441
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Review on Textural Quality Analysis of Dried Food Products

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Chen, L.; Opara, U. L. Texture Measurement Approaches in Fresh and Processed Foods — a Review. Food Res. Int. 2013, 51(2), 823–835. DOI: 10.1016/J.FOODRES.2013.01.046.
  • Day, L.; Golding, M. Food Structure, Rheology, and Texture; Academic Press, 2016. DOI:10.1016/B978-0-08-100596-5.03412-0.
  • Chen, J.; Rosenthal, A. Food Texture and Structure; Woodhead Publishing, 2015. DOI:10.1016/B978-1-78242-333-1.00001-2.
  • Mediani, A.; Hamezah, H. S.; Jam, F. A.; Mahadi, N. F.; Chan, S. X. Y.; Rohani, E. R.; Che Lah, N. H.; Azlan, U. K.; Khairul Annuar, N. A.; Azman, N. A. F., et al. A Comprehensive Review of Drying Meat Products and the Associated Effects and Changes. Front Nutr. 2022, 9, 2928. DOI: 10.3389/fnut.2022.1057366.
  • Air-Dried Food Market Size | Global Industry Report, 2020-2027 https://www.grandviewresearch.com/industry-analysis/air-dried-food-market (accessed Mar 25, 2023).
  • Guiné, R. P. F.; Barroca, M. J. Effect of Drying Treatments on Texture and Color of Vegetables (Pumpkin and Green Pepper). Food Bioprod. Process. 2012, 90(1), 58–63. DOI: 10.1016/J.FBP.2011.01.003.
  • Gulati, T.; Datta, A. K. Mechanistic Understanding of Case-Hardening and Texture Development During Drying of Food Materials. J. Food Eng. 2015, 166, 119–138. DOI: 10.1016/J.JFOODENG.2015.05.031.
  • Owureku-Asare, M.; Ambrose, R. P. K.; Oduro, I.; Tortoe, C.; Saalia, F. K. Consumer Knowledge, Preference, and Perceived Quality of Dried Tomato Products in Ghana. Food Sci. Nutr. 2017, 5(3), 617–624. DOI: 10.1002/FSN3.439.
  • Wong, R.; Kim, S.; Chung, S. J.; Cho, M. S. Texture Preferences of Chinese, Korean and US Consumers: A Case Study with Apple and Pear Dried Fruits. Foods. 2020, 9(3), 377. DOI: 10.3390/FOODS9030377.
  • Vincent, J. F. V. Application of Fracture Mechanics to the Texture of Food. Eng. Fail. Anal. 2004, 11(5), 695–704. DOI: 10.1016/j.engfailanal.2003.11.003.
  • Ikoko, J.; Kuri, V. Osmotic Pre-Treatment Effect on Fat Intake Reduction and Eating Quality of Deep-Fried Plantain. Food Chem. 2007, 102(2), 523–531. DOI: 10.1016/j.foodchem.2006.06.008.
  • Destefanis, G.; Brugiapaglia, A.; Barge, M. T.; Dal Molin, E. Relationship Between Beef Consumer Tenderness Perception and Warner–Bratzler Shear Force. Meat Sci. 2008, 78(3), 153–156. DOI: 10.1016/j.meatsci.2007.05.031.
  • Christensen, C. M. Food Texture Perception; Academic Press, 1984, pp. 159–199, 10.1016/S0065-2628(08)60057-9
  • Yitayew, T.; Fenta, T. The Effect of Drying Method on the Texture, Color, Vitamin C and β-Carotene Content of Dried Mango Slices (Cv. Apple and Kent); Springer Science and Business Media Deutschland GmbH, 2021; Vol. 384. DOI:10.1007/978-3-030-80621-7_7
  • Lim, D.-G.; Lee, S.-S.; Seo, K.-S.; Nam, K.-C. Effects of Different Drying Methods on Quality Traits of Hanwoo Beef Jerky from Low-Valued Cuts During Storage. Food Sci Anim Resour. 2012, 32(5), 531–539. DOI: 10.5851/KOSFA.2012.32.5.531.
  • Omolola, A. O.; Jideani, A. I. O.; Kapila, P. F. Quality Properties of Fruits as Affected by Drying Operation. Crit. Rev. Food Sci. Nutr. 2017, 57(1), 95–108. DOI: 10.1080/10408398.2013.859563.
  • Ullah, F.; Hasrat, K.; Iqbal, S.; Hussain, I.; Hussain, A.; Mumtaz, Y. An Approach to Evaluate Dehydration of Apples (Malus domestica L) with the Effect of Temperature and Time Interval Under the Response Surface Method. Int. J. Fruit Sci. 2021, 21(1), 657–669. DOI: 10.1080/15538362.2021.1920553.
  • Aamir, M.; Boonsupthip, W. Effect of Microwave Drying on Quality Kinetics of Okra. J. Food Sci. Technol. 2017, 54(5), 1239–1247. DOI: 10.1007/s13197-017-2546-3.
  • Bozkir, H. Effects of Hot Air, Vacuum Infrared, and Vacuum Microwave Dryers on the Drying Kinetics and Quality Characteristics of Orange Slices. J. Food Process. Eng. 2020, 43(10), e13485. DOI: 10.1111/JFPE.13485.
  • Xu, Q.; Pan, H.; Shui, Y.; Xing, Y.; Wu, L.; Zheng, F.; Fan, X.; Bi, X. Effect of Different Drying Technologies on the Characteristics and Quality of Lemon Slices. J. Food Sci. 2022, 87(7), 2980–2998. DOI: 10.1111/1750-3841.16194.
  • Bampi, M.; Schmidt, F. C.; Laurindo, J. B. A Fast Drying Method for the Production of Salted-And-Dried Meat. Food Sci. Technol. 2019, 39, 526–534. DOI: 10.1590/FST.24418.
  • Ding, C.; Khir, R.; Pan, Z.; Wood, D. F.; Venkitasamy, C.; Tu, K.; El-Mashad, H.; Berrios, J. Influence of Infrared Drying on Storage Characteristics of Brown Rice. Food Chem. 2018, 264, 149–156. DOI: 10.1016/J.FOODCHEM.2018.05.042.
  • Richter Reis, F.; Marques, C.; Moraes, A. C. S. D.; Masson, M. L. Trends in Quality Assessment and Drying Methods Used for Fruits and Vegetables. Food Control. 2022, 142, 109254. DOI: 10.1016/J.FOODCONT.2022.109254.
  • Akar, G.; Barutçu Mazı, I. Color Change, Ascorbic Acid Degradation Kinetics, and Rehydration Behavior of Kiwifruit as Affected by Different Drying Methods. J. Food Process. Eng. 2019, 42(3), e13011. DOI: 10.1111/JFPE.13011.
  • Cherono, K.; Mwithiga, G.; Schmidt, S. Infrared Drying as a Potential Alternative to Convective Drying for Biltong Production. Ital J. Food Saf. 2016, 5(3), 5625. DOI: 10.4081/IJFS.2016.5625.
  • Kim, B. S.; Oh, B. J.; Lee, J. H.; Yoon, Y. S.; Lee, H. I. Effects of Various Drying Methods on Physicochemical Characteristics and Textural Features of Yellow Croaker (Larimichthys polyactis). Foods. 2020, 9(2), 196. DOI: 10.3390/FOODS9020196.
  • Liu, Y.; Li, M.; Jiang, D.; Guan, E.; Bian, K.; Zhang, Y. Superheated Steam Processing of Cereals and Cereal Products: A Review. Compr. Rev. Food Sci. Food Saf. 2023, 22(2), 1360–1386. DOI: https://doi.org/10.1111/1541-4337.13114.
  • Piwińska, M.; Wyrwisz, J.; Kurek, M. A.; Wierzbicka, A. Effect of Drying Methods on the Physical Properties of Durum Wheat Pasta. CyTA - J. Food. 2016, 14(4), 523–528. DOI: https://doi.org/10.1080/19476337.2016.1149226.
  • Li, Q.; Yongbin, L. V.; Keying, S. U.; Simei, L.; Zhao, S.; Li, R.; Zhong, W.; Huang, S. Effect of Drying Methods on the Texture Properties and Active Ingredients in Longan Flesh. E3S Web of Conferences, 2021. 10.1051/e3sconf/202125102049.
  • Huang, L. L.; Zhang, M.; Wang, L. P.; Mujumdar, A. S.; Sun, D. Influence of Combination Drying Methods on Composition, Texture, Aroma and Microstructure of Apple Slices. LWT - Food Sci. Technol. 2012, 47(1), 183–188. feng. DOI:10.1016/J.LWT.2011.12.009.
  • Martynenko, A.; Janaszek, M. A. Texture Changes During Drying of Apple Slices. Drying Technol. 2014, 32(5), 567–577. DOI: https://doi.org/10.1080/07373937.2013.845573.
  • Rojas, M. L.; Silveira, I.; Augusto, P. E. D. Improving the Infrared Drying and Rehydration of Potato Slices Using Simple Approaches: Perforations and Ethanol. J. Food Process. Eng. 2019, 42(5), e13089. DOI: 10.1111/JFPE.13089.
  • Peng, J.; Bi, J.; Yi, J.; Wu, X.; Zhou, M.; Lyu, J.; Liu, J. Engineering Texture Properties of Instant Controlled Pressure Drop (DIC) Dried Carrot Chips via Modulating Osmotic Conditions. Food Bioproc. Tech. 2018, 11(9), 1674–1685. DOI: 10.1007/s11947-018-2133-2.
  • Wang, X.; Gao, Y.; Zhao, Y.; Li, X.; Fan, J.; Wang, L. Effect of Different Drying Methods on the Quality and Microstructure of Fresh Jujube Crisp Slices. J. Food Process Preserv. 2021, 45(2), e15162. DOI: 10.1111/JFPP.15162.
  • Lang, G. H.; Lindemann, I. D. S.; Goebel, J. T.; Ferreira, C. D.; Acunha, T. D. S.; de Oliveira, M. Fluidized-Bed Drying of Black Rice Grains: Impact on Cooking Properties, in vitro Starch Digestibility, and Bioaccessibility of Phenolic Compounds. J. Food Sci. 2020, 85(6), 1717–1724. DOI: 10.1111/1750-3841.15145.
  • Timm, N. D. S.; Ramos, A. H.; Ferreira, C. D.; Biduski, B.; Eicholz, E. D.; Oliveira, M. D. Effects of Drying Temperature and Genotype on Morphology and Technological, Thermal, and Pasting Properties of Corn Starch. Int J Biol Macromol. 2020, 165, 354–364. DOI: 10.1016/J.IJBIOMAC.2020.09.197.
  • Romano, N.; Ureta, M. M.; Guerrero-Sánchez, M.; Gómez-Zavaglia, A. Nutritional and Technological Properties of a Quinoa (Chenopodium quinoa Willd.) Spray-Dried Powdered Extract. Food Res. Int. 2020, 129, 108884. DOI: 10.1016/J.FOODRES.2019.108884.
  • Murali, S.; Sathish Kumar, K.; Alfiya, P. V.; Delfiya, D. S. A.; Samuel, M. P. Drying Kinetics and Quality Characteristics of Indian Mackerel (Rastrelliger kanagurta) in Solar–Electrical Hybrid Dryer. J. Aquat. Food Prod. Technol. 2019, 28(5), 541–554. DOI: https://doi.org/10.1080/10498850.2019.1604597.
  • Aghbashlo, M.; Hosseinpour, S.; Ghasemi-Varnamkhasti, M. Computer Vision Technology for Real-Time Food Quality Assurance During Drying Process. Trends Food Sci. Technol. 2014, 39(1), 76–84. DOI: 10.1016/j.tifs.2014.06.003.
  • Deng, L.-Z.; Mujumdar, A. S.; Zhang, Q.; Yang, X.-H.; Wang, J.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes–A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59(9), 1408–1432. DOI: 10.1080/10408398.2017.1409192.
  • Çakmak, R. Ş.; Tekeoğlu, O.; Bozkır, H.; Ergün, A. R.; Baysal, T. Effects of Electrical and Sonication Pretreatments on the Drying Rate and Quality of Mushrooms. LWT Food Sci. Technol. 2016, 69, 197–202. DOI: 10.1016/j.lwt.2016.01.032.
  • Jiang, N.; Liu, C.; Li, D.; Zhou, Y. Effect of Blanching on the Dielectric Properties and Microwave Vacuum Drying Behavior of Agaricus bisporus Slices. Innovative Food Science Emerging Technologies. 2015, 30, 89–97. DOI: 10.1016/j.ifset.2015.05.001.
  • Gazor, H. R.; Maadani, S.; Behmadi, H. Influence of Air Temperature and Pretreatment Solutions on Drying Time, Energy Consumption and Organoleptic Properties of Sour Cherry. Agric. Conspec. Sci. 2014, 79(2), 119–124.
  • Xiao, H.-W.; Pan, Z.; Deng, L.-Z.; El-Mashad, H. M.; Yang, X.-H.; Mujumdar, A. S.; Gao, Z.-J.; Zhang, Q. Recent Developments and Trends in Thermal Blanching–A Comprehensive Review. Information Process. Agric. 2017, 4(2), 101–127. DOI: 10.1016/j.inpa.2017.02.001.
  • Ando, Y.; Maeda, Y.; Mizutani, K.; Wakatsuki, N.; Hagiwara, S.; Nabetani, H. Impact of Blanching and Freeze-Thaw Pretreatment on Drying Rate of Carrot Roots in Relation to Changes in Cell Membrane Function and Cell Wall Structure. LWT Food Sci. Technol. 2016, 71, 40–46. DOI: 10.1016/j.lwt.2016.03.019.
  • Badwaik, L. S.; Gautam, G.; Deka, S. C. Influence of Blanching on Antioxidant. Nutritional And Physical Properties Of Bamboo Shoot. 2015. DOI: 10.4038/jas.v10i3.8067.
  • Rahath Kubra, I.; Kumar, D.; Jagan Mohan Rao, L. Emerging Trends in Microwave Processing of Spices and Herbs. Crit. Rev. Food Sci. Nutr. 2016, 56(13), 2160–2173. DOI: 10.1080/10408398.2013.818933.
  • Tao, Y.; Wang, P.; Wang, Y.; Kadam, S. U.; Han, Y.; Wang, J.; Zhou, J. Power Ultrasound as a Pretreatment to Convective Drying of Mulberry (Morus alba L.) Leaves: Impact on Drying Kinetics and Selected Quality Properties. Ultrason Sonochem. 2016, 31, 310–318. DOI: 10.1016/j.ultsonch.2016.01.012.
  • Kumar, Y.; Sharanagat, V. S.; Singh, L.; Nema, P. K. Convective Drying of Spine Gourd (Momordica dioica): Effect of Ultrasound Pre‐Treatment on Drying Characteristics, Color, and Texture Attributes. J. Food Process Preserv. 2020, 44(9), e14639. DOI: 10.1111/jfpp.14639.
  • Albertos, I.; Martin-Diana, A. B.; Sanz, M. A.; Barat, J. M.; Diez, A. M.; Jaime, I.; Rico, D. Effect of High Pressure Processing or Freezing Technologies as Pretreatment in Vacuum Fried Carrot Snacks. Innovative Food Science Emerging Technologies. 2016, 33, 115–122. DOI: 10.1016/j.ifset.2015.11.004.
  • Bi, J.; Yang, A.; Liu, X.; Wu, X.; Chen, Q.; Wang, Q.; Lv, J.; Wang, X. Effects of Pretreatments on Explosion Puffing Drying Kinetics of Apple Chips. LWT Food Sci. Technol. 2015, 60(2), 1136–1142. DOI: 10.1016/j.lwt.2014.10.006.
  • Ranganathan, K.; Subramanian, V.; Shanmugam, N. Effect of Thermal and Nonthermal Processing on Textural Quality of Plant Tissues. Crit. Rev. Food Sci. Nutr. 2016, 56(16), 2665–2694. DOI: 10.1080/10408398.2014.908348.
  • Faridnia, F.; Burritt, D. J.; Bremer, P. J.; Oey, I. Innovative Approach to Determine the Effect of Pulsed Electric Fields on the Microstructure of Whole Potato Tubers: Use of Cell Viability, Microscopic Images and Ionic Leakage Measurements. Food Res. Int. 2015, 77, 556–564. DOI: 10.1016/j.foodres.2015.08.028.
  • Alam, M. D. R.; Lyng, J. G.; Frontuto, D.; Marra, F.; Cinquanta, L. Effect of Pulsed Electric Field Pretreatment on Drying Kinetics, Color, and Texture of Parsnip and Carrot. J. Food Sci. 2018, 83(8), 2159–2166. DOI: 10.1111/1750-3841.14216.
  • Niamnuy, C.; Devahastin, S.; Soponronnarit, S. Some Recent Advances in Microstructural Modification and Monitoring of Foods During Drying: A Review. J. Food Eng. 2014, 123, 148–156. DOI: 10.1016/j.jfoodeng.2013.08.026.
  • Ciurzyńska, A.; Kowalska, H.; Czajkowska, K.; Lenart, A. Osmotic Dehydration in Production of Sustainable and Healthy Food. Trends Food Sci. Technol. 2016, 50, 186–192. DOI: 10.1016/j.tifs.2016.01.017.
  • Rashid, M. T.; Jatoi, M. A.; Safdar, B.; Wali, A.; Aadil, R. M.; Sarpong, F.; Ma, H. Modeling the Drying of Ultrasound and Glucose Pretreated Sweet Potatoes: The Impact on Phytochemical and Functional Groups. Ultrason Sonochem. 2020, 68, 105226. DOI: 10.1016/j.ultsonch.2020.105226.
  • Alipoorfard, F.; Jouki, M.; Tavakolipour, H. Application of Sodium Chloride and Quince Seed Gum Pretreatments to Prevent Enzymatic Browning, Loss of Texture and Antioxidant Activity of Freeze Dried Pear Slices. J. Food Sci. Technol. 2020, 57(9), 3165–3175. DOI: 10.1007/s13197-020-04265-0.
  • Rani, P.; Tripathy, P. P. Effect of Ultrasound and Chemical Pretreatment on Drying Characteristics and Quality Attributes of Hot Air Dried Pineapple Slices. J. Food Sci. Technol. 2019, 56(11), 4911–4924. DOI: 10.1007/s13197-019-03961-w.
  • Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural Colorants: Pigment Stability and Extraction Yield Enhancement via Utilization of Appropriate Pretreatment and Extraction Methods. Crit. Rev. Food Sci. Nutr. 2017, 57(15), 3243–3259. DOI: 10.1080/10408398.2015.1109498.
  • Llavata, B.; García-Pérez, J. V.; Simal, S.; Cárcel, J. A. Innovative Pre-Treatments to Enhance Food Drying: A Current Review. Curr. Opin. Food Sci. 2020, 35, 20–26. DOI: 10.1016/j.cofs.2019.12.001.
  • Vásquez-Parra, J. E.; Ochoa-Martínez, C. I.; Bustos-Parra, M. Effect of Chemical and Physical Pretreatments on the Convective Drying of Cape Gooseberry Fruits (Physalis peruviana). J. Food Eng. 2013, 119(3), 648–654. DOI: 10.1016/j.jfoodeng.2013.06.037.
  • García-Martínez, E.; Igual, M.; Martín-Esparza, M. E.; Martínez-Navarrete, N. Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food Bioproc. Tech. 2013, 6(11), 3247–3255. DOI: 10.1007/s11947-012-0988-1.
  • Antos, P.; Kurdziel, A.; Sadlo, S.; Balawejder, M. Preliminary Study on the Use of Ozonation for the Degradation of Dithiocarbamate Residues in the Fruit Drying Process: Mancozeb Residue in Blackcurrant is the Example Used. J. Plant Prot. Res. 2013, 53(1), 48–52. DOI: 10.2478/jppr-2013-0007.
  • Miller, F. A.; Silva, C. L. M.; Brandao, T. R. S. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Eng. Rev. 2013, 5(2), 77–106. DOI: 10.1007/s12393-013-9064-5.
  • Zhao, D.; Wang, Y.; Zhu, Y.; Ni, Y. Effect of Carbonic Maceration Pre-Treatment on the Drying Behavior and Physicochemical Compositions of Sweet Potato Dried with Intermittent or Continuous Microwave. Drying Technol. 2016, 34(13), 1604–1612. DOI: 10.1080/07373937.2016.1138231.
  • Chen, K.; Gao, L.; Li, Q.; Li, H.-R.; Zhang, Y. Effects of CO 2 Pretreatment on the Volatile Compounds of Dried Chinese Jujube (Zizyphus jujuba Miller). Food Sci. Technol. 2017, 37(4), 578–584. DOI: 10.1590/1678-457x.20016.
  • Molina Filho, L.; Frascareli, E. C.; Mauro, M. A. Effect of an Edible Pectin Coating and Blanching Pretreatments on the Air-Drying Kinetics of Pumpkin (Cucurbita moschata). Food Bioproc. Tech. 2016, 9(5), 859–871. DOI: 10.1007/s11947-016-1674-5.
  • Liu, Z.-L.; Staniszewska, I.; Zielinska, D.; Zhou, Y.-H.; Nowak, K. W.; Xiao, H.-W.; Pan, Z.; Zielinska, M. Combined Hot Air and Microwave-Vacuum Drying of Cranberries: Effects of Pretreatments and Pulsed Vacuum Osmotic Dehydration on Drying Kinetics and Physicochemical Properties. Food Bioproc. Tech. 2020, 13(10), 1848–1856. DOI: 10.1007/s11947-020-02507-9.
  • Swami Hulle, N. R.; Rao, P. S. Effect of High Pressure Pretreatments on Structural and Dehydration Characteristics of Aloe Vera (Aloe barbadensis Miller) Cubes. Drying Technol. 2016, 34(1), 105–118. DOI: 10.1080/07373937.2015.1037887.
  • Inyang, U. E.; Oboh, I. O.; Etuk, B. R. Kinetic Models for Drying Techniques—Food Materials. Adv. Chem. Eng. 2018, 8, 27–48. DOI: 10.4236/aces.2018.82003.
  • Parthasarathi, S.; Anandharamakrishnan, C. Modeling of Shrinkage, Rehydration and Textural Changes for Food Structural Analysis: A Review. J. Food Process. Eng. 2014, 37(2), 199–210. DOI: 10.1111/jfpe.12073.
  • Rahman, M. M.; Joardder, M. U. H.; Khan, M. I. H.; Pham, N. D.; Karim, M. A. Multi-Scale Model of Food Drying: Current Status and Challenges. Crit. Rev. Food Sci. Nutr. 2018, 58(5), 858–876. DOI: 10.1080/10408398.2016.1227299.
  • Chen, L.; Opara, U. L. Approaches to Analysis and Modeling Texture in Fresh and Processed Foods–A Review. J. Food Eng. 2013, 119(3), 497–507. DOI: 10.1016/j.jfoodeng.2013.06.028.
  • Rabeler, F.; Feyissa, A. H. Kinetic Modeling of Texture and Color Changes During Thermal Treatment of Chicken Breast Meat. Food Bioproc. Tech. 2018, 11(8), 1495–1504. DOI: 10.1007/s11947-018-2123-4.
  • Fadiji, T.; Ashtiani, S.-H. M.; Onwude, D. I.; Li, Z.; Opara, U. L. Finite Element Method for Freezing and Thawing Industrial Food Processes. Foods. 2021, 10(4), 869. DOI: 10.3390/foods10040869.
  • Abbaszadeh, R.; Rajabipour, A.; Sadrnia, H.; Mahjoob, M. J.; Delshad, M.; Ahmadi, H. Application of Modal Analysis to the Watermelon Through Finite Element Modeling for Use in Ripeness Assessment. J. Food Eng. 2014, 127, 80–84. DOI: 10.1016/j.jfoodeng.2013.11.020.
  • Dermesonlouoglou, E. K.; Giannakourou, M. C. Modelling Dehydration of Apricot in a Non-Conventional Multi-Component Osmotic Solution: Effect on Mass Transfer Kinetics and Quality Characteristics. J. Food Sci. Technol. 2018, 55(10), 4079–4089. DOI: 10.1007/s13197-018-3334-4.
  • Harkouss, R.; Astruc, T.; Lebert, A.; Gatellier, P.; Loison, O.; Safa, H.; Portanguen, S.; Parafita, E.; Mirade, P.-S. Quantitative Study of the Relationships Among Proteolysis, Lipid Oxidation, Structure and Texture Throughout the Dry-Cured Ham Process. Food Chem. 2015, 166, 522–530. DOI: 10.1016/j.foodchem.2014.06.013.
  • Link, J. V.; Tribuzi, G.; de Moraes, J. O.; Laurindo, J. B. Assessment of Texture and Storage Conditions of Mangoes Slices Dried by a Conductive Multi-Flash Process. J. Food Eng. 2018, 239, 8–14. DOI: 10.1016/j.jfoodeng.2018.06.024.
  • Hosseinpour, S.; Rafiee, S.; Aghbashlo, M.; Mohtasebi, S. S. A Novel Image Processing Approach for In-Line Monitoring of Visual Texture During Shrimp Drying. J. Food Eng. 2014, 143, 154–166. DOI: 10.1016/j.jfoodeng.2014.07.003.
  • Amigo, J. M.; Del Olmo, A.; Engelsen, M. M.; Lundkvist, H.; Engelsen, S. B. Staling of White Wheat Bread Crumb and Effect of Maltogenic α-Amylases. Part 2: Monitoring the Staling Process by Using Near Infrared Spectroscopy and Chemometrics. Food Chem. 2019, 297, 124946. DOI: 10.1016/j.foodchem.2019.06.013.
  • Mishra, G.; Panda, B. K.; Ramirez, W. A.; Jung, H.; Singh, C. B.; Lee, S.; Lee, I. Research Advancements in Optical Imaging and Spectroscopic Techniques for Nondestructive Detection of Mold Infection and Mycotoxins in Cereal Grains and Nuts. Compr. Rev. Food Sci. Food Saf. 2021, 20(5), 4612–4651. DOI: 10.1111/1541-4337.12801.
  • Panda, B. K.; Mishra, G.; Ramirez, W. A.; Jung, H.; Singh, C. B.; Lee, S.-H.; Lee, I. Rancidity and Moisture Estimation in Shelled Almond Kernels Using NIR Hyperspectral Imaging and Chemometric Analysis. J. Food Eng. 2022, 318, 110889. DOI: 10.1016/j.jfoodeng.2021.110889.
  • Mishra, G.; Sahni, P.; Pandiselvam, R.; Panda, B. K.; Bhati, D.; Mahanti, N. K.; Kothakota, A.; Kumar, M.; Cozzolino, D. Emerging Non‐Destructive Techniques to Quantify the Textural Properties of Food: A State‐Of‐Art Review. J. Texture Stud. 2023, 54(2), 173–205. DOI: 10.1111/jtxs.12741.
  • Liu, Y.-X.; Cao, M.-J.; Liu, G.-M. Texture Analyzers for Food Quality Evaluation. In Evaluation Technologies for Food Quality; Elsevier, 2019; pp. 441–463.
  • Pu, H.; Lin, L.; Sun, D. Principles of Hyperspectral Microscope Imaging Techniques and Their Applications in Food Quality and Safety Detection: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(4), 853–866. DOI: 10.1111/1541-4337.12432.
  • Kaavya, R.; Pandiselvam, R.; Mohammed, M.; Dakshayani, R.; Kothakota, A.; Ramesh, S. V.; Cozzolino, D.; Ashokkumar, C. Application of Infrared Spectroscopy Techniques for the Assessment of Quality and Safety in Spices: A Review. Appl. Spectrosc. Rev. 2020, 55(7), 593–611. DOI: 10.1080/05704928.2020.1713801.
  • Tian, S.; Xu, H. Mechanical-Based and Optical-Based Methods for Nondestructive Evaluation of Fruit Firmness. Food Rev. Int. 2022, 2022, 1–31. DOI: 10.1080/87559129.2021.2015376.
  • Biswas, A. K.; Mandal, P. K. 2020. Current Perspectives of Meat Quality Evaluation: Techniques, Technologies, and Challenges. Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies. (pp. 3–17).Elsevier. DOI: 10.1016/B978/0128/19233-7.00001-X.
  • Shirvani, M.; Ghanbarian, D.; Ghasemi-Varnamkhasti, M. Measurement and Evaluation of the Apparent Modulus of Elasticity of Apple Based on Hooke’s, Hertz’s and Boussinesq’s Theories. Measurement. 2014, 54, 133–139. DOI: 10.1016/j.measurement.2014.04.014.
  • Ding, C.; Feng, Z.; Wang, D.; Cui, D.; Li, W. Acoustic Vibration Technology: Toward a Promising Fruit Quality Detection Method. Compr. Rev. Food Sci. Food Saf. 2021, 20(2), 1655–1680. DOI: 10.1111/1541-4337.12722.
  • Li, J.; Sun, D.; Cheng, J. Recent Advances in Nondestructive Analytical Techniques for Determining the Total Soluble Solids in Fruits: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15(5), 897–911. DOI: 10.1111/1541-4337.12217.
  • Pourkhak, B.; Mireei, S. A.; Sadeghi, M.; Hemmat, A. Multi-Sensor Data Fusion in the Nondestructive Measurement of Kiwifruit Texture. Measurement. 2017, 101, 157–165. DOI: 10.1016/j.measurement.2017.01.024.
  • Cui, D.; Gao, Z.; Zhang, W.; Ying, Y. The Use of a Laser Doppler Vibrometer to Assess Watermelon Firmness. Comput. Electron. Agric. 2015, 112, 116–120. DOI: 10.1016/j.compag.2014.11.012.
  • Zhang, H.; Wu, J.; Zhao, Z.; Wang, Z. Nondestructive Firmness Measurement of Differently Shaped Pears with a Dual-Frequency Index Based on Acoustic Vibration. Postharvest. Biol. Technol. 2018, 138, 11–18. DOI: 10.1016/j.postharvbio.2017.12.002.
  • Srivastava, R.; Stieger, M.; Scholten, E.; Souchon, I.; Mathieu, V. Texture Contrast: Ultrasonic Characterization of Stacked Gels’ Deformation During Compression on a Biomimicking Tongue. Curr. Res. Food Sci. 2021, 4, 449–459. DOI: 10.1016/j.crfs.2021.06.004.
  • Nowak, K. W.; Markowski, M.; Daszkiewicz, T. Ultrasonic Determination of Mechanical Properties of Meat Products. J. Food Eng. 2015, 147, 49–55. DOI: 10.1016/j.jfoodeng.2014.09.024.
  • Contreras, M.; Benedito, J.; Quiles, A.; Lorenzo, J. M.; Fulladosa, E.; Gou, P.; Garcia-Perez, J. V. Assessing the Textural Defect of Pastiness in Dry-Cured Pork Ham Using Chemical, Microstructural, Textural and Ultrasonic Analyses. J. Food Eng. 2020, 265, 109690. DOI: 10.1016/j.jfoodeng.2019.109690.
  • Vasighi-Shojae, H.; Gholami-Parashkouhi, M.; Mohammadzamani, D.; Soheili, A. Ultrasonic Based Determination of Apple Quality as a Nondestructive Technology. Sens Biosensing Res. 2018, 21, 22–26. DOI: 10.1016/j.sbsr.2018.09.002.
  • Farinas, L.; Sanchez-Torres, E. A.; Sanchez-Jimenez, V.; Diaz, R.; Benedito, J.; Garcia-Perez, J. V. Assessment of Avocado Textural Changes During Ripening by Using Contactless Air-Coupled Ultrasound. J. Food Eng. 2021, 289, 110266. DOI: 10.1016/j.jfoodeng.2020.110266.
  • Kutsanedzie, F. Y. H.; Guo, Z.; Chen, Q. Advances in Nondestructive Methods for Meat Quality and Safety Monitoring. Food Rev. Int. 2019, 35(6), 536–562. DOI: 10.1080/87559129.2019.1584814.
  • Eisenstecken, D.; Panarese, A.; Robatscher, P.; Huck, C. W.; Zanella, A.; Oberhuber, M. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars “Cripps Pink” and “Braeburn”. Molecules. 2015, 20(8), 13603–13619. DOI: 10.3390/molecules200813603.
  • Liu, D.; Zeng, X.-A.; Sun, D.-W. Recent Developments and Applications of Hyperspectral Imaging for Quality Evaluation of Agricultural Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(12), 1744–1757. DOI: 10.1080/10408398.2013.777020.
  • Wang, H.; Li, C.; Wang, M. Quantitative Determination of Onion Internal Quality Using Reflectance, Interactance, and Transmittance Modes of Hyperspectral Imaging. Trans. ASABE. 2013, 56(4), 1623–1635.
  • Schoeman, L.; Williams, P.; Du Plessis, A.; Manley, M. X-Ray Micro-Computed Tomography (ΜCT) for Non-Destructive Characterisation of Food Microstructure. Trends Food Sci. Technol. 2016, 47, 10–24. DOI: 10.1016/j.tifs.2015.10.016.
  • Alam, T.; Takhar, P. S. Microstructural Characterization of Fried Potato Disks Using X‐Ray Micro Computed Tomography. J. Food Sci. 2016, 81(3), E651–E664. DOI: 10.1111/1750-3841.13219.
  • Khoshtaghaza, M. H.; Khojastehnazhand, M.; Mojaradi, B.; Goodarzi, M.; Saeys, W. Texture Quality Analysis of Rainbow Trout Using Hyperspectral Imaging Method. Int. J. Food. Prop. 2016, 19(5), 974–983. DOI: 10.1080/10942912.2015.1042111.
  • Antequera, T.; Caballero, D.; Grassi, S.; Uttaro, B.; Perez-Palacios, T. Evaluation of Fresh Meat Quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A Review. Meat Sci. 2021, 172, 108340. DOI: 10.1016/j.meatsci.2020.108340.
  • Sampson, D. J.; Chang, Y. K.; Rupasinghe, H. P. V.; Zaman, Q. U. Z. A Dual-View Computer-Vision System for Volume and Image Texture Analysis in Multiple Apple Slices Drying. J. Food Eng. 2014, 127, 49–57. DOI: 10.1016/j.jfoodeng.2013.11.016.
  • Saldaña, E.; Siche, R.; Luján, M.; Quevedo, R. Review: Computer Vision Applied to the Inspection and Quality Control of Fruits and Vegetables. Braz. J. Food Technol. 2013, 16(4), 254–272. DOI: 10.1590/S1981-67232013005000031.
  • Pieniazek, F.; Messina, V. Texture and Color Analysis of Freeze-Dried Potato (Cv. Spunta) Using Instrumental and Image Analysis Techniques. Int. J. Food. Prop. 2017, 20(6), 1422–1431. DOI: 10.1080/10942912.2016.1211143.
  • Olarewaju, O. O.; Bertling, I.; Magwaza, L. S. Non-Destructive Evaluation of Avocado Fruit Maturity Using Near Infrared Spectroscopy and PLS Regression Models. Sci. Hortic. 2016, 199, 229–236. DOI: 10.1016/j.scienta.2015.12.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.