378
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Heterocyclic Amines in Meat and Meat Products: Occurrence, Formation, Mitigation, Health Risks and Intervention

, , , , , , & show all

References

  • De Smet, S.; Vossen, E. Meat: The Balance Between Nutrition and Health. A Review. Meat Sci. 2016, 120, 145–156. DOI: 10.1016/j.meatsci.2016.04.008.
  • Andrée, S.; Jira, W.; Schwind, K. H.; Wagner, H.; Schwägele, F. Chemical Safety of Meat and Meat Products. Meat Sci. 2010, 86(1), 38–48. DOI: 10.1016/j.meatsci.2010.04.020.
  • Corpet, D. E. Red Meat and Colon Cancer: Should We Become Vegetarians, or Can We Make Meat Safer? Meat Science. 2011, 89(3), 310–316. DOI: 10.1016/j.meatsci.2011.04.009.
  • Zhang, Y.; Dong, L.; Zhang, J. H.; Shi, J. Q.; Wang, Y. Y.; Wang, S. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins. Annu Rev Food Sci Technol. 2021, 12(1), 259-286. DOI: 10.1146/annurev-food-062320-012215.
  • Liu, X.; Xia, B.; Hu, L.; Ni, Z.; Thakur, K.; Wei, Z. Maillard Conjugates and Their Potential in Food and Nutritional Industries: A Review. Food Front. 2020, 1(4), 382–397. DOI: 10.1002/fft2.43.
  • Cross, A. J.; Sinha, R. Meat-Related Mutagens/Carcinogens in the Etiology of Colorectal Cancer. Environ. Mol. Mutagen. 2004, 44(1), 44–55. DOI: 10.1002/em.20030.
  • Dong, H.; Xian, Y.; Li, H.; Bai, W.; Zeng, X. Potential Carcinogenic Heterocyclic Aromatic Amines (HAAs) in Foodstuffs: Formation, Extraction, Analytical Methods, and Mitigation Strategies. Compr. Rev. Food Sci. Food Saf. 2020, 19(2), 365–404. DOI: 10.1111/1541-4337.12527.
  • Du, H.; Chen, Q.; Liu, Q.; Kong, B. Formation and Mechanism of Heterocyclic Amines in Meat Products. J. Chin. Inst. Food Sci. Technol. 2020, 20(9), 323–336.
  • Sugimura, T.; Sato, S. MUTAGENS-CARCINOGENS in FOODS. Cancer Res. 1983, 43(5), 2415–2421.
  • Stavric, B. Biological Significance of Trace Levels of Mutagenic Heterocyclic Aromatic Amines in Human Diet: A Critical Review. Food Chem. Toxicol. 1994, 32(10), 977–994. DOI: 10.1016/0278-6915(94)90093-0.
  • Barzegar, F.; Kamankesh, M.; Mohammadi, A. Heterocyclic Aromatic Amines in Cooked Food: A Review on Formation, Health Risk-Toxicology and Their Analytical Techniques. Food Chem. 2019, 280, 240–254. DOI: 10.1016/j.foodchem.2018.12.058.
  • Jagerstad, M.; Skog, K.; Arvidsson, P.; Solyakov, A. Chemistry, Formation and Occurrence of Genotoxic Heterocyclic Amines Identified in Model Systems and Cooked Foods. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology. 1998, 207(6), 419–427. DOI: 10.1007/s002170050355.
  • Cheng, K.-W.; Chen, F.; Wang, M. Heterocyclic Amines: Chemistry and Health. Mol. Nutr. Food Res. 2006, 50(12), 1150–1170. DOI: 10.1002/mnfr.200600086.
  • Toribio, F.; Moyano, E.; Puignou, L.; Galceran, M. T. Ion-Trap Tandem Mass Spectrometry for the Determination of Heterocyclic Amines in Food. J. Chromatography. A. 2002, 948(1–2), 267–281. DOI: 10.1016/s0021-9673(01)01476-5.
  • Jagerstad, M.; Reutersward, A. L.; Oste, R.; Dahlqvist, A.; Grivas, S.; Olsson, K.; Nyhammar, T. Creatinine and Maillard-Reaction Products as Precursors of Mutagenic Compounds Formed in Fried Beef. ACS Symp. Ser. 1983, 215, 507–519.
  • Oz, E. The Presence of Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines in Barbecued Meatballs Formulated with Different Animal Fats. Food Chem. 2021, 352. DOI: 10.1016/j.foodchem.2021.129378.
  • Pleva, D.; Lányi, K.; Monori, K. D.; Laczay, P. Heterocyclic Amine Formation in Grilled Chicken Depending on Body Parts and Treatment Conditions. Molecules. 2020, 25(7), 1547. DOI: 10.3390/molecules25071547.
  • Khan, I. A.; Yiqun, C.; Zongshuai, Z.; Ijaz, M. U.; Brohi, S. A.; Ahmad, M. I.; Shi, C.; Hussain, M.; Huang, J.; Huang, M. Occurrence of Heterocyclic Amines in Commercial Fast-Food Meat Products Available on the Chinese Market and Assessment of Human Exposure to These Compounds. J. Food Sci. 2019, 84(1), 192–200. acccessed 2021/12/27. DOI: 10.1111/1750-3841.14418.
  • Soncu, E. D.; Haskaraca, G.; Kolsarici, N. Presence of Acrylamide and Heterocyclic Aromatic Amines in Breaded Chicken Meat Products and Dietary Exposure of Turkish Population from Ankara Based on the Food Frequency Questionnaire Study. Eur. Food Res. Technol. 2018, 244(3), 501–511. DOI: 10.1007/s00217-017-2976-1.
  • Oz, F.; Yuzer, M. O. The Effects of Different Cooking Methods on the Formation of Heterocyclic Aromatic Amines in Turkey Meat. J. Food Process. Preserv. 2017, 41(5), e13196. DOI: 10.1111/jfpp.13196.
  • Puangsombat, K.; Gadgil, P.; Houser, T. A.; Hunt, M. C.; Smith, J. S. Occurrence of Heterocyclic Amines in Cooked Meat Products. Meat Sci. 2012, 90(3), 739–746. DOI: 10.1016/j.meatsci.2011.11.005.
  • Kulikovsky, A. V.; Utianov, D. A.; Knyazeva, A. S.; Ivankin, A. N.; Sorokin, A. M. Risks of the Development of Heterocyclic Aromatic Amines in Meat Products. MIJ.2020, 8, 50–52. DOI: 10.37861/2618-8252-2020-8-50-52.
  • Iwasaki, M.; Tsugane, S. Dietary Heterocyclic Aromatic Amine Intake and Cancer Risk: Epidemiological Evidence from Japanese Studies. Genes And Environment. 2021, 43(1). DOI: 10.1186/s41021-021-00202-5.
  • Yin, X.; Du, H.; Xu, M.; Chen, Q.; Kong, B. Heterocyclic Aromatic Amine Level and Quality Characteristics of Selected Harbin Red Sausages in the Northern Chinese Market. Meat Sci. 2021, 172, 108360. DOI: 10.1016/j.meatsci.2020.108360.
  • Oz, F.; Oz, E.; Aoudeh, E.; Abd El-Aty, A. M.; Zeng, M.; Varzakas, T. Is Ultra-High Temperature Processed Milk Safe in Terms of Heterocyclic Aromatic Amines? Foods. 2021, 10(6), 1247. DOI: 10.3390/foods10061247.
  • Karpaviciute, D.; Murkovic, M.; Vinauskiene, R.; Venskutonis, R. Determination of Non-Polar Heterocyclic Aromatic Amines in Roasted Coffee by SPE-HPLC-FLD. Chem. Pap. 2017, 71(1), 67–70. DOI: 10.1007/s11696-016-0039-x.
  • Scalone, G. L. L.; Lamichhane, P.; Cucu, T.; De Kimpe, N.; De Meulenaer, B. Impact of Different Enzymatic Hydrolysates of Whey Protein on the Formation of Pyrazines in Maillard Model Systems. Food Chem. 2019, 278, 533–544. DOI: 10.1016/j.foodchem.2018.11.088.
  • Zamora, R.; Hidalgo, F. J. Formation of Heterocyclic Aromatic Amines with the Structure of Aminoimidazoazarenes in Food Products. Food Chem. 2020, 313, 126128. DOI: 10.1016/j.foodchem.2019.126128.
  • Milic, B. L.; Djilas, S. M.; Canadanovicbrunet, J. M. Synthesis of Some Heterocyclic Aminoimidazoazarenes. Food Chem. 1993, 46(3), 273–276. DOI: 10.1016/0308-8146(93)90118-y.
  • Pearson, A. M.; Chen, C. H.; Gray, J. I.; Aust, S. D. Mechanism(s) Involved in Meat Mutagen Formation and Inhibition. Free Radical Biol. Med. 1992, 13(2), 161–167. DOI: 10.1016/0891-5849(92)90078-u.
  • Skog, K.; Solyakov, A.; Jagerstad, M. Effects of Heating Conditions and Additives on the Formation of Heterocyclic Amines with Reference to Amino-Carbolines in a Meat Juice Model System. Food Chem. 2000, 68(3), 299–308. DOI: 10.1016/s0308-8146(99)00195-8.
  • Jinap, S.; Mohd-Mokhtar, M. S.; Farhadian, A.; Hasnol, N. D. S.; Jaafar, S. N.; Hajeb, P. Effects of Varying Degrees of Doneness on the Formation of Heterocyclic Aromatic Amines in Chicken and Beef Satay. Meat Sci. 2013, 94(2), 202–207. DOI: 10.1016/j.meatsci.2013.01.013.
  • Zamora, R.; Hidalgo, F. J. 2-Amino-1-Methyl-6-Phenylimidazo 4,5-B Pyridine (PhIp) Formation and Fate: An Example of the Coordinate Contribution of Lipid Oxidation and Maillard Reaction to the Production and Elimination of Processing-Related Food Toxicants. Rsc. Adv. 2015, 5(13), 9709–9721. DOI: 10.1039/c4ra15371e.
  • Zamora, R.; Alcon, E.; Hidalgo, F. J. Ammonia and Formaldehyde Participate in the Formation of 2-Amino-1-Methyl-6-Phenylimidazo 4,5-B Pyridine (PhIp) in Addition to Creati(ni)ne and Phenylacetaldehyde. Food Chem. 2014, 155, 74–80. DOI: 10.1016/j.foodchem.2014.01.039.
  • Johansson, M. A. E.; Fay, L. B.; Gross, G. A.; Olsson, K.; Jagerstad, M. Influence of Amino-Acids on the Formation of Mutagenic/Carcinogenic Heterocyclic Amines in a Model System. Carcinogenesis. 1995, 16(10), 2553–2560. DOI: 10.1093/carcin/16.10.2553.
  • Gibis, M. Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment. Compr. Rev. Food Sci. Food Saf. 2016, 15(2), 269–302. DOI: 10.1111/1541-4337.12186.
  • Sanz Alaejos, M.; Afonso, A. M. Factors That Affect the Content of Heterocyclic Aromatic Amines in Foods. Compr. Rev. Food Sci. Food Saf. 2011, 10(2), 52–108. DOI: 10.1111/j.1541-4337.2010.00141.x.
  • Pfau, W.; Skog, K. Exposure to β-Carbolines Norharman and Harman. J. Chromatogr. B. 2004, 802(1), 115–126. DOI: 10.1016/j.jchromb.2003.10.044.
  • Quan, W.; Li, Y.; Jiao, Y.; Xue, C.; Liu, G.; Wang, Z.; He, Z.; Qin, F.; Zeng, M.; Chen, J. Simultaneous Generation of Acrylamide, β-Carboline Heterocyclic Amines and Advanced Glycation Ends Products in an Aqueous Maillard Reaction Model System. Food Chem. 2020, 332, 332. DOI: 10.1016/j.foodchem.2020.127387.
  • Herraiz, T. Analysis of the Bioactive Alkaloids Tetrahydro-β-Carboline and β-Carboline in Food. J. Chromatography. A. 2000, 881(1), 483–499. DOI: 10.1016/S0021-9673(99)01313-8.
  • Zhou, Y.; Zhang, Y.; Dong, X. Determination of Heterocyclic Amines in Braised Sauce Beef and the Effects of Different Cooking Conditions on the Formation of Heterocyclic Amines. J. Sci. Food Agric. 2021, 102(2), 617–627. DOI: 10.1002/jsfa.11391.
  • Wang, W.; Dong, L.; Zhang, Y.; Yu, H. N.; Wang, S. Reduction of the Heterocyclic Amines in Grilled Beef Patties Through the Combination of Thermal Food Processing Techniques without Destroying the Grilling Quality Characteristics. Foods. 2021, 10(7), 1490. DOI: 10.3390/foods10071490.
  • Savaş, A.; Oz, E.; Oz, F. Is Oven Bag Really Advantageous in Terms of Heterocyclic Aromatic Amines and Bisphenol-A? Chicken Meat Perspective. Food Chem. 2021, 355, 129646. DOI: 10.1016/j.foodchem.2021.129646.
  • Kamal, N. H. A.; Selamat, J.; Sanny, M. Simultaneous Formation of Polycyclic Aromatic Hydrocarbons (PAHs) and Heterocyclic Aromatic Amines (HCAs) in Gas-Grilled Beef Satay at Different Temperatures. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment. 2018, 35(5), 848–869. DOI: 10.1080/19440049.2018.1425553.
  • Feng, R.; Bao, Y.; Liu, D.; Zhang, S.; Wang, Y.; Chen, D.; Zhou, P. Steam-Assisted Roasting Inhibits Formation of Heterocyclic Aromatic Amines and Alters Volatile Flavour Profile of Beef Steak. International Journal Of Food Science & Technology. 2020, 55(9), 3061–3072. DOI: 10.1111/ijfs.14570.
  • Zhang, N.; Zhao, Y.; Fan, D.; Xiao, J.; Cheng, K.-W.; Wang, M. Inhibitory Effects of Some Hydrocolloids on the Formation of Heterocyclic Amines in Roast Beef. Food Hydrocoll. 2020, 108, 106073. DOI: 10.1016/j.foodhyd.2020.106073.
  • Pérez-Báez, A. J.; Valenzuela-Melendres, M.; Camou, J. P.; González-Aguilar, G.; Tortoledo-Ortiz, O.; González-Ríos, H.; Viuda-Martos, M. Modelling the Effects of Roselle Extract, Potato Peel Flour, and Beef Fat on the Sensory Properties and Heterocyclic Amines Formation of Beef Patties Studied by Using Response Surface Methodology. Foods. 2021, 10(6), 1184. DOI: 10.3390/foods10061184.
  • Ding, X.; Zhang, D.; Liu, H.; Wang, Z.; Hui, T. Chlorogenic Acid and Epicatechin: An Efficient Inhibitor of Heterocyclic Amines in Charcoal Roasted Lamb Meats. Food Chem. 2022, 368, 130865. DOI: 10.1016/j.foodchem.2021.130865.
  • Meurillon, M.; Angenieux, M.; Mercier, F.; Blinet, P.; Chaloin, L.; Chevolleau, S.; Debrauwer, L.; Engel, E. Mitigation of Heterocyclic Aromatic Amines in Cooked Meat. Part I: Informed Selection of Antioxidants Based on Molecular Modeling. Food Chem. 2020, 331, 331. DOI: 10.1016/j.foodchem.2020.127264.
  • Wang, Q.; Li, J.; Li, K.; Li, C. Effects of Turmeric on Reducing Heterocyclic Aromatic Amines in Chinese Tradition Braised Meat Products and the Underlying Mechanism. Food Science & Nutrition. 2021, 9(10), 5575–5582. DOI: 10.1002/fsn3.2518.
  • Bao, X.; Miao, J.; Fan, Y.; Lai, K. The Effective Inhibition of the Formation of Heterocyclic Aromatic Amines via Adding Black Pepper in Fried Tilapia Fillets. J. Food Process. Preserv. 2020, 44(5). DOI: 10.1111/jfpp.14435.
  • Yan, X.; Zhang, Y.; Yang, M.; Feng, X.; Zhang, F. An Accurate, Rapid, and Sensitive Method for Simultaneous Determination of Four Typical Heterocyclic Amines in Roasted Pork Patties: Application in the Study of Inhibitory Effects of Astaxanthin. J. Sep. Sci. 2021, 44(9), 1833–1842. DOI: 10.1002/jssc.202001229.
  • Bao, X.; Miao, J.; Huang, Y.; Lai, K. Revealing a Key Inhibitory Mechanism of 2-Amino-3,8-Dimethylimidazo 4,5-F Quinoxaline via Trapping of Methylglyoxal. J. Food Sci. 2020, 85(7), 2090–2097. DOI: 10.1111/1750-3841.15305.
  • Xue, C.; Liang, Y.; Wu, J.; Ling, J.; Sha, Q.; Liao, H.; He, Z.; Qin, F.; Chen, J.; Zeng, M. Inhibitory Effect of Amino Acids on Heterocyclic Amines in Roast Beef Patties. J. Chin. Inst. Food Sci. Technol. 2021, 21(5), 203–211.
  • Yu, D.; Yu, S.-J. Effects of Some Cations on the Formation of 2-Amino-1-Methyl-6-Phenylimidazo 4,5-B Pyridine (PhIp) in a Model System. Food Chem. 2016, 201, 46–51. DOI: 10.1016/j.foodchem.2016.01.066.
  • Gibis, M.; Loeffler, M. Effect of Creatine and Glucose on Formation of Heterocyclic Amines in Grilled Chicken Breasts. Foods. 2019, 8(12), 616. DOI: 10.3390/foods8120616.
  • Gibis, M.; Weiss, J. Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species. J. Food Sci. 2015, 80(11), C2430–C2439. DOI: 10.1111/1750-3841.13090.
  • Persson, E.; Oroszvari, B. K.; Tornberg, E.; Sjoholm, I.; Skog, K. Heterocyclic Amine Formation During Frying of Frozen Beef Burgers. International Journal Of Food Science & Technology. 2008, 43(1), 62–68. DOI: 10.1111/j.1365-2621.2006.01390.x.
  • Polak, M. L.; Demsar, L.; Zahija, I.; Polak, T. Influence of Temperature on the Formation of Heterocyclic Aromatic Amines in Pork Steaks. Czech J. Food Sci. 2020, 38(4), 248–254. DOI: 10.17221/144/2019-cjfs.
  • Buła, M.; Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K. Formation of Heterocyclic Aromatic Amines in Relation to Pork Quality and Heat Treatment Parameters. Food Chem. 2019, 276, 511–519. DOI: 10.1016/j.foodchem.2018.10.073.
  • Utyanov, D. A.; Kulikovskii, A. V.; Knyazeva, A. S.; Vostrikova, N. L. Factors Affecting the Formation of Carcinogens During High-Temperature Heat Treatment of Meat Products. VoM.2020, 4, 14–16. DOI: 10.21323/2071-2499-2020-4-14-16.
  • Cao, H.; Chen, B.-H.; Inbaraj, B. S.; Chen, L.; Alvarez-Rivera, G.; Cifuentes, A.; Zhang, N.; Yang, D.-J.; Simal-Gandara, J.; Wang, M., et al. Preventive Potential and Mechanism of Dietary Polyphenols on the Formation of Heterocyclic Aromatic Amines. Food Front. 2020, 1(2), 134–151. DOI: 10.1002/fft2.30.
  • Lee, S. Y.; Yim, D. G.; Lee, D. Y.; Kim, O. Y.; Kang, H. J.; Kim, H. S.; Jang, A.; Park, T. S.; Jin, S. K.; Hur, S. J. Overview of the Effect of Natural Products on Reduction of Potential Carcinogenic Substances in Meat Products. Trends Food Sci. Technol. 2020, 99, 568–579. DOI: 10.1016/j.tifs.2020.03.034.
  • Zhao, L.; Pan, F.; Li, Y. B.; Hao, S.; Mehmood, A.; Wang, Y.; Wang, C. T. Structure Characteristics of Flavonoids for Heterocyclic Aromatic Amines Inhibition Using Quantitative Structure-Activity Relationship Modeling. J. Food Biochem. 2020, 44(9). DOI: 10.1111/jfbc.13390.
  • Yu, C.; Shao, Z.; Liu, B.; Zhang, Y.; Wang, S. Inhibition of 2-Amino-1-Methyl-6-Phenylimidazo 4,5-B Pyridine (PhIp) Formation by Alkoxy Radical Scavenging of Flavonoids and Their Quantitative Structure-Activity Relationship in a Model System. J. Food Sci. 2016, 81(8), C1908–C1913. DOI: 10.1111/1750-3841.13381.
  • Jamali, M. A.; Zhang, Y.; Teng, H.; Li, S.; Wang, F.; Peng, Z. Inhibitory Effect of Rosa Rugosa Tea Extract on the Formation of Heterocyclic Amines in Meat Patties at Different Temperatures. Molecules. 2016, 21(2), 173. DOI: 10.3390/molecules21020173.
  • Chen, Y.; Xi, J. Effects of the Non-Covalent Interactions Between Polyphenols and Proteins on the Formations of the Heterocyclic Amines in Dry Heated Soybean Protein Isolate. Food Chem. 2021, 131557–131557. DOI: 10.1016/j.foodchem.2021.131557.
  • Zhu, F.; Li, J.; Ma, Z.; Li, J.; Du, B. Structural Identification and In Vitro Antioxidant Activities of Anthocyanins in Black Chokeberry (Aronia Melanocarpa Elliot). eFood. 2021, 2(4), 201–208. DOI: 10.53365/efood.k/143829.
  • Wong, D.; Cheng, K.-W.; Wang, M. Inhibition of Heterocyclic Amine Formation by Water-Soluble Vitamins in Maillard Reaction Model Systems and Beef Patties. Food Chem. 2012, 133(3), 760–766. DOI: 10.1016/j.foodchem.2012.01.089.
  • Viegas, O.; Moreira, P. S.; Ferreira, I. M. P. L. V. O. Influence of Beer Marinades on the Reduction of Carcinogenic Heterocyclic Aromatic Amines in Charcoal-Grilled Pork Meat. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment. 2015, 32(3), 315–323. DOI: 10.1080/19440049.2015.1010607.
  • Agim, Z. S.; Cannon, J. R. Alterations in the Nigrostriatal Dopamine System After Acute Systemic PhIp Exposure. Toxicol. Lett. 2018, 287, 31–41. DOI: 10.1016/j.toxlet.2018.01.017.
  • Griggs, A. M.; Agim, Z. S.; Mishra, V. R.; Tambe, M. A.; Director-Myska, A. E.; Turteltaub, K. W.; McCabe, G. P.; Rochet, J. C.; Cannon, J. R. 2-Amino-1-Methyl-6-Phenylimidazo 4,5-B Pyridine (PhIp) is Selectively Toxic to Primary Dopaminergic Neurons in vitro. Toxicol. Sci. 2014, 140(1), 179–189. DOI: 10.1093/toxsci/kfu060.
  • Lawana, V.; Um, S. Y.; Rochet, J. C.; Turesky, R. J.; Shannahan, J. H.; Cannon, J. R. Neuromelanin Modulates Heterocyclic Aromatic Amine-Induced Dopaminergic Neurotoxicity. Toxicol. Sci. 2020, 173(1), 171–188. DOI: 10.1093/toxsci/kfz210.
  • Lawana, V.; Um, S. Y.; Foguth, R. M.; Cannon, J. R. Neuromelanin Formation Exacerbates HAA-Induced Mitochondrial Toxicity and Mitophagy Impairments. NeuroToxicology. 2020, 81, 147–160. DOI: 10.1016/j.neuro.2020.10.005.
  • Syeda, T.; Cannon, J. R. Potential Role of Heterocyclic Aromatic Amines in Neurodegeneration. Chem. Res. Toxicol. 2022, 35(1), 59–72. DOI: 10.1021/acs.chemrestox.1c00274.
  • WHO. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs On The Evaluation Of Carcinogenic Risks To Humans, Vol 95: Household Use Of Solid Fuels And High-Temperature Frying, IARC Monographs On The Evaluation Of Carcinogenic Risks To Humans. 2010, 95, 9–38.
  • Kim, H. S.; Hur, S. J. Changes in the Mutagenicity of Heterocyclic Amines, Nitrite, and N-Nitroso Compound in Pork Patties During In Vitro Human Digestion. LWT Food Sci. Technol. 2018, 92, 47–53. DOI: 10.1016/j.lwt.2018.01.079.
  • Chen, X.; Jia, W.; Zhu, L.; Mao, L.; Zhang, Y. Recent Advances in Heterocyclic Aromatic Amines: An Update on Food Safety and Hazardous Control from Food Processing to Dietary Intake. Compr. Rev. Food Sci. Food Saf. 2020, 19(1), 124–148. DOI: 10.1111/1541-4337.12511.
  • Nagao, M.; Tsugane, S. Cancer in Japan: Prevalence, Prevention and the Role of Heterocyclic Amines in Human Carcinogenesis. Genes And Environment: The Official Journal Of The Japanese Environmental Mutagen Society. 2016, 38(1), 16–16. DOI: 10.1186/s41021-016-0043-y.
  • Guo, J.; Villalta, P. W.; Weight, C. J.; Bonala, R.; Johnson, F.; Rosenquist, T. A.; Turesky, R. J. Targeted and Untargeted Detection of DNA Adducts of Aromatic Amine Carcinogens in Human Bladder by Ultra-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. Chem. Res. Toxicol. 2018, 31(12), 1382–1397. DOI: 10.1021/acs.chemrestox.8b00268.
  • Gongora, V. M.; Matthes, K. L.; Castano, P. R.; Linseisen, J.; Rohrmann, S. Dietary Heterocyclic Amine Intake and Colorectal Adenoma Risk: A Systematic Review and Meta-Analysis. Cancer Epidemiology Biomarkers & Prevention. 2019, 28(1), 99–109. DOI: 10.1158/1055-9965.Epi-17-1017.
  • Koda, M.; Iwasaki, M.; Yamano, Y.; Lu, X.; Katoh, T. Association Between NAT2, CYP1A1, and CYP1A2 Genotypes, Heterocyclic Aromatic Amines, and Prostate Cancer Risk: A Case Control Study in Japan. Environmental Health And Preventive Medicine. 2017, 22(1). DOI: 10.1186/s12199-017-0681-0.
  • Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Isakov, N. F.; Webb, M.; Orenstein, D.; Shibolet, O.; Kariv, R. High Red and Processed Meat Consumption is Associated with Non-Alcoholic Fatty Liver Disease and Insulin Resistance. J. Hepatol. 2018, 68(6), 1239–1246. DOI: 10.1016/j.jhep.2018.01.015.
  • Liu, G.; Zong, G.; Wu, K.; Hu, Y.; Li, Y.; Willett, W. C.; Eisenberg, D. M.; Hu, F. B.; Sun, Q. Meat Cooking Methods and Risk of Type 2 Diabetes: Results from Three Prospective Cohort Studies. Diabetes Care. 2018, 41(5), 1049–1060. acccessed 3/22/2022. DOI:10.2337/dc17-1992.
  • Thorgeirsson, U. P.; Dalgard, D. W.; Reeves, J.; Adamson, R. H. Tumor-Incidence in a Chemical Carcinogenesis Study of Nonhuman-Primates. Regul. Toxicol. Pharmacol. 1994, 19(2), 130–151. DOI: 10.1006/rtph.1994.1013.
  • Viegas, O.; Zegura, B.; Pezdric, M.; Novak, M.; Ferreira, I. M.; Pinho, O.; Filipič, M. Protective Effects of Xanthohumol Against the Genotoxicity of Heterocyclic Aromatic Amines MeIqx and PhIp in Bacteria and in Human Hepatoma (HepG2) Cells. Food. Chem. Toxicol. 2012, 50(3–4), 949–955. From NLM. DOI:10.1016/j.fct.2011.11.031.
  • Kurzawa-Zegota, M.; Najafzadeh, M.; Baumgartner, A.; Anderson, D. The Protective Effect of the Flavonoids on Food-Mutagen-Induced DNA Damage in Peripheral Blood Lymphocytes from Colon Cancer Patients. Food. Chem. Toxicol. 2012, 50(2), 124–129. From NLM. DOI:10.1016/j.fct.2011.08.020.
  • Fuccelli, R.; Rosignoli, P.; Servili, M.; Veneziani, G.; Taticchi, A.; Fabiani, R. Genotoxicity of Heterocyclic Amines (HCAs) on Freshly Isolated Human Peripheral Blood Mononuclear Cells (PBMC) and Prevention by Phenolic Extracts Derived from Olive, Olive Oil and Olive Leaves. Food. Chem. Toxicol. 2018, 122, 234–241. From NLM. DOI: 10.1016/j.fct.2018.10.033.
  • Jain, A.; Samykutty, A.; Jackson, C.; Browning, D.; Bollag, W. B.; Thangaraju, M.; Takahashi, S.; Singh, S. R. Curcumin Inhibits PhIp Induced Cytotoxicity in Breast Epithelial Cells Through Multiple Molecular Targets. Cancer Lett. 2015, 365(1), 122–131. From NLM. DOI: 10.1016/j.canlet.2015.05.017.
  • Haza, A. I.; Morales, P. Effects of (+)catechin and (−)epicatechin on Heterocyclic Amines-Induced Oxidative DNA Damage. J. Appl. Toxicol. 2011, 31(1), 53–62. From NLM. DOI: 10.1002/jat.1559.
  • Carter, O.; Wang, R.; Dashwood, W. M.; Orner, G. A.; Fischer, K. A.; Loehr, C. V.; Pereira, C. B.; Bailey, G. S.; Williams, D. E.; Dashwood, R. H. Comparison of White Tea, Green Tea, Epigallocatechin-3-Gallate, and Caffeine as Inhibitors of PhIP-Induced Colonic Aberrant Crypts. Nutrition And Cancer-An International Journal. 2007, 58(1), 60–65. DOI: 10.1080/01635580701308182.
  • Haza, A. I.; Morales, P. Spanish Honeys Protect Against Food Mutagen-Induced DNA Damage. J. Sci. Food Agric. 2013, 93(12), 2995–3000. From NLM. DOI:10.1002/jsfa.6129.
  • Sliva, D.; Loganathan, J.; Jiang, J.; Jedinak, A.; Lamb, J. G.; Terry, C.; Baldridge, L. A.; Adamec, J.; Sandusky, G. E.; Dudhgaonkar, S., et al. Mushroom Ganoderma Lucidum Prevents Colitis-Associated Carcinogenesis in Mice. PLoS One. 2012, 7(10), e47873. From NLM. DOI: 10.1371/journal.pone.0047873.
  • Kaur, I. P.; Kaur, I. P. Inhibition of Mutagenicity of Food-Derived Heterocyclic Amines by Sulforaphane--A Constituent of Broccoli. Indian J. Exp. Biol. 2003, 41(3), 216–219. From NLM.
  • Carter, O.; Dashwood, R. H.; Wang, R.; Dashwood, W. M.; Orner, G. A.; Fischer, K. A.; Löhr, C. V.; Pereira, C. B.; Bailey, G. S.; Williams, D. E. Comparison of White Tea, Green Tea, Epigallocatechin-3-Gallate, and Caffeine as Inhibitors of PhIp-Induced Colonic Aberrant Crypts. Nutr. Cancer. 2007, 58(1), 60–65. From NLM. DOI:10.1080/01635580701308182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.