493
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Characterization Techniques for Lipid Digestibility and Bioaccessibility of Bio-Based Pickering Emulsion

, , , , &

References

  • Nations, U. World Population Prospects 2022; Department of Economic and Social Affairs: New York, 2022.
  • FAO. The State of Food Security and Nutrition in the World 2019: Safeguarding Against Economic Slowdowns and Downturns; Rome: Food & Agriculture Org, 2019.
  • Hwalla, N.; El Labban, S.; Bahn, R. A. Nutrition Security is an Integral Component of Food Security. Front. Life Sci. 2016, 9(3), 167–172. DOI: 10.1080/21553769.2016.1209133.
  • Anal, A. K.; Shrestha, S.; Sadiq, M. B. Biopolymeric-Based Emulsions and Their Effects During Processing, Digestibility and Bioaccessibility of Bioactive Compounds in Food Systems. Food Hydrocolloids. 2019, 87, 691–702. DOI: 10.1016/j.foodhyd.2018.09.008.
  • Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent Advances in Emulsion-Based Delivery Approaches for Curcumin: From Encapsulation to Bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. DOI: 10.1016/j.tifs.2017.11.009.
  • McClements, D. J. Enhanced Delivery of Lipophilic Bioactives Using Emulsions: A Review of Major Factors Affecting Vitamin, Nutraceutical, and Lipid Bioaccessibility. Food Funct. 2018, 9(1), 22–41. DOI: https://doi.org/10.1039/c7fo01515a.
  • Lu, W.; Kelly, A. L.; Miao, S. Emulsion-Based Encapsulation and Delivery Systems for Polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. DOI: 10.1016/j.tifs.2015.10.015.
  • McClements, D. J.; Decker, E. A.; Weiss, D. J. Emulsion‐Based Delivery Systems for Lipophilic Bioactive Components. Journal Of Food Science. 2007, 72(8), R109–R124. DOI: 10.1111/j.1750-3841.2007.00507.x.
  • Murray, B. S. Pickering Emulsions for Food and Drinks. Curr. Opin. Food Sci. 2019, 27, 57–63. DOI: 10.1016/j.cofs.2019.05.004.
  • Berton-Carabin, C. C.; Schroën, K. Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annual Review of Food Science and Technology. Ann. Rev. Food Sci. Technol. 2015, 6(1), 263–297. DOI: https://doi.org/10.1146/annurev-food-081114-110822.
  • Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017, 8, 287. DOI: 10.3389/fphar.2017.00287.
  • Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering Emulsions: Preparation Processes, Key Parameters Governing Their Properties and Potential for Pharmaceutical Applications. J. Controlled Release. 2019, 309, 302–332. DOI: 10.1016/j.jconrel.2019.07.003.
  • Mwangi, W. W.; Lim, H. P.; Low, L. E.; Tey, B. T.; Chan, E. S. Food-Grade Pickering Emulsions for Encapsulation and Delivery of Bioactives. Trends Food Sci. Technol. 2020, 100, 320–332. DOI: 10.1016/j.tifs.2020.04.020.
  • Lam, S.; Velikov, K. P.; Velev, O. D. Pickering Stabilization of Foams and Emulsions with Particles of Biological Origin. Curr. Opin. Colloid Interface Sci. 2014, 19(5), 490–500. DOI: 10.1016/j.cocis.2014.07.003.
  • Low, L. E.; Siva, S. P.; Ho, Y. K.; Chan, E. S.; Tey, B. T. Recent Advances of Characterization Techniques for the Formation, Physical Properties and Stability of Pickering Emulsion. Adv. Coll. Interf. Sci. 2020, 277, 102117. DOI: 10.1016/j.cis.2020.102117.
  • Sarkar, A.; Zhang, S.; Holmes, M.; Ettelaie, R. Colloidal Aspects of Digestion of Pickering Emulsions: Experiments and Theoretical Models of Lipid Digestion Kinetics. Adv. Coll. Interf. Sci. 2019, 263, 195–211. DOI: 10.1016/j.cis.2018.10.002.
  • Santos, T. P.; Okuro, P. K.; Cunha, R. L. Pickering Emulsions as a Platform for Structures Design: Cutting-Edge Strategies to Engineer Digestibility. Food Hydrocolloids. 2021, 116, 106645. DOI: 10.1016/j.foodhyd.2021.106645.
  • Ramsden, W. Separation of Solids in the Surface-Layers of Solutions and ‘Suspensions’(observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation).—Preliminary Account. Proc Royal Soc London. 1904, 72(477–486), 156–164. DOI: 10.1098/rspl.1903.0034.
  • Pickering, S. U. CXCVI.—Emulsions. J Chem Soc Trans. 1907, 91, 2001–2021. DOI: 10.1039/CT9079102001.
  • Mwangi, W. W.; Ho, K.-W.; Tey, B.-T.; Chan, E.-S. Effects of Environmental Factors on the Physical Stability of Pickering-Emulsions Stabilized by Chitosan Particles. Food Hydrocolloids. 2016, 60, 543–550. DOI: 10.1016/j.foodhyd.2016.04.023.
  • Ho, K. W.; Ooi, C. W.; Mwangi, W. W.; Leong, W. F.; Tey, B. T.; Chan, E.-S. Comparison of Self-Aggregated Chitosan Particles Prepared with and without Ultrasonication Pretreatment as Pickering Emulsifier. Food Hydrocolloids. 2016, 52, 827–837. DOI: 10.1016/j.foodhyd.2015.08.019.
  • Timgren, A.; Rayner, M.; Dejmek, P.; Marku, D.; Sjöö, M. Emulsion Stabilizing Capacity of Intact Starch Granules Modified by Heat Treatment or Octenyl Succinic Anhydride. Food Science & Nutrition. 2013, 1(2), 157–171. DOI: 10.1002/fsn3.17.
  • Low, L. E.; Tey, B. T.; Ong, B. H.; Chan, E. S.; Tang, S. Y. Palm Olein-In-Water Pickering Emulsion Stabilized by Fe3O4-Cellulose Nanocrystal Nanocomposites and Their Responses to pH. Carbohydr. Polym. 2017, 155, 391–399. DOI: 10.1016/j.carbpol.2016.08.091.
  • Surjit Singh, C. K.; Lim, H.-P.; Tey, B.-T.; Chan, E.-S. Spray-Dried Alginate-Coated Pickering Emulsion Stabilized by Chitosan for Improved Oxidative Stability and in vitro Release Profile. Carbohydr. Polym. 2021, 251, 117110. DOI: 10.1016/j.carbpol.2020.117110.
  • Wang, L.-J.; Hu, Y.-Q.; Yin, S.-W.; Yang, X.-Q.; Lai, F.-R.; Wang, S.-Q. Fabrication and Characterization of Antioxidant Pickering Emulsions Stabilized by Zein/Chitosan Complex Particles (ZCPs). J. Agric. Food Chem. 2015, 63(9), 2514–2524. DOI: 10.1021/jf505227a.
  • Xiao, J.; Li, C.; Huang, Q. Kafirin Nanoparticle-Stabilized Pickering Emulsions as Oral Delivery Vehicles: Physicochemical Stability and in vitro Digestion Profile. J. Agric. Food Chem. 2015, 63(47), 10263–10270. DOI: 10.1021/acs.jafc.5b04385.
  • Kargar, M.; Fayazmanesh, K.; Alavi, M.; Spyropoulos, F.; Norton, I. T. Investigation into the Potential Ability of Pickering Emulsions (Food-Grade Particles) to Enhance the Oxidative Stability of Oil-In-Water Emulsions. J. Coll. Interf. Sci. 2012, 366(1), 209–215. DOI: 10.1016/j.jcis.2011.09.073.
  • Tan, H.; Zhao, L.; Tian, S.; Wen, H.; Gou, X.; Ngai, T. Gelatin Particle-Stabilized High-Internal Phase Emulsions for Use in Oral Delivery Systems: Protection Effect and in vitro Digestion Study. J. Agric. Food Chem. 2017, 65(4), 900–907. DOI: 10.1021/acs.jafc.6b04705.
  • Abdullah; Weiss, J.; Ahmad, T.; Zhang, <. A.; Zhang, H. A Review of Recent Progress on High Internal-Phase Pickering Emulsions in Food Science. Trends Food Sci. Technol. 2020, 106, 91–103. DOI: 10.1016/j.tifs.2020.10.016.
  • Wei, Z.; Zhu, J.; Cheng, Y.; Huang, Q. Ovotransferrin Fibril–Stabilized Pickering Emulsions Improve Protection and Bioaccessibility of Curcumin. Food Res. Int. 2019, 125, 108602. DOI: 10.1016/j.foodres.2019.108602.
  • Wei, Z.; Huang, Q. Developing Organogel-Based Pickering Emulsions with Improved Freeze-Thaw Stability and Hesperidin Bioaccessibility. Food Hydrocolloids. 2019, 93, 68–77. DOI: 10.1016/j.foodhyd.2019.01.050.
  • Zhou, Q.; Wei, Z.; Xu, Y.; Xue, C. Fibrous and Spherical Aggregates of Ovotransferrin as Stabilizers for Oleogel-Based Pickering Emulsions: Preparation, Characteristics and Curcumin Delivery. Gels. 2022, 8(8), 517. DOI: 10.3390/gels8080517.
  • Jiang, F.; Chen, C.; Wang, X.; Huang, W.; Jin, W.; Huang, Q. Effect of Fibril Entanglement on Pickering Emulsions Stabilized by Whey Protein Fibrils for Nobiletin Delivery. Foods. 2022, 11(11), 1626. DOI: 10.3390/foods11111626.
  • Hu, Y.; Tan, Y.; McClements, D. J.; Wang, L. Fabrication, Characterization and in vitro Digestive Behavior of Pickering Emulsion Incorporated with Dextrin. Food Chem. 2022, 384, 132528. DOI: 10.1016/j.foodchem.2022.132528.
  • Xu, X.; Zhang, Z.; Zhu, J.; Wang, D.; Liu, G.; Liang, L.; Zhang, J.; Liu, X.; Li, Y.; Ren, J., et al. Whey Protein Isolate Nanofibers Prepared by Subcritical Water Stabilized High Internal Phase Pickering Emulsion to Deliver Curcumin. Foods. 2022, 11(11), 1625.
  • Cheng, C.; Gao, Y.; Wu, Z.; Miao, J.; Gao, H.; Ma, L.; Zou, L.; Peng, S.; Liu, C.; Liu, W. Gliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility. Molecules. 2020, 25(18), 4188. DOI: 10.3390/molecules25184188.
  • Liang, L.; Zhu, J.; Zhang, Z.; Liu, Y.; Wen, C.; Liu, X.; Zhang, J.; Li, Y.; Liu, R.; Ren, J.; et al. Pickering Emulsion Stabilized by Tea Seed Cake Protein Nanoparticles as Lutein Carrier. Foods. 2022, 11(12), 1712. DOI: 10.3390/foods11121712.
  • Xiao, J.; Shi, C.; Li, Y.; Pan, Y.; Huang, Q. Pickering Emulsions Immobilized within Hydrogel Matrix with Enhanced Resistance Against Harsh Processing Conditions and Sequential Digestion. Food Hydrocolloids. 2017, 62, 35–42. DOI: 10.1016/j.foodhyd.2016.07.025.
  • Li, R.; Yuan, G.; Li, D.; Xu, C.; Du, M.; Tan, S.; Liu, Z.; He, Q.; Rong, L.; Li, J. Enhancing the Bioaccessibility of Puerarin Through the Collaboration of High Internal Phase Pickering Emulsions with β-Carotene. Food Funct. 2022, 13(5), 2534–2544. DOI: 10.1039/D1FO03697A.
  • Zhang, L.; Zaky, A. A.; Zhou, C.; Chen, Y.; Su, W.; Wang, H.; Abd El-Aty, A. M.; Tan, M. High Internal Phase Pickering Emulsion Stabilized by Sea Bass Protein Microgel Particles: Food 3D Printing Application. Food Hydrocolloids. 2022, 131, 107744. DOI: 10.1016/j.foodhyd.2022.107744.
  • Wang, Z.; Gao, Y.; Wei, Z.; Xue, C. Ovalbumin Fibril-Stabilized Oleogel-Based Pickering Emulsions Improve Astaxanthin Bioaccessibility. Food Res. Int. 2022, 161, 111790. DOI: 10.1016/j.foodres.2022.111790.
  • Li, Z.; Wang, Y.; Luo, Y. High Internal Phase Pickering Emulsions Stabilized by Egg Yolk Low Density Lipoprotein for Delivery of Curcumin. Colloids And Surfaces B: Biointerfaces. 2022, 211, 112334. DOI: 10.1016/j.colsurfb.2022.112334.
  • Tang, X.-M.; Liu, P.-D.; Chen, Z.-J.; Li, X.-Y.; Huang, R.; Liu, G.-D.; Dong, R.-S.; Chen, J. Encapsulation of a Desmodium Intortum Protein Isolate Pickering Emulsion of β-Carotene: Stability, Bioaccesibility and Cytotoxicity. Foods. 2022, 11(7), 936. DOI: 10.3390/foods11070936.
  • Zhou, C.; Zhang, L.; Zaky, A. A.; Tie, S.; Cui, G.; Liu, R.; Abd El-Aty, A. M.; Tan, M. High Internal Phase Pickering Emulsion by Spanish Mackerel Proteins-Procyanidins: Application for Stabilizing Astaxanthin and Surimi. Food Hydrocolloids. 2022, 133, 107999. DOI: 10.1016/j.foodhyd.2022.107999.
  • Yang, Z.; Yan, J.; Duan, Y.; Dai, L.; Wang, Y.; Sun, Q.; McClements, D. J.; Xu, X. Hydrolyzed Rice Glutelin Nanoparticles as Particulate Emulsifier for Pickering Emulsion: Structure, Interfacial Properties, and Application for Encapsulating Curcumin. Food Hydrocolloids. 2023, 134, 108105. DOI: 10.1016/j.foodhyd.2022.108105.
  • Zhang, B.; Wang, Y.; Lu, R. Pickering Emulsion Stabilized by Casein–Caffeic Acid Covalent Nanoparticles to Enhance the Bioavailability of Curcumin in vitro and in vivo. J. Sci. Food Agric. 2023, 103(7), 3579–3591. DOI: https://doi.org/10.1002/jsfa.12447.
  • Xu, Y.; Wei, Z.; Xue, C. Pickering Emulsions Stabilized by Zein–Gallic Acid Composite Nanoparticles: Impact of Covalent or Non-Covalent Interactions on Storage Stability, Lipid Oxidation and Digestibility. Food Chem. 2023, 408, 135254. DOI: 10.1016/j.foodchem.2022.135254.
  • Ning, F.; Wang, X.; Zheng, H.; Zhang, K.; Bai, C.; Peng, H.; Huang, Q.; Xiong, H. Improving the Bioaccessibility and in vitro Absorption of 5-Demethylnobiletin from Chenpi by Se-Enriched Peanut Protein Nanoparticles-Stabilized Pickering Emulsion. J. Funct. Foods. 2019, 55, 76–85. DOI: 10.1016/j.jff.2019.02.019.
  • Ge, S.; Jia, R.; Li, Q.; Liu, W.; Liu, M.; Cai, D.; Zheng, M.; Liu, H.; Liu, J. Pickering Emulsion Stabilized by Zein/Adzuki Bean Seed Coat Polyphenol Nanoparticles to Enhance the Stability and Bioaccessibility of Astaxanthin. J. Funct. Foods. 2022, 88, 104867. DOI: 10.1016/j.jff.2021.104867.
  • Xia, T.; Gao, Y.; Liu, Y.; Wei, Z.; Xue, C. Lactoferrin Particles Assembled via Transglutaminase-Induced Crosslinking: Utilization in Oleogel-Based Pickering Emulsions with Improved Curcumin Bioaccessibility. Food Chem. 2022, 374, 131779. DOI: 10.1016/j.foodchem.2021.131779.
  • Yi, J.; Gao, L.; Zhong, G.; Fan, Y. Fabrication of High Internal Phase Pickering Emulsions with Calcium-Crosslinked Whey Protein Nanoparticles for β-Carotene Stabilization and Delivery. Food Funct. 2020, 11(1), 768–778. DOI: 10.1039/C9FO02434D.
  • Wei, Z.; Cheng, Y.; Zhu, J.; Huang, Q. Genipin-Crosslinked Ovotransferrin Particle-Stabilized Pickering Emulsions as Delivery Vehicles for Hesperidin. Food Hydrocolloids. 2019, 94, 561–573. DOI: 10.1016/j.foodhyd.2019.04.008.
  • Geng, M.; Li, L.; Feng, X.; Xu, J.; Huang, Y.; Teng, F.; Li, Y. Encapsulation of β-Carotene in High Internal Phase Pickering Emulsions Stabilized by Soy Protein Isolate – Epigallocatechin-3-Gallate Covalent Composite Microgel Particles. J. Mol. Liq. 2022, 360, 119511. DOI: 10.1016/j.molliq.2022.119511.
  • Zou, Y.; Zhong, J.; Pan, R.; Wan, Z.; Guo, J.; Wang, J.; Yin, S.; Yang, X. Zein/Tannic Acid Complex Nanoparticles-Stabilised Emulsion as a Novel Delivery System for Controlled Release of Curcumin. International Journal Of Food Science & Technology. 2017, 52(5), 1221–1228. DOI: 10.1111/ijfs.13380.
  • Chen, X.; Chen, Y.; Huang, Y.; Zou, L.; Liu, C.; McClements, D. J.; Liu, W. Hybrid Bionanoparticle-Stabilized Pickering Emulsions for Quercetin Delivery: Effect of Interfacial Composition on Release, Lipolysis, and Bioaccessibility. Acs Appl. Nano Mater. 2019, 2(10), 6462–6472. DOI: 10.1021/acsanm.9b01413.
  • Wei, Y.; Tong, Z.; Dai, L.; Wang, D.; Lv, P.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Influence of Interfacial Compositions on the Microstructure, Physiochemical Stability, Lipid Digestion and β-Carotene Bioaccessibility of Pickering Emulsions. Food Hydrocolloids. 2020, 104, 105738. DOI: 10.1016/j.foodhyd.2020.105738.
  • Wei, Z.; Cheng, Y.; Huang, Q. Heteroprotein Complex Formation of Ovotransferrin and Lysozyme: Fabrication of Food-Grade Particles to Stabilize Pickering Emulsions. Food Hydrocolloids. 2019, 96, 190–200. DOI: 10.1016/j.foodhyd.2019.05.024.
  • Torlopov, M. A.; Vaseneva, I. N.; Mikhaylov, V. I.; Martakov, I. S.; Legki, P. V.; Paderin, N. M.; Sitnikov, P. A. Surface, Rheopexy, Digestive Stability and Toxicity of Olive Oil Emulsions Stabilized by Chitin Nanocrystals for Vitamin D3 Delivery. Carbohydr. Polym. 2022, 284, 119162. DOI: 10.1016/j.carbpol.2022.119162.
  • Zhou, H.; Tan, Y.; Lv, S.; Liu, J.; Muriel Mundo, J. L.; Bai, L.; Rojas, O. J.; McClements, D. J. Nanochitin-Stabilized Pickering Emulsions: Influence of Nanochitin on Lipid Digestibility and Vitamin Bioaccessibility. Food Hydrocolloids. 2020, 106, 105878. DOI: 10.1016/j.foodhyd.2020.105878.
  • Lu, X.; Zhu, J.; Pan, Y.; Huang, Q. Assessment of Dynamic Bioaccessibility of Curcumin Encapsulated in Milled Starch Particle Stabilized Pickering Emulsions Using Tno’s Gastrointestinal Model. Food Funct. 2019, 10(5), 2583–2594. DOI: 10.1039/C8FO02495B.
  • Gong, H.; Lin, S.; Ren, H.; Song, X.; Zhao, Q. Pickering Emulsion Stabilised by Double-Modified Starch Particles and Its Delivery Property for Curcumin. Int. J. Food Sci. Tech. 2022, 57(12), 7751–7762. DOI: https://doi.org/10.1111/ijfs.16135.
  • Lu, X.; Huang, Q. Stability and in vitro digestion study of curcumin-encapsulated in different milled cellulose particle stabilized Pickering emulsions. Food Funct. 2020, 11(1), 606–616. DOI: https://doi.org/10.1039/C9FO02029B.
  • Lu, X.; Zhang, H.; Zheng, T.; Liu, Q.; Zhu, J.; Huang, Q. Evaluation of Oral Bioaccessibility of Aged Citrus Peel Extracts Encapsulated in Different Lipid-Based Systems: A Comparison Study Using Different in vitro Digestion Models. J. Agric. Food Chem. 2020, 68(1), 97–105. DOI: 10.1021/acs.jafc.9b05372.
  • Qi, W.; Zhang, Z.; Wu, T. Encapsulation of β-Carotene in Oleogel-In-Water Pickering Emulsion with Improved Stability and Bioaccessibility. Int. J. Biol. Macromol. 2020, 164, 1432–1442. DOI: 10.1016/j.ijbiomac.2020.07.227.
  • Winuprasith, T.; Khomein, P.; Mitbumrung, W.; Suphantharika, M.; Nitithamyong, A.; McClements, D. J. Encapsulation of Vitamin D3 in Pickering Emulsions Stabilized by Nanofibrillated Mangosteen Cellulose: Impact on in vitro Digestion and Bioaccessibility. Food Hydrocolloids. 2018, 83, 153–164. DOI: 10.1016/j.foodhyd.2018.04.047.
  • Zheng, R.; Zhao, T.; Lin, X.; Chen, Z.; Li, B.; Zhang, Y. Fabrication, Characterization, and Application of Pickering Emulsion Stabilized by Tea (Camellia Sinensis (L.) O. Kuntze) Waste Microcrystalline Cellulose. J. Dispersion Sci. Technol. 2023, 44(11), 1–11. DOI: 10.1080/01932691.2022.2063883.
  • Tang, L.; Huang, H. Evaluation of Pineapple Peel Cellulose Nanocrystals/EGCG Complexes for Improving the Stability of Curcumin Emulsion. Cellulose. 2022, 29(11), 6123–6141. DOI: 10.1007/s10570-022-04666-8.
  • Patel, A. S.; Balasubramaniam, S. L.; Nayak, B.; Camire, M. E. Lauric Acid Adsorbed Cellulose Nanocrystals Reduced the in vitro Gastrointestinal Digestion of Oil-Water Pickering Emulsions. Food Hydrocolloids. 2023, 134, 108120. DOI: 10.1016/j.foodhyd.2022.108120.
  • Zhang, L.; Chen, D.-L.; Wang, X.-F.; Xu, L.; Qian, J.-Y.; He, X.-D. Enzymatically Modified Quinoa Starch Based Pickering Emulsion as Carrier for Curcumin: Rheological Properties, Protection Effect and in vitro Digestion Study. Food Biosci. 2022, 49, 101933. DOI: 10.1016/j.fbio.2022.101933.
  • Jo, M.; Ban, C.; Goh, K. K.; Choi, Y. J. Enhancement of the Gut-Retention Time of Resveratrol Using Waxy Maize Starch Nanocrystal-Stabilized and Chitosan-Coated Pickering Emulsions. Food Hydrocolloids. 2021, 112, 106291. DOI: 10.1016/j.foodhyd.2020.106291.
  • Shi, Y.; Ye, F.; Zhu, Y.; Miao, M. Development of Dendrimer-Like Glucan-Stabilized Pickering Emulsions Incorporated with β-Carotene. Food Chem. 2022, 385, 132626. DOI: 10.1016/j.foodchem.2022.132626.
  • Ribeiro, E. F.; Borreani, J.; Moraga, G.; Nicoletti, V. R.; Quiles, A.; Hernando, I. Digestibility and Bioaccessibility of Pickering Emulsions of Roasted Coffee Oil Stabilized by Chitosan and Chitosan-Sodium Tripolyphosphate Nanoparticles. Food Biophys. 2020, 15(2), 196–205. DOI: 10.1007/s11483-019-09614-x.
  • Shah, B. R.; Zhang, C.; Li, Y.; Li, B. Bioaccessibility and Antioxidant Activity of Curcumin After Encapsulated by Nano and Pickering Emulsion Based on Chitosan-Tripolyphosphate Nanoparticles. Food Res. Int. 2016, 89, 399–407. DOI: 10.1016/j.foodres.2016.08.022.
  • Han, J.; Chen, F.; Gao, C.; Zhang, Y.; Tang, X. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum Arabic nanoparticles. Int. J. Biol. Macromol. 2020, 157, 202–211. DOI: 10.1016/j.ijbiomac.2020.04.177.
  • Li, X.-M.; Li, X.; Wu, Z.; Wang, Y.; Cheng, J.-S.; Wang, T.; Zhang, B. Chitosan Hydrochloride/Carboxymethyl Starch Complex Nanogels Stabilized Pickering Emulsions for Oral Delivery of β-Carotene: Protection Effect and in vitro Digestion Study. Food Chem. 2020, 315, 126288. DOI: 10.1016/j.foodchem.2020.126288.
  • Shah, B. R.; Xu, W.; Mráz, J. Formulation and Characterization of Zein/Chitosan Complex Particles Stabilized Pickering Emulsion with the Encapsulation and Delivery of Vitamin D3. J. Sci. Food Agric. 2021, 101(13), 5419–5428. DOI: 10.1002/jsfa.11190.
  • Yu, Y.; Liu, Q.; Wang, C.; Zhang, D.; Jiang, B.; Shan, Y.; Fu, F.; Ding, S. Zein/Pullulan Complex Colloidal Particle-Stabilized Pickering Emulsions for Oral Delivery of Polymethoxylated Flavones: Protection Effect and in vitro Digestion. J. Sci. Food Agric. 2022, 102(10), 3952–3963. DOI: 10.1002/jsfa.11742.
  • Lei, L.; Chen, Y.-L.; Zhu, C.-H.; Wu, H.-F.; Wan, Z.-L.; Yang, X.-Q.; Yuan, Y. The Novel Pickering Emulsion Gels Stabilized by Zein Hydrolysate-Chitin Nanocrystals Coacervates: Improvement on Stability and Bioaccessibility for Curcumin. Food Res. Int. 2022, 161, 111877. DOI: 10.1016/j.foodres.2022.111877.
  • Yan, J.; Liang, X.; Ma, C.; McClements, D. J.; Liu, X.; Liu, F. Design and Characterization of Double-Cross-Linked Emulsion Gels Using Mixed Biopolymers: Zein and Sodium Alginate. Food Hydrocolloids. 2021, 113, 106473. DOI: 10.1016/j.foodhyd.2020.106473.
  • Ma, J.-J.; Huang, X.-N.; Yin, S.-W.; Yu, Y.-G.; Yang, X.-Q. Bioavailability of Quercetin in Zein-Based Colloidal Particles-Stabilized Pickering Emulsions Investigated by the in vitro Digestion Coupled with Caco-2 Cell Monolayer Model. Food Chem. 2021, 360, 130152. DOI: 10.1016/j.foodchem.2021.130152.
  • Wei, Y.; Liu, Z.; Guo, A.; Mackie, A.; Zhang, L.; Liao, W.; Mao, L.; Yuan, F.; Gao, Y. Zein Colloidal Particles and Cellulose Nanocrystals Synergistic Stabilization of Pickering Emulsions for Delivery of β-Carotene. J. Agric. Food Chem. 2021, 69(41), 12278–12294. DOI: 10.1021/acs.jafc.0c07800.
  • Wei, Y.; Zhang, L.; Liao, W.; Mao, L.; Zhang, M.; Guo, X.; Huang, C.; Han, H.; Mackie, A.; Gao, Y. Enhanced Stability and Controlled Gastrointestinal Digestion of β-Carotene Loaded Pickering Emulsions with Particle–Particle Complex Interfaces. Food Funct. 2021, 12(21), 10842–10861. DOI: 10.1039/D1FO01714D.
  • Meng, R.; Wu, Z.; Xie, Q.-T.; Zhang, B.; Li, X.-L.; Liu, W.-J.; Tao, H.; Li, P.-J. Zein/Carboxymethyl Dextrin Nanoparticles Stabilized Pickering Emulsions as Delivery Vehicles: Effect of Interfacial Composition on Lipid Oxidation and in vitro Digestion. Food Hydrocolloids. 2020, 108, 106020. DOI: 10.1016/j.foodhyd.2020.106020.
  • Ge, R.; Zhu, H.; Zhong, J.; Wang, H.; Tao, N. Storage Stability and in vitro Digestion of Apigenin Encapsulated in Pickering Emulsions Stabilized by Whey Protein Isolate–Chitosan Complexes. Front. Nutrit. 2022, 9. DOI: 10.3389/fnut.2022.997706.
  • Araiza-Calahorra, A.; Wang, Y.; Boesch, C.; Zhao, Y.; Sarkar, A. Pickering Emulsions Stabilized by Colloidal Gel Particles Complexed or Conjugated with Biopolymers to Enhance Bioaccessibility and Cellular Uptake of Curcumin. Curr Res Food Sci. 2020, 3, 178–188. DOI: 10.1016/j.crfs.2020.05.001.
  • Liu, G.; Li, W.; Qin, X.; Zhong, Q. Pickering Emulsions Stabilized by Amphiphilic Anisotropic Nanofibrils of Glycated Whey Proteins. Food Hydrocolloids. 2020, 101, 105503. DOI: 10.1016/j.foodhyd.2019.105503.
  • Lv, P.; Wang, D.; Chen, Y.; Zhu, S.; Zhang, J.; Mao, L.; Gao, Y.; Yuan, F. Pickering Emulsion Gels Stabilized by Novel Complex Particles of High-Pressure-Induced WPI Gel and Chitosan: Fabrication, Characterization and Encapsulation. Food Hydrocolloids. 2020, 108, 105992. DOI: 10.1016/j.foodhyd.2020.105992.
  • Fu, D.; Deng, S.; McClements, D. J.; Zhou, L.; Zou, L.; Yi, J.; Liu, C.; Liu, W. Encapsulation of β-Carotene in Wheat Gluten Nanoparticle-Xanthan Gum-Stabilized Pickering Emulsions: Enhancement of Carotenoid Stability and Bioaccessibility. Food Hydrocolloids. 2019, 89, 80–89. DOI: 10.1016/j.foodhyd.2018.10.032.
  • Liu, J.; Guo, J.; Zhang, H.; Liao, Y.; Liu, S.; Cheng, D.; Zhang, T.; Xiao, H.; Du, Z. The Fabrication, Characterization, and Application of Chitosan–NaOh Modified Casein Nanoparticles and Their Stabilized Long-Term Stable High Internal Phase Pickering Emulsions. Food Funct. 2022, 13(3), 1408–1420. DOI: 10.1039/D1FO02202D.
  • Huang, X.-N.; Zhou, F.-Z.; Yang, T.; Yin, S.-W.; Tang, C.-H.; Yang, X.-Q. Fabrication and Characterization of Pickering High Internal Phase Emulsions (HIPEs) Stabilized by Chitosan-Caseinophosphopeptides Nanocomplexes as Oral Delivery Vehicles. Food Hydrocolloids. 2019, 93, 34–45. DOI: 10.1016/j.foodhyd.2019.02.005.
  • Yi, J.; Gan, C.; Wen, Z.; Fan, Y.; Wu, X. Development of Pea Protein and High Methoxyl Pectin Colloidal Particles Stabilized High Internal Phase Pickering Emulsions for β-Carotene Protection and Delivery. Food Hydrocolloids. 2021, 113, 106497. DOI: 10.1016/j.foodhyd.2020.106497.
  • Wu, C.; Liu, Z.; Zhi, L.; Jiao, B.; Tian, Y.; Liu, H.; Hu, H.; Ma, X.; Pignitter, M.; Wang, Q. Research Progress of Food-Grade High Internal Phase Pickering Emulsions and Their Application in 3D Printing. Nanomaterials. 2022, 12(17), 2949. DOI: 10.3390/nano12172949.
  • Shen, R.; Lin, D.; Liu, Z.; Zhai, H.; Yang, X. Fabrication of Bacterial Cellulose Nanofibers/Soy Protein Isolate Colloidal Particles for the Stabilization of High Internal Phase Pickering Emulsions by Anti-Solvent Precipitation and Their Application in the Delivery of Curcumin. Front Nutr. 2021, 8, 734620. DOI: 10.3389/fnut.2021.734620.
  • Wang, L.; Zhang, H.; Li, H.; Zhang, H.; Chi, Y.; Xia, N.; Li, Z.; Jiang, L.; Zhang, X.; Rayan, A. M. Fabrication and Digestive Characteristics of High Internal Phase Pickering Emulsions Stabilized by Ovalbumin-Pectin Complexes for Improving the Stability and Bioaccessibility of Curcumin. Food Chem. 2022, 389, 133055. DOI: 10.1016/j.foodchem.2022.133055.
  • Dong, Y.; Wei, Z.; Wang, Y.; Tang, Q.; Xue, C.; Huang, Q. Oleogel-Based Pickering Emulsions Stabilized by Ovotransferrin–Carboxymethyl Chitosan Nanoparticles for Delivery of Curcumin. LWT. 2022, 157, 113121. DOI: 10.1016/j.lwt.2022.113121.
  • Fan, Y.; Luo, D.; Yi, J. Resveratrol-Loaded α-Lactalbumin-Chitosan Nanoparticle-Encapsulated High Internal Phase Pickering Emulsion for Curcumin Protection and Its in vitro Digestion Profile. Food Chem.: X. 2022, 15, 100433. DOI: 10.1016/j.fochx.2022.100433.
  • Liu, Z.; Hu, M.; Zhang, S.; Jiang, L.; Xie, F.; Li, Y. Oil-In-Water Pickering Emulsion Stabilization with Oppositely Charged Polysaccharide Particles: Chitin Nanocrystals/Fucoidan Complexes. J. Sci. Food Agric. 2021, 101(7), 3003–3012. DOI: 10.1002/jsfa.10934.
  • Xu, W.; Sun, H.; Jia, Y.; Jia, Y.; Ning, Y.; Wang, Y.; Jiang, L.; Luo, D.; Shah, B. R. Pickering Emulsions Synergistic Stabilized with Konjac Glucomannan and Xanthan Gum/Lysozyme Nanoparticles: Structure, Protection and Gastrointestinal Digestion. Carbohydr. Polym. 2023, 305, 120507. DOI: 10.1016/j.carbpol.2022.120507.
  • Tang, X.-Y.; Wang, Z.-M.; Meng, H.-C.; Lin, J.-W.; Guo, X.-M.; Zhang, T.; Chen, H.-L.; Lei, C.-Y.; Yu, S.-J. Robust W/O/W Emulsion Stabilized by Genipin-Cross-Linked Sugar Beet Pectin-Bovine Serum Albumin Nanoparticles: Co-Encapsulation of Betanin and Curcumin. J. Agric. Food Chem. 2021, 69(4), 1318–1328. DOI: 10.1021/acs.jafc.0c05212.
  • Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Goli, S. A. H.; Van der Meeren, P. Effect of Thymol and Pickering Stabilization on in-Vitro Digestion Fate and Oxidation Stability of Plant-Derived Flaxseed Oil Emulsions. Food Chem. 2020, 311, 125872. DOI: 10.1016/j.foodchem.2019.125872.
  • Song, J.; Li, H.; Shang, W.; Wang, H.; Tan, M. Fabrication and Characterization of Pickering Emulsion Gels Stabilized by Gliadin/Starch Complex for the Delivery of Astaxanthin. Food Hydrocolloids. 2023, 137, 108388. DOI: 10.1016/j.foodhyd.2022.108388.
  • Ma, L.; Zou, L.; McClements, D. J.; Liu, W. One-Step Preparation of High Internal Phase Emulsions Using Natural Edible Pickering Stabilizers: Gliadin Nanoparticles/Gum Arabic. Food Hydrocolloids. 2020, 100, 105381. DOI: 10.1016/j.foodhyd.2019.105381.
  • Wei, Z.; Zhang, H.; Huang, Q. Curcumin-loaded Pickering emulsion stabilized by insoluble complexes involving ovotransferrin–gallic acid conjugates and carboxymethyldextran. Food Funct. 2019, 10(8), 4911–4923. DOI: https://doi.org/10.1039/c9fo01162e.
  • Shi, A.; Feng, X.; Wang, Q.; Adhikari, B. Pickering and High Internal Phase Pickering Emulsions Stabilized by Protein-Based Particles: A Review of Synthesis, Application and Prospective. Food Hydrocolloids. 2020, 109, 106117. DOI: 10.1016/j.foodhyd.2020.106117.
  • Wei, Z.; Cheng, J.; Huang, Q. Food-Grade Pickering Emulsions Stabilized by Ovotransferrin Fibrils. Food Hydrocolloids. 2019, 94, 592–602. DOI: 10.1016/j.foodhyd.2019.04.005.
  • Liu, X.; Huang, Y.-Q.; Chen, X.-W.; Deng, Z.-Y.; Yang, X.-Q. Whole Cereal Protein-Based Pickering Emulsions Prepared by Zein-Gliadin Complex Particles. J. Cereal Sci. 2019, 87, 46–51. DOI: 10.1016/j.jcs.2019.02.004.
  • Liu, W.; Gao, H.; McClements, D. J.; Zhou, L.; Wu, J.; Zou, L. Stability, Rheology, and β-Carotene Bioaccessibility of High Internal Phase Emulsion Gels. Food Hydrocolloids. 2019, 88, 210–217. DOI: 10.1016/j.foodhyd.2018.10.012.
  • Xu, B.; Liu, C.; Sun, H.; Wang, X.; Huang, F. Highly Surface-Active Chaperonin Nanobarrels for Oil-In-Water Pickering Emulsions and Delivery of Lipophilic Compounds. J. Agric. Food Chem. 2019, 67(36), 10155–10164. DOI: 10.1021/acs.jafc.9b02379.
  • Calabrese, V.; Courtenay, J. C.; Edler, K. J.; Scott, J. L. Pickering Emulsions Stabilized by Naturally Derived or Biodegradable Particles. Curr. Opin. Green Sustain. Chem. 2018, 12, 83–90. DOI: 10.1016/j.cogsc.2018.07.002.
  • Liu, F.; Tang, C.-H. Soy Glycinin as Food-Grade Pickering Stabilizers: Part. II. Improvement of Emulsification and Interfacial Adsorption by Electrostatic Screening. Food Hydrocolloids. 2016, 60, 620–630. DOI: 10.1016/j.foodhyd.2015.10.024.
  • Zheng, W.; Zhang, H.; Wang, J.; Wang, J.; Yan, L.; Liu, C.; Zheng, L. Pickering Emulsion Hydrogel Based on Alginate-Gellan Gum with Carboxymethyl Chitosan as a pH-Responsive Controlled Release Delivery System. Int. J. Biol. Macromol. 2022, 216, 850–859. DOI: 10.1016/j.ijbiomac.2022.07.223.
  • Cao, Y.; Yang, L.; Qiao, X.; Xue, C.; Xu, J. Dietary Astaxanthin: An Excellent Carotenoid with Multiple Health Benefits. Crit. Rev. Food Sci. Nutr. 2023, 63(18), 1–27. DOI: 10.1080/10408398.2021.1983766.
  • Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A Mechanistic Review on Its Biological Activities and Health Benefits. Pharmacol. Res. 2018, 136, 1–20. DOI: 10.1016/j.phrs.2018.08.012.
  • Martínez-Delgado, A. A.; Khandual, S.; Villanueva–Rodríguez, S. J. Chemical Stability of Astaxanthin Integrated into a Food Matrix: Effects of Food Processing and Methods for Preservation. Food Chem. 2017, 225, 23–30. DOI: 10.1016/j.foodchem.2016.11.092.
  • Yang, L.; Li, F.; Cao, X.; Qiao, X.; Xue, C.; Xu, J. Stability and Bioavailability of Protein Matrix-Encapsulated Astaxanthin Ester Microcapsules. J. Sci. Food Agric. 2022, 102(5), 2144–2152. DOI: 10.1002/jsfa.11556.
  • Toro-Vazquez, J. F.; Charó-Alonso, M. A.; Pérez-Martínez, J. D.; Morales-Rueda, J. A. Candelilla Wax as an Organogelator for Vegetable Oils—An Alternative to Develop Trans-Free Products for the Food Industry. In Edible Oleogels; Marangoni, A.G. and Garti, N., Eds.; AOCS Press, 2011; pp. 119–148.
  • Manzoor, S.; Masoodi, F. A.; Naqash, F.; Rashid, R. Oleogels: Promising Alternatives to Solid Fats for Food Applications. Food Hydrocolloids Health. 2022, 2, 100058. DOI: 10.1016/j.fhfh.2022.100058.
  • Lu, X.; Li, C.; Huang, Q. Combining in vitro Digestion Model with Cell Culture Model: Assessment of Encapsulation and Delivery of Curcumin in Milled Starch Particle Stabilized Pickering Emulsions. Int. J. Biol. Macromol. 2019, 139, 917–924. DOI: 10.1016/j.ijbiomac.2019.08.078.
  • Li, X.; de Vries, R. Interfacial Stabilization Using Complexes of Plant Proteins and Polysaccharides. Curr. Opin. Food Sci. 2018, 21, 51–56. DOI: 10.1016/j.cofs.2018.05.012.
  • Ribeiro, E.; Morell, P.; Nicoletti, V.; Quiles, A.; Hernando, I. Protein-And Polysaccharide-Based Particles Used for Pickering Emulsion Stabilisation. Food Hydrocolloids. 2021, 119, 106839. DOI: 10.1016/j.foodhyd.2021.106839.
  • Wang, M.; Li, Y.; Ma, C.; Zhang, Z.; Guo, L.; Huang, M.; Sun, J. Stability of Native/Thermally Denatured Myofibrillar Protein Particles: Improvement with Decreasing pH. Food Hydrocolloids. 2023, 140, 108628. DOI: 10.1016/j.foodhyd.2023.108628.
  • Chen, J.; Zheng, J.; McClements, D. J.; Xiao, H. Tangeretin-Loaded Protein Nanoparticles Fabricated from zein/β-Lactoglobulin: Preparation, Characterization, and Functional Performance. Food Chem. 2014, 158, 466–472. DOI: 10.1016/j.foodchem.2014.03.003.
  • Dupont, H.; Maingret, V.; Schmitt, V.; Héroguez, V. New Insights into the Formulation and Polymerization of Pickering Emulsions Stabilized by Natural Organic Particles. Macromolecules. 2021, 54(11), 4945–4970. DOI: 10.1021/acs.macromol.1c00225.
  • Tan, Y.; Zhou, H.; McClements, D. J. Application of Static in vitro Digestion Models for Assessing the Bioaccessibility of Hydrophobic Bioactives: A Review. Trends Food Sci. Technol. 2022, 122, 314–327. DOI: 10.1016/j.tifs.2022.02.028.
  • Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In vitro Bioaccessibility Assessment as a Prediction Tool of Nutritional Efficiency. Nutr. Res. 2009, 29(11), 751–760. DOI: 10.1016/j.nutres.2009.09.016.
  • Berthelsen, R.; Klitgaard, M.; Rades, T.; Müllertz, A. In vitro Digestion Models to Evaluate Lipid Based Drug Delivery Systems; Present Status and Current Trends. Advanced Drug Delivery Reviews. 2019, 142, 35–49. DOI: 10.1016/j.addr.2019.06.010.
  • McClements, D. J.; Li, Y. Review of in vitro Digestion Models for Rapid Screening of Emulsion-Based Systems. Food Funct. 2010, 1(1), 32–59. DOI: 10.1039/c0fo00111b.
  • Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F., et al. INFOGEST Static in vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14(4), 991–1014.
  • Sarkar, A.; Mackie, A. R. Engineering Oral Delivery of Hydrophobic Bioactives in Real-World Scenarios. Curr. Opin. Colloid Interface Sci. 2020, 48, 40–52. DOI: 10.1016/j.cocis.2020.03.009.
  • McClements, D. J.; Li, Y. Structured Emulsion-Based Delivery Systems: Controlling the Digestion and Release of Lipophilic Food Components. Adv. Coll. Interf. Sci. 2010, 159(2), 213–228. DOI: 10.1016/j.cis.2010.06.010.
  • Minekus, M. The TNO Gastro-Intestinal Model (TIM). In The Impact of Food Bioactives on Health: In vitro and ex vivo Models. In The Author(s); Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D. and Wichers, H., Eds.; United Kingdom: Springer Copyright, 2015; pp. 37–46.