99
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Berries-Gut Microbiota Interaction and Impact on Human Health: A Systematic Review of Randomized Controlled Trials

, , , , , , ORCID Icon & show all

References

  • Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16(10), 24673–24706. DOI: 10.3390/ijms161024673.
  • Martini, D.; Marino, M.; Angelino, D.; Del Bo’, C.; Del Rio, D.; Riso, P.; Porrini, M. Role of Berries in Vascular Function: A Systematic Review of Human Intervention Studies. Nutr. rev. 2019. DOI: 10.1093/nutrit/nuz053.
  • Calvano, A.; Izuora, K.; Oh, E. C.; Ebersole, J. L.; Lyons, T. J.; Basu, A. D. B. Dietary Berries, Insulin Resistance and Type 2 Diabetes: An Overview of Human Feeding Trials. Food Funct. 2019, 10(10), 6227–6243. DOI: 10.1039/C9FO01426H.
  • Wilken, M. R.; Lambert, M. N. T.; Christensen, C. B.; Jeppesen, P. B. Effects of Anthocyanin-Rich Berries on the Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Rev. Diabetic Studies. 2022, 18(1), 42–57. DOI: 10.1900/RDS.2022.18.42.
  • Bonyadi, N.; Dolatkhah, N.; Salekzamani, Y.; Hashemian, M. Effect of Berry-Based Supplements and Foods on Cognitive Function: A Systematic Review. Sci. Rep. 2022, 12(1), 3239. DOI: 10.1038/s41598-022-07302-4.
  • Martini, D.; Marino, M.; Venturi, S.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M.; Bo’, C. Blueberries and Their Bioactives in the Modulation of Oxidative Stress, Inflammation and Cardio/Vascular Function Markers: A Systematic Review of Human Intervention Studies. J. NUTR BIOCHEM. 2022, 111, 109154. DOI: 10.1016/j.jnutbio.2022.109154.
  • Shoji, T.; Masumoto, S.; Moriichi, N.; Akiyama, H.; Kanda, T.; Ohtake, Y.; Goda, Y. Apple Procyanidin Oligomers Absorption in Rats After Oral Administration: Analysis of Procyanidins in Plasma Using the Porter Method and High-Performance Liquid Chromatography/Tandem Mass Spectrometry. J. Agric. Food. Chem. 2006, 54(3), 884–892. DOI: 10.1021/jf052260b.
  • Fraga, C. G. Plant Polyphenols: How to Translate Their in vitro Antioxidant Actions to in vivo Conditions. IUBMB Life. 2007, 59(4), 308–315. DOI: 10.1080/15216540701230529.
  • Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The Interactions Between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxid. 2021, 10(2), 188. DOI: 10.3390/antiox10020188.
  • Zhang, H.; Hassan, Y. I.; Liu, R.; Mats, L.; Yang, C.; Liu, C.; Tsao, R. Molecular Mechanisms Underlying the Absorption of Aglycone and Glycosidic Flavonoids in a Caco-2 BBe1 Cell Model. ACS Omega. 2020, 5(19), 10782–10793. DOI: 10.1021/acsomega.0c00379.
  • Mosele, J.; Macià, A.; Motilva, M.-J. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review. Molecules. 2015, 20(9), 17429–17468. DOI: 10.3390/molecules200917429.
  • Lavefve, L.; Howard, L. R.; Carbonero, F. Berry Polyphenols Metabolism and Impact on Human Gut Microbiota and Health. Food Funct. 2020, 11(1), 45–65. DOI: 10.1039/C9FO01634A.
  • Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23(2), 174–181. DOI: 10.1016/j.copbio.2011.08.007.
  • Smith, A. H.; Zoetendal, E.; Mackie, R. I. Bacterial Mechanisms to Overcome Inhibitory Effects of Dietary Tannins. Microb. Ecol. 2005, 50(2), 197–205. DOI: 10.1007/s00248-004-0180-x.
  • Maisuria, V. B.; Los Santos, Y. L.; Tufenkji, N.; Déziel, E. Cranberry-Derived Proanthocyanidins Impair Virulence and Inhibit Quorum Sensing of Pseudomonas Aeruginosa. Sci. Rep. 2016, 6(1), 30169. DOI: 10.1038/srep30169.
  • O’May, C.; Tufenkji, N. The Swarming Motility of Pseudomonas Aeruginosa is Blocked by Cranberry Proanthocyanidins and Other Tannin-Containing Materials. Appl. Environ. Microbiol. 2011, 77(9), 3061–3067. DOI: 10.1128/AEM.02677-10.
  • Jayaraman, P.; Sakharkar, M. K.; Lim, C. S.; Tang, T. H.; Sakharkar, K. R. Activity and Interactions of Antibiotic and Phytochemical Combinations Against Pseudomonas Aeruginosa in vitro. Int. J. Biol. Sci. 2010, 556–568. DOI: 10.7150/ijbs.6.556.
  • Rodriguez Vaquero, M. J.; Aredes Fernández, P. A.; Manca de Nadra, M. C.; Strasser de Saad, A. M. Phenolic Compound Combinations on Escherichia Coli Viability in a Meat System. J. Agric. Food. Chem. 2010, 58(10), 6048–6052. DOI: 10.1021/jf903966p.
  • Rodríguez-Daza, M. C.; Pulido-Mateos, E. C.; Lupien-Meilleur, J.; Guyonnet, D.; Desjardins, Y.; Roy, D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr. 2021, 8, https://doi.org/10.3389/fnut.2021.689456
  • Braune, A.; Blaut, M. Bacterial Species Involved in the Conversion of Dietary Flavonoids in the Human Gut. Gut Microbes. 2016, 7(3), 216–234. DOI: 10.1080/19490976.2016.1158395.
  • Miyake, Y.; Yamamoto, K.; Osawa, T. Metabolism of Antioxidant in Lemon Fruit [Citrus Limon BURM. f.) by Human Intestinal Bacteria. J. Agric. Food. Chem. 1997, 45(10), 3738–3742. DOI: 10.1021/jf970403r.
  • Ávila, M.; Hidalgo, M.; Sánchez-Moreno, C.; Pelaez, C.; Requena, T.; Pascual-Teresa, S. D. Bioconversion of Anthocyanin Glycosides by Bifidobacteria and Lactobacillus. Food Res. Int. 2009, 42(10), 1453–1461. DOI: 10.1016/j.foodres.2009.07.026.
  • Jamar, G.; Santamarina, A. B.; Casagrande, B. P.; Estadella, D.; de Rosso, V. V.; Wagner, R.; Fagundes, M. B.; Pisani, L. P. Prebiotic Potencial of Juçara Berry on Changes in Gut Bacteria and Acetate of Individuals with Obesity. Eur. J. Nutr. 2020, 59(8), 3767–3778. DOI: 10.1007/s00394-020-02208-1.
  • Costello, E. K.; Stagaman, K.; Dethlefsen, L.; Bohannan, B. J. M.; Relman, D. A. The Application of Ecological Theory Toward an Understanding of the Human Microbiome. Science. 2012, 336(6086), 1255–1262. DOI: 10.1126/science.1224203.
  • Iglesias-Aguirre, C. E.; Cortés-Martín, A.; Ávila-Gálvez, M. Á.; Giménez-Bastida, J. A.; Selma, M. V.; González-Sarrías, A.; Espín, J. C. Main Drivers of (Poly)phenol Effects on Human Health: Metabolite Production And/Or Gut Microbiota-Associated Metabotypes? Food Funct. 2021, 12(21), 10324–10355. DOI: 10.1039/D1FO02033A.
  • Cortés‐Martín, A.; Selma, M. V.; Tomás‐Barberán, F. A.; González‐Sarrías, A.; Espín, J. C. Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Mol. Nutr. Food Res. 2020, 64(9), 1900952. DOI: 10.1002/mnfr.201900952.
  • Tomás-Barberán, F. A.; Selma, M. V.; Espín, J. C. Interactions of Gut Microbiota with Dietary Polyphenols and Consequences to Human Health. Curr. Opin. Clin. Nutr. Metab. Care. 2016, 19(6), 471–476. DOI: 10.1097/MCO.0000000000000314.
  • Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D. G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ. 2009, 339(jul21 1), b2535–b2535. DOI: 10.1136/bmj.b2535.
  • Higgins, J. P. T.; Chandler, J.; Cumpston, M.; Li, T.; Page, M. J.; Welch, V. A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022), 2nd ed.; John Wiley & Sons: Chichester (UK), 2022.
  • Franck, M.; de Toro-Martín, J.; Varin, T. V.; Garneau, V.; Pilon, G.; Roy, D.; Couture, P.; Couillard, C.; Marette, A.; Vohl, M.-C. Raspberry Consumption: Identification of Distinct Immune-Metabolic Response Profiles by Whole Blood Transcriptome Profiling. J. NUTR BIOCHEM. 2022, 101, 108946. DOI: 10.1016/j.jnutbio.2022.108946.
  • Franck, M.; de Toro-Martín, J.; Varin, T.; Garneau, V.; Pilon, G.; Roy, D.; Couture, P.; Couillard, C.; Marette, A.; Vohl, M.-C. Gut Microbial Signatures of Distinct Trimethylamine N-Oxide Response to Raspberry Consumption. Nutrients. 2022, 14(8), 1656. DOI: 10.3390/nu14081656.
  • Al Othaim, A.; Marasini, D.; Carbonero, F. Impact of Increasing Concentration of Tart and Sweet Cherries Juices Concentrates on Healthy Mice Gut Microbiota. Food Front. 2020, 1(3), 224–233. DOI: 10.1002/fft2.46.
  • Gao, T.; Hou, M.; Zhang, B.; Pan, X.; Liu, C.; Sun, C.; Jia, M.; Lin, S.; Xiong, K.; Ma, A. Effects of Cranberry Beverages on Oxidative Stress and Gut Microbiota in Subjects with Helicobacter Pylori Infection: A Randomized, Double-Blind, Placebo-Controlled Trial. Food Funct. 2021, 12(15), 6878–6888. DOI: 10.1039/D1FO00467K.
  • Straub, T. J.; Chou, W.-C.; Manson, A. L.; Schreiber, H. L.; Walker, B. J.; Desjardins, C. A.; Chapman, S. B.; Kaspar, K. L.; Kahsai, O. J.; Traylor, E.; et al. Limited Effects of Long-Term Daily Cranberry Consumption on the Gut Microbiome in a Placebo-Controlled Study of Women with Recurrent Urinary Tract Infections. BMC Microbiol. 2021, 21(1), 53. DOI: 10.1186/s12866-021-02106-4.
  • Rodríguez-Morató, J.; Matthan, N. R.; Liu, J.; de la Torre, R.; Chen, C.-Y. O. Cranberries Attenuate Animal-Based Diet-Induced Changes in Microbiota Composition and Functionality: A Randomized Crossover Controlled Feeding Trial. J. NUTR BIOCHEM. 2018, 62, 76–86. DOI: 10.1016/j.jnutbio.2018.08.019.
  • Guglielmetti, S.; Fracassetti, D.; Taverniti, V.; Del Bo’, C.; Vendrame, S.; Klimis-Zacas, D.; Arioli, S.; Riso, P.; Porrini, M. Differential Modulation of Human Intestinal Bifidobacterium Populations After Consumption of a Wild Blueberry (Vaccinium Angustifolium) Drink. J. Agric. Food. Chem. 2013, 61(34), 8134–8140. DOI: 10.1021/jf402495k.
  • Puupponen-Pimiä, R.; Seppänen-Laakso, T.; Kankainen, M.; Maukonen, J.; Törrönen, R.; Kolehmainen, M.; Leppänen, T.; Moilanen, E.; Nohynek, L.; Aura, A.-M.; et al. Effects of Ellagitannin-Rich Berries on Blood Lipids, Gut Microbiota, and Urolithin Production in Human Subjects with Symptoms of Metabolic Syndrome. Mol. Nutr. Food Res. 2013, 57(12), 2258–2263. DOI: 10.1002/mnfr.201300280.
  • Vendrame, S.; Guglielmetti, S.; Riso, P.; Arioli, S.; Klimis-Zacas, D.; Porrini, M. Six-Week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut. J. Agric. Food. Chem. 2011, 59(24), 12815–12820. DOI: 10.1021/jf2028686.
  • Feliciano, R.; Mills, C.; Istas, G.; Heiss, C.; Rodriguez-Mateos, A. A. Absorption, Metabolism and Excretion of Cranberry (Poly)phenols in Humans: A Dose Response Study and Assessment of Inter-Individual Variability. Nutrients. 2017, 9(3), 268. DOI: 10.3390/nu9030268.
  • Feliciano, R.; Istas, G.; Heiss, C.; Rodriguez-Mateos, A. Plasma and Urinary Phenolic Profiles After Acute and Repetitive Intake of Wild Blueberry. Molecules. 2016, 21(9), 1120. DOI: 10.3390/molecules21091120.
  • Song, M.; Wang, J.; Eom, T.; Kim, H. Schisandra Chinensis Fruit Modulates the Gut Microbiota Composition in Association with Metabolic Markers in Obese Women: A Randomized, Double-Blind Placebo-Controlled Study. Nutr. Res. 2015, 35(8), 655–663. DOI: 10.1016/j.nutres.2015.05.001.
  • Le Sayec, M.; Xu, Y.; Laiola, M.; Gallego, F. A.; Katsikioti, D.; Durbidge, C.; Kivisild, U.; Armes, S.; Lecomte, M.; Fança-Berthon, P.; et al. The Effects of Aronia Berry (Poly)phenol Supplementation on Arterial Function and the Gut Microbiome in Middle Aged Men and Women: Results from a Randomized Controlled Trial. Clin. Nutr. 2022, 41(11), 2549–2561. DOI: 10.1016/j.clnu.2022.08.024.
  • Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of Aronia Berry (Poly)phenols on Vascular Function and Gut Microbiota: A Double-Blind Randomized Controlled Trial in Adult Men. Am. J. Clin. Nutr. 2019, 110(2), 316–329. DOI: 10.1093/ajcn/nqz075.
  • Lin, C.; Lin, Y.; Zhang, H.; Wang, G.; Zhao, J.; Zhang, H.; Chen, W. Intestinal ‘Infant-Type’ Bifidobacteria Mediate Immune System Development in the First 1000 Days of Life. Nutrients. 2022, 14(7), 1498. DOI: 10.3390/nu14071498.
  • Banerjee, S.; Schlaeppi, K.; van der Heijden, M. G. A. Keystone Taxa as Drivers of Microbiome Structure and Functioning. Nat. Rev. Microbiol. 2018, 16(9), 567–576. DOI: 10.1038/s41579-018-0024-1.
  • Ley, R. E.; Turnbaugh, P. J.; Klein, S.; Gordon, J. I. Human Gut Microbes Associated with Obesity. Nature. 2006, 444(7122), 1022–1023. DOI: 10.1038/4441022a.
  • Moreno-Indias, I.; Sánchez-Alcoholado, L.; Pérez-Martínez, P.; Andrés-Lacueva, C.; Cardona, F.; Tinahones, F.; Queipo-Ortuño, M. I. Red Wine Polyphenols Modulate Fecal Microbiota and Reduce Markers of the Metabolic Syndrome in Obese Patients. Food Funct. 2016, 7(4), 1775–1787. DOI: 10.1039/C5FO00886G.
  • Gotoda, T.; Takano, C.; Kusano, C.; Suzuki, S.; Ikehara, H.; Hayakawa, S.; Andoh, A. Gut Microbiome Can Be Restored without Adverse Events After Helicobacter Pylori Eradication Therapy in Teenagers. Helicobacter. 2018, 23(6), 6. DOI: https://doi.org/10.1111/hel.12541.
  • Gupta, A.; Dhakan, D. B.; Maji, A.; Saxena, R.; Vishnu Prasoodanan, P. K.; Mahajan, S.; Pulikkan, J.; Kurian, J.; Gomez, A. M.; Scaria, J., et al. Association of Flavonifractor Plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. mSystems. 2019, 4(6). DOI:10.1128/mSystems.00438-19.
  • Zhang, X.; Zhao, A.; Sandhu, A. K.; Edirisinghe, I.; Burton-Freeman, B. M. Functional Deficits in Gut Microbiome of Young and Middle-Aged Adults with Prediabetes Apparent in Metabolizing Bioactive (Poly)phenols. Nutrients. 2020, 12(11), 3595. DOI: 10.3390/nu12113595.
  • Vinelli, V.; Biscotti, P.; Martini, D.; Del Bo’, C.; Marino, M.; Meroño, T.; Nikoloudaki, O.; Calabrese, F. M.; Turroni, S.; Taverniti, V., et al. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients. 2022, 14(13), 2559. DOI: 10.3390/nu14132559.
  • Pascale, A.; Marchesi, N.; Marelli, C.; Coppola, A.; Luzi, L.; Govoni, S.; Giustina, A.; Gazzaruso, C. Microbiota and Metabolic Diseases. Endocrine. 2018, 61(3), 357–371. DOI: 10.1007/s12020-018-1605-5.
  • van der Veen, J. N.; Kennelly, J. P.; Wan, S.; Vance, J. E.; Vance, D. E.; Jacobs, R. L. The Critical Role of Phosphatidylcholine and Phosphatidylethanolamine Metabolism in Health and Disease. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2017, 1859(9), 1558–1572. DOI: https://doi.org/10.1016/j.bbamem.2017.04.006.
  • Chambers, E. S.; Preston, T.; Frost, G.; Morrison, D. J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 2018, 7(4), 198–206. DOI: 10.1007/s13668-018-0248-8.
  • Pineiro, M.; Asp, N.-G.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO Technical Meeting on Prebiotics. J. Clin. Gastroenterol. 2008, 42(Supplement 3), S156–S159. DOI: 10.1097/MCG.0b013e31817f184e.
  • Gibson, G. R.; Hutkins, R.; Sanders, M. E.; Prescott, S. L.; Reimer, R. A.; Salminen, S. J.; Scott, K.; Stanton, C.; Swanson, K. S.; Cani, P. D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nature Reviews Gastroenterology & Hepatology. 2017, 14(8), 491–502. DOI: 10.1038/nrgastro.2017.75.
  • Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid Metabolism: The Interaction of Metabolites and Gut Microbiota. Biosci. Biotechnol., Biochem. 2018, 82(4), 600–610. DOI: 10.1080/09168451.2018.1444467.
  • Wang, H.; Zhao, T.; Liu, Z.; Danzengquzhen, C.; Li, J.; Ma, X.; Li, X.; Huang, B. The Neuromodulatory Effects of Flavonoids and Gut Microbiota Through the Gut-Brain Axis. Front. Cell Infect. Microbiol. 2023, 13, 13. DOI: 10.3389/fcimb.2023.1197646.
  • Bresciani, L.; Angelino, D.; Vivas, E. I.; Kerby, R. L.; García-Viguera, C.; Del Rio, D.; Rey, F. E.; Mena, P. Differential Catabolism of an Anthocyanin-Rich Elderberry Extract by Three Gut Microbiota Bacterial Species. J. Agric. Food. Chem. 2020, 68(7), 1837–1843. DOI: 10.1021/acs.jafc.9b00247.
  • Zhang, Y.; Chang, H.; Shao, S.; Zhao, L.; Zhang, R.; Zhang, S. Anthocyanins from Opuntia Ficus-Indica Modulate Gut Microbiota Composition and Improve Short-Chain Fatty Acid Production. Biol. (Basel). 2022, 11(10), 1505. DOI: 10.3390/biology11101505.
  • Johana Ortega Villalba, K.; Vaillant Barka, F.; Vélez Pasos, C.; Emilio Rodríguez, P. Food Ellagitannins: Structure, Metabolomic Fate, and Biological Properties. Tannins - Struct. Prop, Biol. Prop. Current Knowl. 2020. 10.5772/intechopen.86420
  • Zeng, X.; Yang, X.; Fan, J.; Tan, Y.; Ju, L.; Shen, W.; Wang, Y.; Wang, X.; Chen, W.; Ju, D., et al. MASI: Microbiota—Active Substance Interactions Database. Nucleic Acids Res. 2021, 49(D1), D776–D782. DOI: 10.1093/nar/gkaa924.
  • Larrosa, M.; Yañéz-Gascón, M. J.; Selma, M. V.; González-Sarrías, A.; Toti, S.; Cerón, J. J.; Tomás-Barberán, F.; Dolara, P.; Espín, J. C. Effect of a Low Dose of Dietary Resveratrol on Colon Microbiota, Inflammation and Tissue Damage in a DSS-Induced Colitis Rat Model. J. Agric. Food. Chem. 2009, 57(6), 2211–2220. DOI: 10.1021/jf803638d.
  • Meng, X.; Zhou, J.; Zhao, C.-N.; Gan, R.-Y.; Li, H.-B. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods. 2020, 9(3), 340. DOI: 10.3390/foods9030340.
  • Healey, G. R.; Murphy, R.; Brough, L.; Butts, C. A.; Coad, J. Interindividual Variability in Gut Microbiota and Host Response to Dietary Interventions. Nutr. rev. 2017, 75(12), 1059–1080. DOI: 10.1093/nutrit/nux062.
  • Meroño, T.; Peron, G.; Gargari, G.; González-Domínguez, R.; Miñarro, A.; Vegas-Lozano, E.; Hidalgo-Liberona, N.; Del Bo’, C.; Bernardi, S.; Kroon, P. A., et al. The Relevance of Urolithins-Based Metabotyping for Assessing the Effects of a Polyphenol-Rich Dietary Intervention on Intestinal Permeability: A Post-Hoc Analysis of the MaPle Trial. Food Res. Int. 2022, 159, 111632. DOI: 10.1016/j.foodres.2022.111632.
  • Peron, G.; Meroño, T.; Gargari, G.; Hidalgo‐Liberona, N.; Miñarro, A.; Lozano, E. V.; Castellano‐Escuder, P.; González‐Domínguez, R.; Del Bo, C.; Bernardi, S., et al. A Polyphenol‐Rich Diet Increases the Gut Microbiota Metabolite Indole 3‐Propionic Acid in Older Adults with Preserved Kidney Function. Mol. Nutr. Food Res. 2022, 66(21), 2100349. DOI:10.1002/mnfr.202100349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.