epidemiol. Prev. Biomark. 2002, 11, 105–111.
  • Pan, M. H.; Huang, T. M.; Lin, J. K. Biotransformation of Curcumin Through Reduction and Glucuronidation in Mice. Drug Metab. Dispos. 1999, 27(4), 486–494.
  • Aggarwal, B. B.; Deb, L.; Prasad, S. Curcumin Differs from Tetrahydrocurcumin for Molecular Targets, Signaling Pathways and Cellular Responses. Molecules. 2015, 20(1), 185–205. DOI: 10.3390/molecules20010185.
  • Wu, J. C.; Tsai, M. L.; Lai, C. S.; Wang, Y. J.; Ho, C. T.; Pan, M. H. Chemopreventative Effects of Tetrahydrocurcumin on Human Diseases. Food Funct. 2014, 5(1), 12–17. DOI: 10.1039/C3FO60370A.
  • Hoehle, S. I.; Pfeiffer, E.; Sólyom, A. M.; Metzler, M. Metabolism of Curcuminoids in Tissue Slices and Subcellular Fractions from Rat Liver. J. Agric. Food. Chem. 2006, 54(3), 756–764. DOI: 10.1021/jf058146a.
  • Litwinienko, G.; Ingold, K. U. Solvent Effects on the Rates and Mechanisms of Reaction of Phenols with Free Radicals. Acc. Chem. Res. 2007, 40(3), 222–230. DOI: 10.1021/ar0682029.
  • Litwinienko, G.; Ingold, K. U. Abnormal Solvent Effects on Hydrogen Atom Abstraction. 2. Resolution of the Curcumin Antioxidant Controversy. The Role of Sequential Proton Loss Electron Transfer. J. Org. Chem. 2004, 69(18), 5888–5896. DOI: 10.1021/jo049254j.
  • Wang, Y. J.; Pan, M. H.; Cheng, A. L.; Lin, L. I.; Ho, Y. S.; Hsieh, C. Y.; Lin, J. K. Stability of Curcumin in Buffer Solutions and Characterization of Its Degradation Products. J. Pharm. Biomed. Ana. 1997, 15(12), 1867–1876. DOI: 10.1016/S0731-7085(96)02024-9.
  • Chenot, C. C.; Robiette, R. L.; Collin, S. First Evidence of the Cysteine and Glutathione Conjugates of 3-Sulfanylpentan-1-Ol in Hop (Humulus Lupulus L.). J. Agric. Food. Chem. 2019, 67(14), 4002–4010. DOI: 10.1021/acs.jafc.9b00225.
  • Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta. med. 1998, 64(4), 353–356. DOI: 10.1055/s-2006-957450.
  • Sunagawa, Y.; Miyazaki, Y.; Funamoto, M.; Shimizu, K.; Shimizu, S.; Nurmila, S.; Katanasaka, Y.; Ito, M.; Ogawa, T.; Ozawa-Umeta, H., et al. A Novel Amorphous Preparation Improved Curcumin Bioavailability in Healthy Volunteers: A Single-Dose, Double-Blind, Two-Way Crossover Study. J. Funct. Foods. 2021, 81, 104443. DOI: 10.1016/j.jff.2021.104443.
  • Marczylo, T. H.; Verschoyle, R. D.; Cooke, D. N.; Morazzoni, P.; Steward, W. P.; Gescher, A. J. Comparison of Systemic Availability of Curcumin with That of Curcumin Formulated with Phosphatidylcholine. Cancer Chemother. Pharmacol. 2007, 60(2), 171–177. DOI: 10.1007/s00280-006-0355-x.
  • Grill, A. E.; Koniar, B.; Panyam, J. Co-Delivery of Natural Metabolic Inhibitors in a Self-Microemulsifying Drug Delivery System for Improved Oral Bioavailability of Curcumin. Drug. Deliv. Transl. Res. 2014, 4(4), 344–352. DOI: 10.1007/s13346-014-0199-6.
  • Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D. J. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in vitro and in vivo Study. J. Agric. Food. Chem. 2018, 66(6), 1488–1497. DOI: 10.1021/acs.jafc.7b05478.
  • Chaurasia, S.; Patel, R. R.; Chaubey, P.; Kumar, N.; Khan, G.; Mishra, B. Lipopolysaccharide Based Oral Nanocarriers for the Improvement of Bioavailability and Anticancer Efficacy of Curcumin. Carbohydr. Polym. 2015, 130, 9–17. DOI: 10.1016/j.carbpol.2015.04.062.
  • Wang, Y.; Wang, C.; Zhao, J.; Ding, Y.; Li, L. A Cost-Effective Method to Prepare Curcumin Nanosuspensions with Enhanced Oral Bioavailability. J. Colloid. Interface. Sci. 2017, 485, 91–98. DOI: 10.1016/j.jcis.2016.09.003.
  • Ban, C.; Jo, M.; Park, Y. H.; Kim, J. H.; Han, J. Y.; Lee, K. W.; Kweon, D.-H.; Choi, Y. J. Enhancing the Oral Bioavailability of Curcumin Using Solid Lipid Nanoparticles. Food Chem. 2020, 302, 125328. DOI: 10.1016/j.foodchem.2019.125328.
  • Periyathambi, P.; Hemalatha, T. Development of Water-Soluble Curcumin Grafted Magnetic Nanoparticles for Enhancing Bioavailability, Fluorescence, and Magnetic Resonance Imaging Activity. Mater. Lett. 2021, 294, 129763. DOI: 10.1016/j.matlet.2021.129763.
  • Liu, C.; Yang, X.; Wu, W.; Long, Z.; Xiao, H.; Luo, F.; Shen, Y.; Lin, Q. Elaboration of Curcumin-Loaded Rice Bran Albumin Nanoparticles Formulation with Increased in vitro Bioactivity and in vivo Bioavailability. Food Hydrocoll. 2018, 77, 834–842. DOI: 10.1016/j.foodhyd.2017.11.027.
  • Meng, F. B.; Zhang, Q.; Li, Y. C.; Li, J. J.; Liu, D. Y.; Peng, L. X. Konjac Glucomannan Octenyl Succinate as a Novel Encapsulation Wall Material to Improve Curcumin Stability and Bioavailability. Carbohydr. Polym. 2020, 238, 116193. DOI: 10.1016/j.carbpol.2020.116193.
  • Aditya, N. P.; Yang, H.; Kim, S.; Ko, S. Fabrication of Amorphous Curcumin Nanosuspensions Using Β-Lactoglobulin to Enhance Solubility, Stability, and Bioavailability. Colloids Surf. B Biointerfaces. 2015, 127, 114–121. DOI: 10.1016/j.colsurfb.2015.01.027.
  • Gupta, N. K.; Dixit, V. K. Bioavailability Enhancement of Curcumin by Complexation with Phosphatidyl Choline. J. Pharm. Sci. 2011, 100(5), 1987–1995. DOI: 10.1002/jps.22393.
  • Tsai, Y. M.; Jan, W. C.; Chien, C. F.; Lee, W. C.; Lin, L. C.; Tsai, T. H. Optimised Nano-Formulation on the Bioavailability of Hydrophobic Polyphenol, Curcumin, in Freely-Moving Rats. Food Chem. 2011, 127(3), 918–925. DOI: 10.1016/j.foodchem.2011.01.059.
  • Wang, L. L.; He, D. D.; Wang, S. X.; Dai, Y. H.; Ju, J. M.; Zhao, C. L. Preparation and Evaluation of Curcumin-Loaded Self-Assembled Micelles. Drug. Dev. Ind. Pharm. 2018, 44(4), 563–569. DOI: 10.1080/03639045.2017.1405431.
  • Hu, L.; Jia, Y.; Niu, F.; Jia, Z.; Yang, X.; Jiao, K. Preparation and Enhancement of Oral Bioavailability of Curcumin Using Microemulsions Vehicle. J. Agric. Food. Chem. 2012, 60(29), 7137–7141. DOI: 10.1021/jf204078t.
  • Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C.; McClements, D. J. Improving Curcumin Solubility and Bioavailability by Encapsulation in Saponin-Coated Curcumin Nanoparticles Prepared Using a Simple Ph-Driven Loading Method. Food Funct. 2018, 9(3), 1829–1839. DOI: 10.1039/C7FO01814B.
  • Gomez-Estaca, J.; Balaguer, M. P.; Gavara, R.; Hernandez-Munoz, P. Formation of Zein Nanoparticles by Electrohydrodynamic Atomization: Effect of the Main Processing Variables and Suitability for Encapsulating the Food Coloring and Active Ingredient Curcumin. Food Hydrocoll. 2012, 28(1), 82–91. DOI: 10.1016/j.foodhyd.2011.11.013.
  • Kumar, D. D.; Mann, B.; Pothuraju, R.; Sharma, R.; Bajaj, R.; Minaxi. Formulation and Characterization of Nanoencapsulated Curcumin Using Sodium Caseinate and Its Incorporation in Ice Cream. Food Funct. 2016, 7(1), 417–424. DOI: 10.1039/C5FO00924C.
  • Almeida, H. H. S.; Barros, L.; Barreira, J. C. M.; Calhelha, R. C.; Heleno, S. A.; Sayer, C.; Miranda, C. G.; Leimann, F. V.; Barreiro, M. F.; Ferreira, I. C. F. R. Bioactive Evaluation and Application of Different Formulations of the Natural Colorant Curcumin (E100) in a Hydrophilic Matrix (Yogurt). Food Chem. 2018, 261, 224–232. DOI: 10.1016/j.foodchem.2018.04.056.
  • Yu, H. L.; Huang, Q. R. Improving the Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions. J. Agr. Food. Chem. 2012, 60(21), 5373–5379. DOI: 10.1021/jf300609p.
  • Li, J.; Hwang, I. C.; Chen, X.; Park, H. J. Effects of Chitosan Coating on Curcumin Loaded Nano-Emulsion: Study on Stability and in vitro Digestibility. Food Hydrocoll. 2016, 60, 138–147. DOI: 10.1016/j.foodhyd.2016.03.016.
  • Wang, X. Y.; Jiang, Y.; Wang, Y. W.; Huang, M. T.; Ho, C. T.; Huang, Q. R. Enhancing Anti-Inflammation Activity of Curcumin Through O/W Nanoemulsions. Food Chem. 2008, 108(2), 419–424. DOI: 10.1016/j.foodchem.2007.10.086.
  • Kaur, K.; Kumar, R.; Mehta, S. K. Nanoemulsion: A New Medium to Study the Interactions and Stability of Curcumin with Bovine Serum Albumin. J. Mol. Liq. 2015, 209, 62–70. DOI: 10.1016/j.molliq.2015.05.018.
  • Guo, J.; Li, P.; Kong, L.; Xu, B. Microencapsulation of Curcumin by Spray Drying and Freeze Drying. LWT. 2020, 132, 109892. DOI: 10.1016/j.lwt.2020.109892.
  • Carvalho, I. T.; Estevinho, B. N.; Santos, L. Application of Microencapsulated Essential Oils in Cosmetic and Personal Healthcare Products - a Review. Int. J. Cosmet. Sci. 2016, 38(2), 109–119. DOI: 10.1111/ics.12232.
  • Pinlaor, S.; Jantawong, C.; Intuyod, K.; Sirijindalert, T.; Pinlaor, P.; Pairojkul, C.; Charoensuk, L.; Sitthirach, C.; Vaeteewoottacharn, K.; Puthongking, P., et al. Solid Dispersion Improves Release of Curcumin from Nanoparticles: Potential Benefit for Intestinal Absorption. Mater. Today Commun. 2021, 26, 26. DOI: 10.1016/j.mtcomm.2020.101999.
  • Meena, S.; Prasad, W.; Khamrui, K.; Mandal, S.; Bhat, S. Preparation of Spray-Dried Curcumin Microcapsules Using a Blend of Whey Protein with Maltodextrin and Gum Arabica and Its in-Vitro Digestibility Evaluation. Food Biosci. 2021, 41, 41. DOI: 10.1016/j.fbio.2021.100990.
  • Meena, S.; Gote, S.; Prasad, W.; Khamrui, K. Storage Stability of Spray Dried Curcumin Encapsulate Prepared Using a Blend of Whey Protein, Maltodextrin, and Gum Arabic. J. Food Process. Pres. 2021, 45(5), 45. DOI: 10.1111/jfpp.15472.
  • Verma, K.; Tarafdar, A.; Kumar, D.; Kumar, Y.; Rana, J. S.; Badgujar, P. C. Formulation and Characterization of Nano-Curcumin Fortified Milk Cream Powder Through Microfluidization and Spray Drying. Food. Res. Int. 2022, 160, 160. DOI: 10.1016/j.foodres.2022.111705.
  • Wahlstrom, B.; Blennow, G. A Study on the Fate of Curcumin in the Rat. Acta Pharmacol. Toxicol. (Copenhagen). 1978, 43(2), 86–92. DOI: 10.1111/j.1600-0773.1978.tb02240.x.
  • Yang, K. Y.; Lin, L. C.; Tseng, T. Y.; Wang, S. C.; Tsai, T. H. Oral Bioavailability of Curcumin in Rat and the Herbal Analysis from Curcuma Longa by LC–MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 853(1–2), 183–189. DOI: 10.1016/j.jchromb.2007.03.010.
  • Lucas, J.; Ralaivao, M.; Estevinho, B. N.; Rocha, F. A New Approach for the Microencapsulation of Curcumin by a Spray Drying Method, in Order to Value Food Products. Powder Technology. 2020, 362, 428–435. DOI: 10.1016/j.powtec.2019.11.095.
  • Yu, J. Y.; Wang, Q.; Zhang, H. Z.; Qin, X. G.; Chen, H. M.; Corke, H.; Hu, Z. Z.; Liu, G. Increased Stability of Curcumin-Loaded Pickering Emulsions Based on Glycated Proteins and Chitooligosaccharides for Functional Food Application. LWT. 2021, 148, 148. DOI: 10.1016/j.lwt.2021.111742.
  • Skyvalidas, D.; Mavropoulos, A.; Tsiogkas, S.; Dardiotis, E.; Liaskos, C.; Mamuris, Z.; Roussaki-Schulze, A.; Sakkas, L. I.; Zafiriou, E.; Bogdanos, D. P. Curcumin Mediates Attenuation of Pro-Inflammatory Interferon Gamma and Interleukin 17 Cytokine Responses in Psoriatic Disease, Strengthening Its Role as a Dietary Immunosuppressant. Nutr. Res. 2020, 75, 95–108. DOI: 10.1016/j.nutres.2020.01.005.
  • Shabbir, U.; Rubab, M.; Tyagi, A.; Oh, D. H. Curcumin and Its Derivatives as Theranostic Agents in Alzheimer’s Disease: The Implication of Nanotechnology. Int. J. Mol. Sci. 2020, 22(1), 22. DOI: 10.3390/ijms22010196.
  • Patel, S. S.; Acharya, A.; Ray, R. S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and Molecular Mechanisms of Curcumin in Prevention and Treatment of Disease. Crit. Rev. Food Sci. Nutr. 2020, 60(6), 887–939. DOI: 10.1080/10408398.2018.1552244.
  • Hariri, M.; Gholami, A.; Mirhafez, S. R.; Bidkhori, M.; Sahebkar, A. A Pilot Study of the Effect of Curcumin on Epigenetic Changes and DNA Damage Among Patients with Non-Alcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Complement Ther. Med. 2020, 51, 102447. DOI: 10.1016/j.ctim.2020.102447.
  • Goulart, R. A.; Barbalho, S. M.; Lima, V. M.; Souza, G. A.; Matias, J. N.; Araujo, A. C.; Rubira, C. J.; Buchaim, R. L.; Buchaim, D. V.; Carvalho, A. C. A., Guiguer, É L., et al. Effects of the Use of Curcumin on Ulcerative Colitis and Crohn’s Disease: A Systematic Review. Journal Of Medicinal Food. 2021, 24, 675–685. DOI: 10.1089/jmf.2020.0129. 7
  • Ye, Q.; Ge, F.; Wang, Y.; Woo, M. W.; Wu, P.; Chen, X. D.; Selomulya, C. On Improving Bioaccessibility and Targeted Release of Curcumin-Whey Protein Complex Microparticles in Food. Food Chem. 2021, 346, 128900. DOI: 10.1016/j.foodchem.2020.128900.
  • Campigotto, G.; Alba, D. F.; Sulzbach, M. M.; Dos Santos, D. S.; Souza, C. F.; Baldissera, M. D.; Gundel, S.; Ourique, A. F.; Zimmer, F.; Petrolli, T. G., et al. Dog Food Production Using Curcumin as Antioxidant: Effects of Intake on Animal Growth, Health and Feed Conservation. Arch. Anim. Nutr. 2020, 74(5), 397–413.
  • Araujo, J. F.; Bourbon, A. I.; Simoes, L. S.; Vicente, A. A.; Coutinho, P. J. G.; Ramos, O. L. Physicochemical Characterisation and Release Behaviour of Curcumin-Loaded Lactoferrin Nanohydrogels into Food Simulants. Food Funct. 2020, 11(1), 305–317. DOI: 10.1039/C9FO01963D.
  • Hata, M.; Sasaki, E.; Ota, M.; Fujimoto, K.; Yajima, J.; Shichida, T.; Honda, M. Allergic Contact Dermatitis from Curcumin (Turmeric). Contact Dermatitis. 1997, 36(2), 107–108. DOI: 10.1111/j.1600-0536.1997.tb00426.x.
  • Liddle, M.; Hull, C.; Liu, C.; Powell, D. Contact Urticaria from Curcumin. Dermatitis. 2006, 17(4), 196–197. DOI: 10.2310/6620.2006.06004.
  • Rithaporn, T.; Monga, M.; Rajasekaran, M. Curcumin: A Potential Vaginal Contraceptive. Contraception. 2003, 68(3), 219–223. DOI: 10.1016/S0010-7824(03)00163-X.
  • Tang, M.; Larson-Meyer, D. E.; Liebman, M. Effect of Cinnamon and Turmeric on Urinary Oxalate Excretion, Plasma Lipids, and Plasma Glucose in Healthy Subjects. Am. J. Clin. Nutrit. 2008, 87(5), 1262–1267. DOI: 10.1093/ajcn/87.5.1262.
  • Sharma, R. A.; Euden, S. A.; Platton, S. L.; Cooke, D. N.; Shafayat, A.; Hewitt, H. R.; Marczylo, T. H.; Morgan, B.; Hemingway, D.; Plummer, S. M., et al. Phase I Clinical Trial of Oral Curcumin: Biomarkers of Systemic Activity and Compliance. Clin. Cancer Res. 2004, 10(20), 6847–6854.
  • Lee, B. S.; Bhatia, T.; Chaya, C. T.; Wen, R.; Taira, M. T.; Lim, B. S. Autoimmune Hepatitis Associated with Turmeric Consumption. ACG Case Rep. J. 2020, 7(3), e00320. DOI: 10.14309/crj.0000000000000320.
  • Lao, C. D.; Ruffin, M. T.; Normolle, D.; Heath, D. D.; Murray, S. I.; Bailey, J. M.; Boggs, M. E.; Crowell, J.; Rock, C. L.; Brenner, D. E. Dose Escalation of a Curcuminoid Formulation. BMC Complement. Altern. Med. 2006, 6(1), 10. DOI: 10.1186/1472-6882-6-10.
  • Epelbaum, R.; Schaffer, M.; Vizel, B.; Badmaev, V.; Bar-Sela, G. Curcumin and Gemcitabine in Patients with Advanced Pancreatic Cancer. Nutr. Cancer. 2010, 62(8), 1137–1141. DOI: 10.1080/01635581.2010.513802.
  • Lainé, F.; Laviolle, B.; Bardou-Jacquet, E.; Fatih, N.; Jezequel, C.; Collet, N.; Ropert, M.; Morcet, J.; Hamon, C.; Reymann, J.-M., et al. Curcuma Decreases Serum Hepcidin Levels in Healthy Volunteers: A Placebo-Controlled, Randomized, Double-Blind, Cross-Over Study. Fundam. Clin. Pharmacol. 2017, 31(5), 567–573.
  • Jiao, Y.; Wilkinson, J.; Di, X.; Wang, W.; Hatcher, H.; Kock, N. D.; D’Agostino, R.; Knovich, M. A.; Torti, F. M.; Torti, S. V. Curcumin, a Cancer Chemopreventive and Chemotherapeutic Agent, is a Biologically Active Iron Chelator. Blood. 2009, 113(2), 462–469. DOI: 10.1182/blood-2008-05-155952.
  • Luber, R. P.; Rentsch, C.; Lontos, S.; Pope, J. D.; Aung, A. K.; Schneider, H. G.; Kemp, W.; Roberts, S. K.; Majeed, A. Turmeric Induced Liver Injury: A Report of Two Cases. Case Reports Hepatol. 2019, 2019, 1–4. DOI: 10.1155/2019/6741213.
  • Dance-Barnes, S. T.; Kock, N. D.; Moore, J. E.; Lin, E. Y.; Mosley, L. J.; D’Agostino, R. B., Jr.; McCoy, T. P.; Townsend, A. J.; Miller, M. S. Lung Tumor Promotion by Curcumin. Carcinogenesis. 2009, 30(6), 1016–1023. DOI: 10.1093/carcin/bgp082.
  • Liao, S.; Lin, J.; Dang, M. T.; Zhang, H.; Kao, Y. H.; Fukuchi, J.; Hiipakka, R. A. Growth Suppression of Hamster Flank Organs by Topical Application of Catechins, Alizarin, Curcumin, and Myristoleic Acid. Arch. Dermatol. Res. 2001, 293(4), 200–205. DOI: 10.1007/s004030000203.
  • Somasundaram, S.; Edmund, N. A.; Moore, D. T.; Small, G. W.; Shi, Y. Y.; Orlowski, R. Z. Dietary Curcumin Inhibits Chemotherapy-Induced Apoptosis in Models of Human Breast Cancer. Cancer Res. 2002, 62(13), 3868.
  • Rasyid, A.; Lelo, A. The Effect of Curcumin and Placebo on Human Gall-Bladder Function: An Ultrasound Study. Aliment. Pharmacol. Ther. 1999, 13(2), 245–250. DOI: 10.1046/j.1365-2036.1999.00464.x.
  • Lee, S. W.; Nah, S. S.; Byon, J. S.; Ko, H. J.; Park, S. H.; Lee, S. J.; Shin, W. Y.; Jin, D. K. Transient Complete Atrioventricular Block Associated with Curcumin Intake. Int. J. Cardiol. 2011, 150(2), e50–e52. DOI: 10.1016/j.ijcard.2009.09.530.
  • Udenigwe, C. C.; Fogliano, V. Food Matrix Interaction and Bioavailability of Bioactive Peptides: Two Faces of the Same Coin? J. Funct. Foods. 2017, 35, 9–12. DOI: 10.1016/j.jff.2017.05.029.
  • Cao, G.; Li, K.; Guo, J.; Lu, M.; Hong, Y.; Cai, Z. Mass Spectrometry for Analysis of Changes During Food Storage and Processing. J. Agric. Food. Chem. 2020, 68(26), 6956–6966. DOI: 10.1021/acs.jafc.0c02587.
  • Yang, H.; Sukamtoh, E.; Du, Z.; Wang, W.; Ando, M.; Kwakwa, Y. N.; Zhang, J.; Zhang, G. Click Chemistry Approach to Characterize Curcumin-Protein Interactions in vitro and in vivo. J. Nutr Biochem. 2019, 68, 1–6. DOI: 10.1016/j.jnutbio.2019.02.010.
  • Yang, T.; Yang, H.; Fan, Y.; Li, B.; Hou, H. Interactions of Quercetin, Curcumin, Epigallocatechin Gallate and Folic Acid with Gelatin. Int. J. Biol. Macromol. 2018, 118, 124–131. DOI: 10.1016/j.ijbiomac.2018.06.058.
  • Adiwidjaja, J.; McLachlan, A. J.; Boddy, A. V. Curcumin as a Clinically-Promising Anti-Cancer Agent: Pharmacokinetics and Drug Interactions. Expert Opin Drug Metab Toxicol. 2017, 13(9), 953–972. DOI: 10.1080/17425255.2017.1360279.
  • Yan, J.; Yao, Y.; Yan, S. Q.; Gao, R. Q.; Lu, W. Y.; He, W. X. Chiral Protein Supraparticles for Tumor Suppression and Synergistic Immunotherapy: An Enabling Strategy for Bioactive Supramolecular Chirality Construction. Nano Lett. 2020, 20(8), 5844–5852. DOI: 10.1021/acs.nanolett.0c01757.
  • Liu, C. P.; Wang, Y. C.; Li, L. M.; He, D. Y.; Chi, J. X.; Li, Q.; Wu, Y. X.; Zhao, Y. X.; Zhang, S. H.; Wang, L., et al. Engineered Extracellular Vesicles and Their Mimetics for Cancer Immunotherapy. J. Control Release. 2022, 349, 679–698. DOI: 10.1016/j.jconrel.2022.05.062.
  • He, X. L.; Zhu, Y. J.; Yang, L.; Wang, Z. J.; Wang, Z. K.; Feng, J. H.; Wen, X. J.; Cheng, L. M.; Zhu, R. R. MgFe-LDH Nanoparticles: A Promising Leukemia Inhibitory Factor Replacement for Self-Renewal and Pluripotency Maintenance in Cultured Mouse Embryonic Stem Cells. Adv Sci. 2021, 8(9), 2003535. DOI: 10.1002/advs.202003535.
  • Jridi, M.; Elfalleh, W. Packaging, Microencapsulation, Functional and Bio-Active Food Compounds. Food Biosci. 2021, 42, 100939. DOI: 10.1016/j.fbio.2021.100939.
  • Ke, Z. G.; Bai, Y.; Bai, Y. W.; Chu, Y. S.; Gu, S. Q.; Xiang, X. W.; Ding, Y. T.; Zhou, X. X. Cold Plasma Treated Air Improves the Characteristic Flavor of Dry-Cured Black Carp Through Facilitating Lipid Oxidation. Food Chem. 2022, 377, 131932. DOI: 10.1016/j.foodchem.2021.131932.
  • Li, X. X.; Yue, X. R.; Huang, Q. L.; Zhang, B. J. Effects of Wet-Media Milling on Multi-Scale Structures and in vitro Digestion of Tapioca Starch and the Structure-Digestion Relationship. Carbohyd. Polym. 2022, 284, 119176. DOI: 10.1016/j.carbpol.2022.119176.
  • Sun, Y.; Li, J.; Zhu, L. Y.; Jiang, L. Cooperation and Competition Between CRISPR- and Omics-Based Technologies in Foodborne Pathogens Detection: A State of the Art Review. Curr. Opin. Food Sci. 2022, 44, 100813. DOI: 10.1016/j.cofs.2022.100813.
  • Xie, Q. W.; Liu, G. S.; Zhang, Y. L.; Yu, J.; Wang, Y. Y.; Ma, X. J. Active Edible Films with Plant Extracts: A Updated Review of Their Types, Preparations, Reinforcing Properties, and Applications in Muscle Foods Packaging and Preservation. Crit. Rev. Food Sci. 2022, 1–23. doi: 10.1080/10408398.2022.2092058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.