220
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Efficacy of Nano-Based Strategies on the Safe Delivery and Bioavailability of Vitamin D: Review

, , , , , , & show all

References

  • Reddy, P.; Jialal, I.; Biochemistry. Fat Soluble Vitamins. In StatPearls. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. USA: Treasure Island (FL), 2022.
  • Awuchi, C.; Victory, I.; Ikechukwu, A.; Echeta, C. Health Benefits of Micronutrients (Vitamins and Minerals) and Their Associated Deficiency Diseases: A Systematic Review. IJF. 2020, 3(1), 1–32. DOI: 10.47604/ijf.1024.
  • Narayanam, H.; Chinni, S. V.; Samuggam, S. The Impact of Micronutrients-Calcium, Vitamin D, Selenium, Zinc in Cardiovascular Health: A Mini Review. Front. Physiol. 2021, 12, 742425. DOI: 10.3389/fphys.2021.742425.
  • Maurya, V. K.; Shakya, A.; Bashir, K.; Kushwaha, S. C.; McClements, D. J. Vitamin a Fortification: Recent Advances in Encapsulation Technologies. Comprehensive Reviews in Food Science and Food Safety. Compr. Rev. Food Sci. Food Saf. 2022, 21(3), 2772–2819. DOI: 10.1111/1541-4337.12941.
  • Moyersoen, I.; Demarest, S.; De Ridder, K.; Tafforeau, J.; Lachat, C.; Camp, J. Fat-Soluble Vitamin Intake from the Consumption of Food, Fortified Food and Supplements: Design and Methods of the Belgian VITADEK Study. Arch. Public Health. 2017, 75(1), 75. DOI: 10.1186/s13690-017-0199-3.
  • Martínez-Moneo, E.; Stigliano, S.; Hedström, A.; Kaczka, A.; Malvik, M.; Waldthaler, A.; Maisonneuve, P.; Simon, P.; Capurso, G. Deficiency of Fat-Soluble Vitamins in Chronic Pancreatitis: A Systematic Review and Meta-Analysis. Pancreatology Off. J Int. Assoc. Pancreatology. 2016, 16(6), 988–994. DOI: 10.1016/j.pan.2016.09.008.
  • Kabbani, T. A.; Koutroubakis, I. E.; Schoen, R. E.; Ramos-Rivers, C.; Shah, N.; Swoger, J.; Regueiro, M.; Barrie, A.; Schwartz, M.; Hashash, J. G., et al. Association of Vitamin D Level with Clinical Status in Inflammatory Bowel Disease: A 5-Year Longitudinal Study. Am. J. Gastroenterol. 2016, 111(5), 712–719. DOI: 10.1038/ajg.2016.53.
  • Bouillon, R.; Manousaki, D.; Rosen, C.; Trajanoska, K.; Rivadeneira, F.; Richards, J. B. The Health Effects of Vitamin D Supplementation: Evidence from Human Studies. Nat. Rev. Endocrinol. 2022, 18(2), 96–110. DOI: 10.1038/s41574-021-00593-z.
  • Durrant, L. R.; Bucca, G.; Hesketh, A.; Möller-Levet, C.; Tripkovic, L.; Wu, H.; Hart, K. H.; Mathers, J. C.; Elliott, R. M.; Lanham-New, S. A., et al. Vitamins D(2) and D(3) Have Overlapping but Different Effects on the Human Immune System Revealed Through Analysis of the Blood Transcriptome. Front. Immunol. 2022, 13, 790444. DOI: 10.3389/fimmu.2022.790444.
  • Kearns, M. D.; Alvarez, J. A.; Seidel, N.; Tangpricha, V.; Tangpricha, V. Impact of Vitamin D on Infectious Disease. The Am. J. Med. Sci. 2015, 349(3), 245–262. DOI: 10.1097/MAJ.0000000000000360.
  • Virtanen, J. K.; Nurmi, T.; Aro, A.; Bertone-Johnson, E. R.; Hyppönen, E.; Kröger, H.; Lamberg-Allardt, C.; Manson, J. E.; Mursu, J.; Mäntyselkä, P., et al. Vitamin D Supplementation and Prevention of Cardiovascular Disease and Cancer in the Finnish Vitamin D Trial: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2022, 115(5), 1300–1310. DOI: 10.1093/ajcn/nqab419.
  • Ramalho, M.; Coelho, M.; Pereira, M. Nanoparticles for Delivery of Vitamin D: Challenges and Opportunities. 2017.
  • Ayala-Fuentes, J. C.; Chavez-Santoscoy, R. A. Nanotechnology as a Key to Enhance the Benefits and Improve the Bioavailability of Flavonoids in the Food Industry. Foods. 2021, 10(11), 2701. DOI: 10.3390/foods10112701.
  • Vieira, E. F.; Souza, S. Formulation Strategies for Improving the Stability and Bioavailability of Vitamin D-Fortified Beverages: A Review. Foods. 2022, 11(6), 847. DOI: 10.3390/foods11060847.
  • Cohen, Y.; Margier, M.; Lesmes, U.; Reboul, E.; Livney, Y. D. Mechanisms of Absorption of Vitamin D3 Delivered in Protein Nanoparticles in the Absence and Presence of Fat. Food Funct. 2021, 12(11), 4935–4946. DOI: 10.1039/D0FO02206C.
  • Maurya, V. K.; Bashir, K.; Aggarwal, M. Vitamin D Microencapsulation and Fortification: Trends and Technologies. J. Steroid Biochem. Mol. Biol. 2020, 196, 105489. DOI: 10.1016/j.jsbmb.2019.105489.
  • Marino, R.; Misra, M. Extra-Skeletal Effects of Vitamin D. Nutrients. 2019, 11(7), 7. DOI: 10.3390/nu11071460.
  • Daneshkhah, A.; Agrawal, V.; Eshein, A.; Subramanian, H.; Roy, H. K.; Backman, V. Evidence for Possible Association of Vitamin D Status with Cytokine Storm and Unregulated Inflammation in COVID-19 Patients. Aging Clin. Exp. Res. 2020, 32(10), 2141–2158. DOI: 10.1007/s40520-020-01677-y.
  • Taha, R.; Abureesh, S.; Alghamdi, S.; Hassan, R. Y.; Cheikh, M. M.; Bagabir, R. A.; Almoallim, H.; Abdulkhaliq, A. The Relationship Between Vitamin D and Infections Including COVID-19: Any Hopes? IJGM. 2021, 14, 3849–3870. DOI: 10.2147/IJGM.S317421.
  • Gruber-Bzura, B. M. Vitamin D and Influenza—Prevention or Therapy? Int. J. Mol. Sci. 2018, 19(8), 2419. DOI: 10.3390/ijms19082419.
  • Martineau, A. R.; Jolliffe, D. A.; Hooper, R. L.; Greenberg, L.; Aloia, J. F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A. A., et al. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ. 2017, 356, i6583. DOI: 10.1136/bmj.i6583.
  • Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X., et al. Coronavirus Infections and Immune Responses. J. Med. Virol. 2020, 92(4), 424–432. DOI: 10.1002/jmv.25685.
  • Grant, W. B.; Lahore, H.; McDonnell, S. L.; Baggerly, C. A.; French, C. B.; Aliano, J. L.; Bhattoa, H. P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020, 12(4), 988. DOI: 10.3390/nu12040988.
  • Tomaszewska, A.; Rustecka, A.; Lipińska-Opałka, A.; Piprek, R. P.; Kloc, M.; Kalicki, B.; Kubiak, J. Z. The Role of Vitamin D in COVID-19 and the Impact of Pandemic Restrictions on Vitamin D Blood Content. Front. Pharmacol. 2022, 13, 13. DOI: 10.3389/fphar.2022.836738.
  • Cutolo, M.; Paolino, S.; Smith, V. Evidences for a Protective Role of Vitamin D in COVID-19. RMD Open. 2020, 6(3), e001454. DOI: 10.1136/rmdopen-2020-001454.
  • Meltzer, D. O.; Best, T. J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of Vitamin D Deficiency and Treatment with COVID-19 Incidence. MedRxiv. Prepr. Server Health Sci. 2020, 11, 20201–22.
  • Allegra, A.; Tonacci, A.; Pioggia, G.; Musolino, C.; Gangemi, S. Vitamin Deficiency as Risk Factor for SARS-CoV-2 Infection: Correlation with Susceptibility and Prognosis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24(18), 9721–9738. DOI: 10.26355/eurrev_202009_23064.
  • Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G. D.; Malhotra, P. Short Term, High-Dose Vitamin D Supplementation for COVID-19 Disease: A Randomised, Placebo-Controlled, Study (SHADE Study). Postgrad. Med. J. 2022, 98(1156), 87–90. DOI: 10.1136/postgradmedj-2020-139065.
  • Laconi, E.; Marongiu, F.; DeGregori, J. Cancer as a Disease of Old Age: Changing Mutational and Microenvironmental Landscapes. Br. J. Cancer. 2020, 122(7), 1–10. DOI: 10.1038/s41416-019-0721-1.
  • Cinar, D. Cancer in the Elderly. North Clin. Istanbul. 2015, 2(1), 73–80. DOI: 10.14744/nci.2015.72691.
  • Jiang, F.; Bao, J.; Li, P.; Nicosia, S. V.; Bai, W. Induction of Ovarian Cancer Cell Apoptosis by 1,25-Dihydroxyvitamin D3 Through the Down-Regulation of Telomerase. J. Biol. Chem. 2004, 279(51), 53213–53221. DOI: 10.1074/jbc.M410395200.
  • Moreno, J.; Krishnan, A. V.; Swami, S.; Nonn, L.; Peehl, D. M.; Feldman, D. Regulation of Prostaglandin Metabolism by Calcitriol Attenuates Growth Stimulation in Prostate Cancer Cells. Cancer Res. 2005, 65(17), 7917–7925. DOI: 10.1158/0008-5472.CAN-05-1435.
  • Sundaram, S.; Chaudhry, M.; Reardon, D.; Gupta, M.; Gewirtz, D. A. The Vitamin D3 Analog EB 1089 Enhances the Antiproliferative and Apoptotic Effects of Adriamycin in MCF-7 Breast Tumor Cells. Breast Cancer Res. Treat. 2000, 63(1), 1–10. DOI: 10.1023/A:1006420708806.
  • Yanagisawa, J.; Yanagi, Y.; Masuhiro, Y.; Suzawa, M.; Watanabe, M.; Kashiwagi, K.; Toriyabe, T.; Kawabata, M.; Miyazono, K.; Kato, S. Convergence of Transforming Growth Factor-Beta and Vitamin D Signaling Pathways on SMAD Transcriptional Coactivators. Science (New York, NY). 1999, 283(5406), 1317–1321.
  • Han, J.; Guo, X.; Yu, X.; Liu, S.; Cui, X.; Zhang, B.; Liang, H. 25-Hydroxyvitamin D and Total Cancer Incidence and Mortality: A Meta-Analysis of Prospective Cohort Studies. Nutrients. 2019, 11(10), 2295. DOI: 10.3390/nu11102295.
  • Feldman, D.; Krishnan, A. V.; Swami, S.; Giovannucci, E.; Feldman, B. J. The Role of Vitamin D in Reducing Cancer Risk and Progression. Nat. Rev. Cancer. 2014, 14(5), 342–357. DOI: 10.1038/nrc3691.
  • Keum, N.; Lee, D. H.; Greenwood, D. C.; Manson, J. E.; Giovannucci, E. Vitamin D Supplementation and Total Cancer Incidence and Mortality: A Meta-Analysis of Randomized Controlled Trials. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30(5), 733–743. DOI: 10.1093/annonc/mdz059.
  • Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association Between Vitamin D Supplementation and Mortality: Systematic Review and Meta-Analysis. BMJ. 2019, 366, l4673. DOI: 10.1136/bmj.l4673.
  • Manson, J. E.; Cook, N. R.; Lee, I.-M.; Christen, W.; Bassuk, S. S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D., et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2018, 380(1), 33–44. DOI: 10.1056/NEJMoa1809944.
  • Bischoff-Ferrari, H. A.; Willett, W. C.; Manson, J. E.; Dawson-Hughes, B.; Manz, M. G.; Theiler, R.; Braendle, K.; Vellas, B.; Rizzoli, R.; Kressig, R. W., et al. Omega-3 Fatty Acids, and a Simple Home Exercise Program May Reduce Cancer Risk Among Active Adults Aged 70 and Older: A Randomized Clinical Trial. Front. Aging. 2022, 3, 3. DOI: 10.3389/fragi.2022.852643.
  • Chandler, P. D.; Chen, W. Y.; Ajala, O. N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I. M.; Giovannucci, E. L.; Willett, W.; Buring, J. E., et al. Effect of Vitamin D 3 Supplements on Development of Advanced Cancer. JAMA Netw. Open. 2020, 3(11), e2025850–e2025850. DOI: 10.1001/jamanetworkopen.2020.25850.
  • Thabet, R. H.; Gomaa, A. A.; Matalqah, L. M.; Shalaby, E. M. Vitamin D: An Essential Adjuvant Therapeutic Agent in Breast Cancer. J. Int. Med. Res. 2022, 50(7), 3000605221113800. DOI: 10.1177/03000605221113800.
  • Guo, Z.; Huang, M.; Fan, D.; Hong, Y.; Zhao, M.; Ding, R.; Cheng, Y.; Duan, S. Association Between Vitamin D Supplementation and Cancer Incidence and Mortality: A Trial Sequential Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–15. DOI: 10.1080/10408398.2022.2056574.
  • Chandler, P. D.; Chen, W. Y.; Ajala, O. N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I. M.; Giovannucci, E. L.; Willett, W.; Buring, J. E., et al. Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial. JAMA Netw. Open. 2020, 3(11), e2025850. DOI: 10.1001/jamanetworkopen.2020.25850.
  • Haykal, T.; Samji, V.; Zayed, Y.; Gakhal, I.; Dhillon, H.; Kheiri, B.; Kerbage, J.; Veerapaneni, V.; Obeid, M.; Danish, R., et al. The Role of Vitamin D Supplementation for Primary Prevention of Cancer: Meta-Analysis of Randomized Controlled Trials. J. Community Hosp. Int. Med. Perspect. 2019, 9(6), 480–488. DOI: 10.1080/20009666.2019.1701839.
  • Biglu, M. H.; Ghavami, M.; Biglu, S. Cardiovascular Diseases in the Mirror of Science. J. Cardiovasc. Thoracic Res. 2016, 8(4), 158–163. DOI: 10.15171/jcvtr.2016.32.
  • Ruan, Y.; Guo, Y.; Zheng, Y.; Huang, Z.; Sun, S.; Kowal, P.; Shi, Y.; Wu, F. Cardiovascular Disease (CVD) and Associated Risk Factors Among Older Adults in Six Low-And Middle-Income Countries: Results from SAGE Wave 1. BMC Public Health. 2018, 18(1), 778. DOI: 10.1186/s12889-018-5653-9.
  • Soh, V.; Tan, S. J. X.; Sehgal, R.; Shirke, M. M.; Ashry, A.; Harky, A. The Relationship Between Vitamin D Status and Cardiovascular Diseases. Curr. Probl. Cardiol. 2021, 46(7), 100836. DOI: 10.1016/j.cpcardiol.2021.100836.
  • Chowdhury, R.; Kunutsor, S.; Vitezova, A.; Oliver-Williams, C.; Chowdhury, S.; Kiefte-de-Jong, J. C.; Khan, H.; Baena, C. P.; Prabhakaran, D.; Hoshen, M. B., et al., Vitamin D and Risk of Cause Specific Death: Systematic Review and Meta-Analysis of Observational Cohort and Randomised Intervention Studies. 2014, 348, g1903.
  • Ferder, M.; Inserra, F.; Manucha, W.; Ferder, L. The World Pandemic of Vitamin D Deficiency Could Possibly Be Explained by Cellular Inflammatory Response Activity Induced by the Renin-Angiotensin System. Am. J Physiol. Cell Physiol. 2013, 304(11), C1027–39. DOI: 10.1152/ajpcell.00403.2011.
  • Muller, D. N.; Kvakan, H.; Luft, F. C. Immune-Related Effects in Hypertension and Target-Organ Damage. Curr. Opin. Nephrol. Hypertens. 2011, 20(2), 113–117. DOI: 10.1097/MNH.0b013e3283436f88.
  • Kim, D. H.; Meza, C. A.; Clarke, H.; Kim, J. S.; Hickner, R. C. Vitamin D and Endothelial Function. Nutrients. 2020, 12(2), 575. DOI: 10.3390/nu12020575.
  • Gao, N.; Li, X.; Kong, M.; Ni, M.; Wei, D.; Zhu, X.; Wang, Y.; Hong, Z.; Dong, A. Associations Between Vitamin D Levels and Risk of Heart Failure: A Bidirectional Mendelian Randomization Study. Front. Nutrit. 2022, 9, 910949. DOI: 10.3389/fnut.2022.910949.
  • Dibaba, D. T. Effect of Vitamin D Supplementation on Serum Lipid Profiles: A Systematic Review and Meta-Analysis. Nutr. Rev. 2019, 77(12), 890–902. DOI: 10.1093/nutrit/nuz037.
  • McClements, D. Enhanced Delivery of Lipophilic Bioactives Using Emulsions: A Review of Major Factors Affecting Vitamin, Nutraceutical, and Lipid Bioaccessibility. Food Funct. 2017, 9(1), 22–41. DOI: 10.1039/C7FO01515A.
  • Sezer, A., & Behzat, Ö. (2021). Vitamin D Metabolism. In Ö. Öner (Ed.), Vitamin D, (pp. Ch. 1). Rijeka: IntechOpen London.
  • Borel, P.; Caillaud, D.; Cano, N. J. Vitamin D Bioavailability: State of the Art. Crit. Rev. Food Sci. Nutr. 2015, 55(9), 1193–1205. DOI: 10.1080/10408398.2012.688897.
  • Maurya, V.; Aggarwal, M. Factors Influencing the Absorption of Vitamin D in GIT: An Overview. J. Food Sci. Technol. 2017, 54(12), 3753–3765. DOI: 10.1007/s13197-017-2840-0.
  • Ložnjak Švarc, P.; Jakobsen, J. Stability of Vitamin D 3 and Vitamin D 2 in Oil, Fish and Mushrooms After Household Cooking. Food Chem. 2018, 254, 144–149. DOI: 10.1016/j.foodchem.2018.01.182.
  • Jakobsen, J.; Knuthsen, P. Stability of Vitamin D in Foodstuffs During Cooking. Food Chem. 2014, 148C, 170–175. DOI: 10.1016/j.foodchem.2013.10.043.
  • Lavelli, V.; D’Incecco, P.; Pellegrino, L. Vitamin D Incorporation in Foods: Formulation Strategies, Stability, and Bioaccessibility as Affected by the Food Matrix. Foods. 2021, 10(9), 1989. DOI: 10.3390/foods10091989.
  • Hussain, M.; Qayum, A.; Xiuxiu, Z.; Liu, L.; Hussain, K.; Yue, P.; Yue, S.; Koko, M.; Hussain, A.; Li, X. Potato Protein: An Emerging Source of High Quality and Allergy Free Protein, and Its Possible Future Based Products. Food Res. Int. 2021, 148, 110583. DOI: 10.1016/j.foodres.2021.110583.
  • Fratter, A.; Pellizzato, M. Novel Micellar System for Vitamin D3 Oral Delivery: Assessment of Enteric Absorption Through a Digestion-Like in vitro Model. J. Drug Delivery Sci. Technol. 2020, 59, 101840. DOI: 10.1016/j.jddst.2020.101840.
  • Delshadi, R.; Bahrami, A.; Tafti, A. G.; Barba, F. J.; Williams, L. L. Micro and Nano-Encapsulation of Vegetable and Essential Oils to Develop Functional Food Products with Improved Nutritional Profiles. Trends Food Sci. Technol. 2020, 104, 72–83. DOI: 10.1016/j.tifs.2020.07.004.
  • Nikmaram, N.; Roohinejad, S.; Hashemi, S.; Koubaa, M.; Barba, F. J.; Abbaspourrad, A.; Greiner, R. Emulsion-Based Systems for Fabrication of Electrospun Nanofibers: Food, Pharmaceutical and Biomedical Applications. Rsc. Adv. 2017, 7(46), 28951–28964. DOI: 10.1039/C7RA00179G.
  • Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.; Dubey, N. K. Nanoencapsulation: An Efficient Technology to Boost the Antimicrobial Potential of Plant Essential Oils in Food System. Food Control. 2018, 18, 89.
  • Pateiro, M.; Gómez, B.; Munekata, P. E.; Barba, F. J.; Putnik, P.; Kovačević, D. B.; Lorenzo, J. M. The Appearance of the Final Food. P.Mol. (Basel, Switzerland). 2021, 21.
  • Luo, Y.; Teng, Z.; Wang, Q. Development of Zein Nanoparticles Coated with Carboxymethyl Chitosan for Encapsulation and Controlled Release of Vitamin D3. J. Agric. Food. Chem. 2012, 60(3), 836–843. DOI: 10.1021/jf204194z.
  • Salvia-Trujillo, L.; Fumiaki, B.; Park, Y.; McClements, D. J. The Influence of Lipid Droplet Size on the Oral Bioavailability of Vitamin D(2) Encapsulated in Emulsions: An in vitro and in vivo Study. Food Funct. 2017, 8(2), 767–777. DOI: 10.1039/C6FO01565D.
  • Walia, N.; Dasgupta, N.; Ranjan, S.; Chen, L.; Ramalingam, C. Fish Oil Based Vitamin D Nanoencapsulation by Ultrasonication and Bioaccessibility Analysis in Simulated Gastro-Intestinal Tract. Ultrason. Sonochem. 2017, 39, 623–635. DOI: 10.1016/j.ultsonch.2017.05.021.
  • Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D. J. Nanoemulsion Delivery Systems for Oil-Soluble Vitamins: Influence of Carrier Oil Type on Lipid Digestion and Vitamin D3 Bioaccessibility. Food Chem. 2015, 187, 499–506. DOI: 10.1016/j.foodchem.2015.04.065.
  • Chaudhry, Q.; Castle, L. Food Applications of Nanotechnologies: An Overview of Opportunities and Challenges for Developing Countries. Trends Food Sci. Technol. 2011, 22(11), 595–603. DOI: 10.1016/j.tifs.2011.01.001.
  • Gonnet, M.; Lethuaut, L.; Boury, F. New Trends in Encapsulation of Liposoluble Vitamins. J. Controlled Release Off. J Controlled Release Soc. 2010, 146(3), 276–290. DOI: 10.1016/j.jconrel.2010.01.037.
  • Guttoff, M.; Saberi, A. H.; McClements, D. J. Formation of Vitamin D Nanoemulsion-Based Delivery Systems by Spontaneous Emulsification: Factors Affecting Particle Size and Stability. Food Chem. 2015, 171, 117–122. DOI: 10.1016/j.foodchem.2014.08.087.
  • Menéndez-Aguirre, O.; Kessler, A.; Stuetz, W.; Grune, T.; Weiss, J.; Hinrichs, J. Increased Loading of Vitamin D(2) in Reassembled Casein Micelles with Temperature-Modulated High Pressure Treatment. Food Res. Int. (Ottawa, Ont). 2014, 64, 74–80. DOI: 10.1016/j.foodres.2014.06.010.
  • Maurya, V.; Aggarwal, M. Enhancing Bio-Availability of Vitamin D by Nano-Engineered Based Delivery Systems- an Overview. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6(7), 340–353. DOI: 10.20546/ijcmas.2017.607.040.
  • Kadappan, A.; Guo, C.; Gumus-Bonacina, C.; Bessey, A.; Wood, R.; McClements, D.; Liu, Z. The Efficacy of Nanoemulsion-Based Delivery to Improve Vitamin D Absorption: Comparison of in vitro and in vivo Studies. Mol. Nutr Food Res. 2017, 62(4), 1700836. DOI: 10.1002/mnfr.201700836.
  • Awuchi, C. G.; Morya, S.; Dendegh, T. A.; Okpala, C. O. R.; Korzeniowska, M. Nanoencapsulation of Food Bioactive Constituents and Its Associated Processes: A Revisit. Bioresour. Technol. Rep. 2022, 19, 101088. DOI: 10.1016/j.biteb.2022.101088.
  • Delshadi, R.; Bahrami, A.; Tafti, A.; Barba, F.; Williams, L. Micro and Nano-Encapsulation of Vegetable and Essential Oils to Develop Functional Food Products with Improved Nutritional Profiles. Trends Food Sci. Technol. 2020, 104, 72–83. DOI: 10.1016/j.tifs.2020.07.004.
  • de Melo, A. P. Z.; da Rosa, C. G.; Noronha, C. M.; Machado, M. H.; Sganzerla, W. G.; Bellinati, N. V. D. C.; Nunes, M. R.; Verruck, S.; Prudêncio, E. S.; Barreto, P. L. M. Nanoencapsulation of Vitamin D3 and Fortification in an Experimental Jelly Model of Acca Sellowiana: Bioaccessibility in a Simulated Gastrointestinal System. LWT. 2021, 145, 111287. DOI: 10.1016/j.lwt.2021.111287.
  • Kiani, A.; Fathi, M.; Ghasemi, S. M. Production of Novel Vitamin D3 Loaded Lipid Nanocapsules for Milk Fortification. Int. J. Food Prop. 2017, 20(11), 2466–2476. DOI: 10.1080/10942912.2016.1240690.
  • Walia, N.; Dasgupta, N.; Ranjan, S.; Chen, L.; Chidambaram, R. Fish Oil Based Vitamin D Nanoencapsulation by Ultrasonication and Bioaccessibility Analysis in Simulated Gastro-Intestinal Tract. Ultrason. Sonochem. 2017, 39, 623–635. DOI: 10.1016/j.ultsonch.2017.05.021.
  • Walia, N., Dasgupta, N., Ranjan, S., Chen, L., & Ramalingam, C. Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrason Sonochem. 2017, 39, 623-635.
  • Diarrassouba, F.; Garrait, G.; Remondetto, G.; Alvarez, P.; Beyssac, E.; Subirade, M. Improved Bioavailability of Vitamin D3 Using a β-Lactoglobulin-Based Coagulum. Food Chem. 2015, 172, 361–367. DOI: 10.1016/j.foodchem.2014.09.054.
  • Lee, J.; Duggan, E. Improved Stability of Vitamin D3 Encapsulated in Whey Protein Isolate Microgels. Int. Dairy J. 2022, 129, 105351. DOI: 10.1016/j.idairyj.2022.105351.
  • Fang, Z.; Bhandari, B. Encapsulation of Polyphenols – a Review. Trends Food Sci. Technol. 2010, 21(10), 510–523. DOI: 10.1016/j.tifs.2010.08.003.
  • Gasa-Falcon, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Martín-Belloso, O. Nanostructured Lipid-Based Delivery Systems as a Strategy to Increase Functionality of Bioactive Compounds. Foods. 2020, 9(3), 3. DOI: 10.3390/foods9030325.
  • Rao, J.; Decker, E. A.; Xiao, H.; McClements, D. J. Nutraceutical Nanoemulsions: Influence of Carrier Oil Composition (Digestible versus Indigestible Oil) on β-Carotene Bioavailability. J. Sci. Food Agric. 2013, 93(13), 3175–3183. DOI: 10.1002/jsfa.6215.
  • Wang, P.; Liu, H.-J.; Mei, X.-Y.; Nakajima, M.; Yin, L.-J. Preliminary Study into the Factors Modulating β-Carotene Micelle Formation in Dispersions Using an in vitro Digestion Model. Food Hydrocoll. 2012, 26(2), 427–433. DOI: 10.1016/j.foodhyd.2010.11.018.
  • Yu, H.; Huang, Q. Bioavailability and Delivery of Nutraceuticals and Functional Foods Using Nanotechnology. In Bio‐Nanotechnology, 2013; pp. 593–604. 10.1002/9781118451915.ch35.
  • Kadappan, A. S.; Guo, C.; Gumus, C. E.; Bessey, A.; Wood, R. J.; McClements, D. J.; Liu, Z. The Efficacy of Nanoemulsion-Based Delivery to Improve Vitamin D Absorption: Comparison of in vitro and in vivo Studies. Mol. Nutr Food Res. 2018, 62(4). DOI: 10.1002/mnfr.201700836.
  • Grossmann, R. E.; Tangpricha, V. Evaluation of Vehicle Substances on Vitamin D Bioavailability: A Systematic Review. Mol. Nutr Food Res. 2010, 54(8), 1055–1061. DOI: 10.1002/mnfr.200900578.
  • Schoener, A.; Zhang, R.; Lv, S.; Weiss, J.; McClements, D. Fabrication of Plant-Based Vitamin D 3 -Fortified Nanoemulsions: Influence of Carrier Oil Type on Vitamin Bioaccessibility. Food Funct. 2019, 10(4), 1826–1835. DOI: 10.1039/C9FO00116F.
  • Tolani, P.; Gupta, S.; Yadav, K.; Aggarwal, S.; Yadav, A. K. Chapter Four - Big Data, Integrative Omics and Network Biology. In Advances in Protein Chemistry and Structural Biology; Donev, R. and Karabencheva-Christova, T., Eds.; Academic Press, 2021, Vol. 127, pp. 127–160. 10.1016/bs.apcsb.2021.03.006.
  • Hussain, M.; Qayum, A.; Xiuxiu, Z.; Liu, L.; Hussain, K.; Yue, P.; Yue, S.; M, Y. F. K.; Hussain, A.; Li, X. Potato Protein: An Emerging Source of High Quality and Allergy Free Protein, and Its Possible Future Based Products. Food Res. Int. (Ottawa, Ont). 2021, 148, 110583. DOI: 10.1016/j.foodres.2021.110583.
  • Livney, Y. Milk Proteins as Vehicles for Bioactive. Curr. Opin. Colloid Interface Sci. 2010, 15, 73–83. DOI: 10.1016/j.cocis.2009.11.002.
  • David, S.; Livney, Y. Potato Protein Based Nanovehicles for Health Promoting Hydrophobic Bioactives in Clear Beverages. Food Hydrocoll. 2016, 57, 229–235. DOI: 10.1016/j.foodhyd.2016.01.027.
  • Temova Rakuša, Ž.; Pišlar, M.; Kristl, A.; Roškar, R. Comprehensive Stability Study of Vitamin D3 in Aqueous Solutions and Liquid Commercial Products. Pharm. 2021, 13(5), 617. DOI: 10.3390/pharmaceutics13050617.
  • Loewen, A.; Chan, B.; Li-Chan, E. C. Y. Optimization of Vitamins a and D3 Loading in Re-Assembled Casein Micelles and Effect of Loading on Stability of Vitamin D3 During Storage. Food Chem. 2018, 240, 472–481. DOI: 10.1016/j.foodchem.2017.07.126.
  • Lindahl, I. E. I.; Danielsen, M.; Dalsgaard, T. K.; Rejnmark, L.; Bollen, P.; Bertram, H. C. Correction: Milk Protein Complexation Enhances Post Prandial Vitamin D3 Absorption in Rats. Food Funct. 2020, 11(11), 10242–10242. DOI: 10.1039/D0FO90053B.
  • Fernandes, C. S. M.; Teixeira, G. D. G.; Iranzo, O.; Roque, A. C. A. Chapter 5 - Engineered Protein Variants for Bioconjugation. In Biomedical Applications of Functionalized Nanomaterials; Sarmento, B. and das Neves, J., Eds.; france: Elsevier, 2018; pp. 105–138.
  • Hermanson, G. T. Chapter 24 - Bioconjugation in the Study of Protein Interactions. In Bioconjugate Techniques (3rd Edition); Hermanson, G.T., Ed.; Academic Press: Boston, 2013; pp. 989–1016. DOI:10.1016/B978-0-12-382239-0.00024-8.
  • Nooshkam, M.; Varidi, M.; Verma, D. K. Functional and Biological Properties of Maillard Conjugates and Their Potential Application in Medical and Food: A Review. Food Res. Int. (Ottawa, Ont). 2020, 131, 109003. DOI: 10.1016/j.foodres.2020.109003.
  • Nah, H.; Lee, D.; Heo, M.; Lee, J. S.; Lee, S. J.; Heo, D. N.; Seong, J.; Lim, H.-N.; Lee, Y.-H.; Moon, H.-J., et al. Vitamin D-Conjugated Gold Nanoparticles as Functional Carriers to Enhancing Osteogenic Differentiation. Sci. Technol. Adv. Mater. 2019, 20(1), 826–836. DOI: 10.1080/14686996.2019.1644193.
  • Acevedo-Fani, A.; Singh, H. Biophysical Insights into Modulating Lipid Digestion in Food Emulsions. Prog. lipid res. 2022, 85, 101129. DOI: 10.1016/j.plipres.2021.101129.
  • Mulrooney, S. L.; O’Neill, G. J.; Brougham, D. F.; O’Riordan, D. Vitamin D3 Bioaccessibility: Influence of Fatty Acid Chain Length, Salt Concentration and L-α-Phosphatidylcholine Concentration on Mixed Micelle Formation and Delivery of Vitamin D3. Food Chem. 2021, 344, 128722. DOI: 10.1016/j.foodchem.2020.128722.
  • Mulrooney, S. L.; O’Neill, G. J.; Brougham, D. F.; O’Riordan, D. Enhancing the Bioaccessibility of Vitamin D Using Mixed Micelles – an in vitro Study. Food Chem. 2022, 395, 133634. DOI: 10.1016/j.foodchem.2022.133634.
  • Rigotti, A. Absorption, Transport, and Tissue Delivery of Vitamin E. Molecular Aspects of Medicine. Mol. Aspects. Med. 2007, 28(5–6), 423–436. DOI: 10.1016/j.mam.2007.01.002.
  • Patra, A.; Satpathy, S.; Shenoy, A. K.; Bush, J. A.; Kazi, M.; Hussain, M. D. Formulation and Evaluation of Mixed Polymeric Micelles of Quercetin for Treatment of Breast, Ovarian, and Multidrug Resistant Cancers. Int. J. Nanomed. 2018, 13, 2869–2881. DOI: 10.2147/IJN.S153094.
  • Goncalves, A.; Gleize, B.; Roi, S.; Nowicki, M.; Dhaussy, A.; Huertas, A.; Amiot, M. J.; Reboul, E. Fatty Acids Affect Micellar Properties and Modulate Vitamin D Uptake and Basolateral Efflux in Caco-2 Cells. J. Nutr. Biochem. 2013, 24(10), 1751–1757. DOI: 10.1016/j.jnutbio.2013.03.004.
  • Schoener, A. L.; Zhang, R.; Lv, S.; Weiss, J.; McClements, D. J. Fabrication of Plant-Based Vitamin D3-Fortified Nanoemulsions: Influence of Carrier Oil Type on Vitamin Bioaccessibility. Food Funct. 2019, 10(4), 1826–1835. DOI: 10.1039/C9FO00116F.
  • Verkempinck, S. H. E.; Salvia-Trujillo, L.; Moens, L. G.; Carrillo, C.; Van Loey, A. M.; Hendrickx, M. E.; Grauwet, T. Kinetic Approach to Study the Relation Between in vitro Lipid Digestion and Carotenoid Bioaccessibility in Emulsions with Different Oil Unsaturation Degree. J. Funct. Foods. 2018, 41, 135–147. DOI: 10.1016/j.jff.2017.12.030.
  • Mulrooney, S.; O’Neill, G.; Brougham, D.; Lyng, J.; O’Riordan, D. Improving Vitamin D3 Stability to Environmental and Processing Stresses Using Mixed Micelles. Food Chem. 2021, 362, 130114. DOI: 10.1016/j.foodchem.2021.130114.
  • Kotake-Nara, E.; Komba, S.; Hase, M. Uptake of Vitamins D2, D3, D4, D5, D6, and D7 Solubilized in Mixed Micelles by Human Intestinal Cells, Caco-2, an Enhancing Effect of Lysophosphatidylcholine on the Cellular Uptake, and Estimation of Vitamins D’ Biological Activities. Nutrients. 2021, 13(4), 1126. DOI: 10.3390/nu13041126.
  • Glowka, E.; Stasiak, J.; Lulek, J. Drug Delivery Systems for Vitamin D Supplementation and Therapy. Pharmaceutics. 2019, 11(7), 7. DOI: 10.3390/pharmaceutics11070347.
  • Harish, V.; Tewari, D.; Gaur, M.; Yadav, A. B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications Nanomaterials. Nanomaterials. 2022, 12(3), 457. Online. DOI: 10.3390/nano12030457.
  • Colturato, P.; Goveia, D. Controlled Release of Vitamin D3 Using a Nanocellulose-Based Membrane. Sci. Rep. 2022, 12(1), 12. DOI: 10.1038/s41598-022-16179-2.
  • Cheng, F. Y.; Chiou, Y. Y.; Hung, S. Y.; Lin, T. M.; Wang, H. K.; Lin, C. W.; Liou, H. H.; Chang, M. Y.; Wang, H. H.; Lee, Y. C. Novel Application of Magnetite Nanoparticle-Mediated Vitamin D3 Delivery for Peritoneal Dialysis-Related Peritoneal Damage. Int. J. Nanomed. 2021, 16, 2137–2146. DOI: 10.2147/IJN.S291001.
  • Kittaneh, M.; Qurt, M.; Malkieh, N.; Naseef, H.; Muqedi, R. Preparation and Evaluation of Vitamin D3 Supplementation as Transdermal Film-Forming Solution. Pharmaceutics. 2023, 15(1), 39. Online. DOI: 10.3390/pharmaceutics15010039.
  • Meltzer, D. O.; Best, T. J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of Vitamin D Status and Other Clinical Characteristics with COVID-19 Test Results. JAMA Netw. Open. 2020, 3(9), e2019722. DOI: 10.1001/jamanetworkopen.2020.19722.
  • Mehta, V.; Agarwal, S. Does Vitamin D Deficiency Lead to Hypertension? Cureus. 2017, 9(2), e1038. DOI: 10.7759/cureus.1038.
  • Carlberg, C.; Muñoz, A. An Update on Vitamin D Signaling and Cancer. Semi. Cancer Biol. 2022, 79, 217–230. DOI: 10.1016/j.semcancer.2020.05.018.
  • Srivastava, N.; Choudhury, A. R. Microbial Polysaccharide-Based Nanoformulations for Nutraceutical Delivery. ACS Omega. 2022, 7(45), 40724–40739. DOI: 10.1021/acsomega.2c06003.
  • Wen, C.; Zhang, J.; Zhang, H.; Duan, Y. New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods. 2022, 11(12), 1701. DOI: 10.3390/foods11121701.
  • Hsu, C. Y.; Wang, P. W.; Alalaiwe, A.; Lin, Z. C.; Fang, J. Y. Use of Lipid Nanocarriers to Improve Oral Delivery of Vitamins. Nutrients. 2019, 11(1), 68. DOI: 10.3390/nu11010068.
  • Asfour, M. H.; Abd El-Alim, S. H.; Kassem, A. A.; Salama, A.; Gouda, A. S.; Nazim, W. S.; Nashaat, N. H.; Hemimi, M.; Abdel Meguid, N. Vitamin D3-Loaded Nanoemulsions as a Potential Drug Delivery System for Autistic Children: Formulation Development, Safety, and Pharmacokinetic Studies. AAPS PharmScitech. 2023, 24(2), 58. DOI: 10.1208/s12249-023-02501-2.
  • Sokołowska, M.; Marchwiana, M.; El Fray, M. Vitamin E-Loaded Polymeric Nanoparticles from Biocompatible Adipate-Based Copolymer Obtained Using the Nanoprecipitation Method. Polimery. 2022, 67(11–12), 543–551. DOI: 10.14314/polimery.2022.11.1.
  • Santo, K. P.; Neimark, A. V. Effects of Metal-Polymer Complexation on Structure and Transport Properties of Metal-Substituted Polyelectrolyte Membranes. J. Coll. Interf. Sci. 2021, 602, 654–668. DOI: 10.1016/j.jcis.2021.06.018.
  • Lindahl, I. E. I.; Danielsen, M.; Dalsgaard, T. K.; Rejnmark, L.; Bollen, P.; Bertram, H. C. Milk Protein Complexation Enhances Post Prandial Vitamin D(3) Absorption in Rats. Food Funct. 2020, 11(6), 4953–4959. DOI: 10.1039/D0FO01062F.
  • Glowka, E.; Stasiak, J.; Lulek, J. Drug Delivery Systems for Vitamin D Supplementation and Therapy Pharmaceutics. Pharm. 2019, 11(7), 347. Online. DOI: 10.3390/pharmaceutics11070347.
  • Ahmed, M. Z.; Gupta, A.; Warsi, M. H.; Ali, A. M. A.; Hasan, N.; Ahmad, F. J.; Zafar, A.; Jain, G. K. Nano Matrix Soft Confectionary for Oral Supplementation of Vitamin D: Stability and Sensory Analysis. Gels. 2022, 8(5), 250. Online. DOI: 10.3390/gels8050250.
  • Dissanayake, R. K.; Perera, K. D. C.; Perera, W. P. T. D.; Wijesinghe, W. P. S. L.; Unagolla, J. M. Enteric Coated Oral Delivery of Hydroxyapatite Nanoparticle for Modified Release Vitamin D3 Formulation. J. Nanomater. 2021, 2021, 9972475. DOI: 10.1155/2021/9972475.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.