343
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Potential Application of Lactiplantibacillus plantarum in Food Bio-preservation – A Comprehensive Review with a Focus on the Antibacterial and Anti-Virulence Effects on Foodborne Pathogens

, , , , & ORCID Icon

References

  • Akhtar, S.; Sarker, M. R.; Hossain, A. Microbiological Food Safety: A Dilemma of Developing Societies. Crit. Rev. Microbiol. 2014, 40(4), 348–359. DOI: 10.3109/1040841X.2012.742036.
  • Kannan, S.; Balakrishnan, J.; Govindasamy, A. Listeria Monocytogens - Amended Understanding of Its Pathogenesis with a Complete Picture of Its Membrane Vesicles, Quorum Sensing, Biofilm and Invasion. Microb. Pathog. 2020, 149, 104575. DOI: 10.1016/j.micpath.2020.104575.
  • da Costa, W. K. A.; de Souza, G. T.; Brandão, L. R.; de Lima, R. C.; Garcia, E. F.; dos Santos Lima, M.; de Souza, E. L.; Saarela, M.; Magnani, M. Exploiting Antagonistic Activity of Fruit-Derived Lactobacillus to Control Pathogenic Bacteria in Fresh Cheese and Chicken Meat. Food. Res. Int. 2018, 108, 172–182. DOI: 10.1016/j.foodres.2018.03.045.
  • Zhou, Q.; Gu, R.; Li, P.; Lu, Y.; Chen, L.; Gu, Q. Anti-Salmonella Mode of Action of Natural L-Phenyl Lactic Acid Purified from Lactobacillus Plantarum ZJ316. Appl. Microbiol. Biotechnol. 2020, 104(12), 5283–5292. DOI: 10.1007/s00253-020-10503-4.
  • European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. DOI: 10.2903/j.efsa.2019.5926.
  • Rocchetti, M. T.; Russo, P.; Capozzi, V.; Drider, D.; Spano, G.; Fiocco, D. Bioprospecting Antimicrobials from Lactiplantibacillus Plantarum: Key Factors Underlying Its Probiotic Action. Int. J. Mol. Sci. 2021, 22(21), 12076. DOI: 10.3390/ijms222112076.
  • Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms. 2020, 8(6), 952. DOI: 10.3390/microorganisms8060952.
  • Potočnjak, M.; Pušić, P.; Frece, J.; Abram, M.; Jankovic, T.; Gobin, I. Three New Lactobacillus Plantarum Strains in the Probiotic Toolbox Against Gut Pathogen Salmonella Enterica Serotype Typhimurium. Food Technol. Biotechnol. 2017, 55(1), 48–54. doi: 10.17113/ftb.55.01.17.4693.
  • Hill, C.; Guarner, F.; Reid, G.; Gibson, G. R.; Merenstein, D. J.; Pot, B.; Morelli, L.; Canani, R. B.; Flint, H. J.; Salminen, S., et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature Reviews Gastroenterology & Hepatology. 2014, 11(8), 506–514. DOI: 10.1038/nrgastro.2014.66.
  • Wang, J.; Wang, J.; Yang, K.; Liu, M.; Zhang, J.; Wei, X.; Fan, M. Screening for Potential Probiotic from Spontaneously Fermented Non-Dairy Foods Based on in vitro Probiotic and Safety Properties. Ann. Microbiol. 2018, 68(12), 803–813. DOI: 10.1007/s13213-018-1386-3.
  • Koirala, S.; Anal, A. K. Probiotics-Based Foods and Beverages as Future Foods and Their Overall Safety and Regulatory Claims. Futur. Foods. 2021, 3, 100013. DOI: 10.1016/j.fufo.2021.100013.
  • Shi, C.; Maktabdar, M. Lactic Acid Bacteria as Biopreservation Against Spoilage Molds in Dairy Products – a Review. Front. Microbiol. 2022, 12, 819684. DOI: https://doi.org/10.3389/fmicb.2021.819684.
  • Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of Lactic Acid Bacteria for the Biopreservation of Meat Products: A Systematic Review. Meat Sci. 2022, 183, 108661. DOI: 10.1016/j.meatsci.2021.108661.
  • Fregeneda-Grandes, J. M.; González-Palacios, C.; Pérez-Sánchez, T.; Padilla, D.; Real, F.; Aller-Gancedo, J. M. Limited Probiotic Effect of Enterococcus Gallinarum L1, Vagococcus Fluvialis L21 and Lactobacillus Plantarum CLFP3 to Protect Rainbow Trout Against Saprolegniosis. Animals. 2023, 13(5), 954. DOI: 10.3390/ani13050954.
  • Rodríguez-Sánchez, S.; Ramos, I. M.; Rodríguez-Pérez, M.; Poveda, J. M.; Seseña, S.; Palop, M. L. Lactic Acid Bacteria as Biocontrol Agents to Reduce Staphylococcus Aureus Growth, Enterotoxin Production and Virulence Gene Expression. LWT. 2022, 170, 114025. DOI: 10.1016/j.lwt.2022.114025.
  • Aljasir, S. F.; D’Amico, D. J. The Effect of Protective Cultures on Staphylococcus Aureus Growth and Enterotoxin Production. Food Microbiol. 2020, 91, 103541. DOI: 10.1016/j.fm.2020.103541.
  • Säde, E.; Penttinen, K.; Björkroth, J.; Hultman, J. Exploring Lot-To-Lot Variation in Spoilage Bacterial Communities on Commercial Modified Atmosphere Packaged Beef. Food Microbiol. 2017, 62, 147–152. DOI: 10.1016/j.fm.2016.10.004.
  • Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutrients. 2019, 11(8), 1771. DOI: 10.3390/nu11081771.
  • Bastam, M. M.; Jalili, M.; Pakzad, I.; Maleki, A.; Ghafourian, S. Pathogenic Bacteria in Cheese, Raw and Pasteurised Milk. Vet. Med. Sci. 2021, 7(6), 2445–2449. DOI: https://doi.org/10.1002/vms3.604.
  • Keba, A.; Rolon, M. L.; Tamene, A.; Dessie, K.; Vipham, J.; Kovac, J.; Zewdu, A. Review of the Prevalence of Foodborne Pathogens in Milk and Dairy Products in Ethiopia. Int. Dairy. J. 2020, 109, 104762. DOI: 10.1016/j.idairyj.2020.104762.
  • Titouche, Y.; Akkou, M.; Houali, K.; Auvray, F.; Hennekinne, J. A. Role of Milk and Milk Products in the Spread of Methicillin-Resistant Staphylococcus Aureus in the Dairy Production Chain. J. Food Sci. 2022, 87(9), 3699–3723. DOI: 10.1111/1750-3841.16259.
  • Melo, J.; Quintas, C. Minimally Processed Fruits as Vehicles for Foodborne Pathogens. AIMS Microbiol. 2023, 9(1), 1–19. DOI: 10.3934/microbiol.2023001.
  • Graça, A.; Santo, D.; Quintas, C.; Nunes, C. Growth of Escherichia Coli, Salmonella Enterica and Listeria Spp., and Their Inactivation Using Ultraviolet Energy and Electrolyzed Water, on ‘Rocha’ Fresh-Cut Pears. Food Control. 2017, 77, 41–49. DOI: 10.1016/j.foodcont.2017.01.017.
  • Ölmez, H. Foodborne Pathogenic Bacteria in Fresh-Cut Vegetables and Fruits. Food Hyg. Toxicol. Ready-To-Eat Foods. 2016. DOI: 10.1016/B978-0-12-801916-0.00009-1.
  • Ali, A.; Parisi, A.; Conversano, M. C.; Iannacci, A.; D’Emilio, F.; Mercurio, V.; Normanno, G. Food-Borne Bacteria Associated with Seafoods: A Brief Review. J. Food Qual. Hazards Control. 2020, 7, 1. DOI: 10.18502/JFQHC.7.1.2446.
  • Corsetti, A.; Valmorri, S. Lactic Acid Bacteria: Lactobacillus Spp.: Lactobacillus Plantarum. Encycl. Dairy Sci. Second Ed. 2011, 111–118. DOI: 10.1016/B978-0-12-374407-4.00263-6.
  • Molenaar, D.; Bringel, F.; Schuren, F. H.; De Vos, W. M.; Siezen, R. J.; Kleerebezem, M. Exploring Lactobacillus Plantarum Genome Diversity by Using Microarrays. J. Bacteriol. 2005, 187(17), 6119–6127. DOI: 10.1128/JB.187.17.6119-6127.2005.
  • Dong, A. R.; Thuy Ho, V. T.; Lo, R.; Bansal, N.; Turner, M. S. A Genetic Diversity Study of Antifungal Lactobacillus Plantarum Isolates. Food Control. 2017, 72, 83–89. DOI: 10.1016/j.foodcont.2016.07.026.
  • Yin, H. B.; Chen, C. H.; Boomer, A.; Byun, S.; Venkitanarayanan, K.; Macarisin, D.; Patel, J. Biocontrol of Listeria on Cantaloupes with Lactic Acid Bacteria. J. Food Process Preserv. 2020, 44(6), e14465. DOI: 10.1111/jfpp.14465.
  • Hossain, M. I.; Mizan, M. F. R.; Ashrafudoulla, M.; Nahar, S.; Joo, H. J.; Jahid, I. K.; Park, S. H.; Kim, K. S.; Ha, S. D. Inhibitory Effects of Probiotic Potential Lactic Acid Bacteria Isolated from Kimchi Against Listeria Monocytogenes Biofilm on Lettuce, Stainless-Steel Surfaces, and MBECTM Biofilm Device. LWT. 2020, 118, 108864. DOI: 10.1016/j.lwt.2019.108864.
  • Gonzales-Barron, U.; Campagnollo, F. B.; Schaffner, D. W.; Sant’ana, A. S.; Cadavez, V. A. P. Behavior of Listeria Monocytogenes in the Presence or Not of Intentionally-Added Lactic Acid Bacteria During Ripening of Artisanal Minas Semi-Hard Cheese. Food Microbiol. 2020, 91, 103545. DOI: 10.1016/j.fm.2020.103545.
  • Martín, I.; Rodríguez, A.; Alía, A.; Martínez-Blanco, M.; Lozano-Ojalvo, D.; Córdoba, J. J. Control of Listeria Monocytogenes Growth and Virulence in a Traditional Soft Cheese Model System Based on Lactic Acid Bacteria and a Whey Protein Hydrolysate with Antimicrobial Activity. Int. J. Food Microbiol. 2022, 361, 109444. DOI: 10.1016/j.ijfoodmicro.2021.109444.
  • Dong, Q.; Zhang, W.; Guo, L.; Niu, H.; Liu, Q.; Wang, X. Influence of Lactobacillus Plantarum Individually and in Combination with Low O2-MAP on the Pathogenic Potential of Listeria Monocytogenes in Cabbage. Food Control. 2020, 107, 106765. DOI: 10.1016/j.foodcont.2019.106765.
  • Meloni, M. P.; Piras, F.; Siddi, G.; Cabras, D.; Comassi, E.; Lai, R.; McAuliffe, O.; De Santis, E. P. L.; Scarano, C. Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria Against Listeria Monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses. Foods. 2023, 12(6), 1182. DOI: 10.3390/foods12061182.
  • Kamiloğlu, A.; Kaban, G.; Kaya, M. Effects of Autochthonous Lactobacillus Plantarum Strains on Listeria Monocytogenes in Sucuk During Ripening. J. Food Saf. 2019, 39(3), e12618. DOI: 10.1111/jfs.12618.
  • Wang, Y.; Qin, Y.; Zhang, Y.; Wu, R.; Li, P. Antibacterial Mechanism of Plantaricin LPL-1, a Novel Class IIa Bacteriocin Against Listeria Monocytogenes. Food Control. 2019, 97, 87–93. DOI: 10.1016/j.foodcont.2018.10.025.
  • Ong, J. S.; Taylor, T. D.; Wong, C. B.; Khoo, B. Y.; Sasidharan, S.; Choi, S. B.; Ohno, H.; Liong, M. T. Extracellular Transglycosylase and Glyceraldehyde-3-Phosphate Dehydrogenase Attributed to the Anti-Staphylococcal Activity of Lactobacillus Plantarum USM8613. J. Biotechnol. 2019, 300, 20–31. DOI: 10.1016/j.jbiotec.2019.05.006.
  • Khalil, N.; Kheadr, E.; El-Ziney, M.; Dabour, N. Lactobacillus Plantarum Protective Cultures to Improve Safety and Quality of Wheyless Domiati-Like Cheese. J. Food Process Preserv. 2022, 46(4), e16416. DOI: 10.1111/jfpp.16416.
  • Yan, X.; Gu, S.; Cui, X.; Shi, Y.; Wen, S.; Chen, H.; Ge, J. A. Antimicrobial, Anti-Adhesive and Anti-Biofilm Potential of Biosurfactants Isolated from Pediococcus Acidilactici and Lactobacillus Plantarum Against Staphylococcus Aureus CMCC26003. Microb. Pathog. 2019, 127, 12–20. DOI: 10.1016/j.micpath.2018.11.039.
  • Du, H.; Yang, J.; Lu, X.; Lu, Z.; Bie, X.; Zhao, H.; Zhang, C.; Lu, F. Purification, Characterization, and Mode of Action of Plantaricin GZ1-27, a Novel Bacteriocin Against Bacillus Cereus. J. Agric. Food. Chem. 2018, 66(18), 4716–4724. DOI: 10.1021/acs.jafc.8b01124.
  • Zhang, Z.; Jin, M.; Wang, K.; Zhang, N.; Zhang, Q.; Tao, X.; Wei, H. Short-Term Intake of Lactiplantibacillus Plantarum ZDY2013 Fermented Milk Promotes Homoeostasis of Gut Microbiota Under Enterotoxigenic Bacillus Cereus Challenge. Food Funct. 2021, 12(11), 5118–5129. DOI: https://doi.org/10.1039/d1fo00162k.
  • Yin, H. B.; Chen, C. H.; Colorado-Suarez, S.; Patel, J. Biocontrol of Listeria Monocytogenes and Salmonella Enterica on Fresh Strawberries with Lactic Acid Bacteria During Refrigerated Storage. Foodborne Pathog. Dis. 2022, 19(5), 5118–5129. DOI: 10.1089/fpd.2021.0091.
  • Abouloifa, H.; Rokni, Y.; Hasnaoui, I.; Bellaouchi, R.; Gaamouche, S.; Ghabbour, N.; Karboune, S.; Ben Salah, R.; Brasca, M.; D’hallewin, G., et al. Characterization of Antimicrobial Compounds Obtained from the Potential Probiotic Lactiplantibacillus Plantarum S61 and Their Application as a Biopreservative Agent. Brazilian J. Microbiol. 2022, 53(3), 1501–1513. DOI: 10.1007/s42770-022-00791-5.
  • Kim, S. W.; Kang, S. I.; Shin, D. H.; Oh, S. Y.; Lee, C. W.; Yang, Y.; Son, Y. K.; Yang, H. S.; Lee, B. H.; An, H. J., et al. Potential of Cell-Free Supernatant from Lactobacillus Plantarum Nibr97, Including Novel Bacteriocins, as a Natural Alternative to Chemical Disinfectants. Pharmaceuticals. 2020, 13(10), 266. DOI: 10.3390/ph13100266.
  • Merino, L.; Trejo, F. M.; De Antoni, G.; Golowczyc, M. A. Lactobacillus Strains Inhibit Biofilm Formation of Salmonella Sp. Isolates from Poultry. Food. Res. Int. 2019, 123, 258–265. DOI: 10.1016/j.foodres.2019.04.067.
  • Cisneros, L.; Cattelan, N.; Villalba, M. I.; Rodriguez, C.; Serra, D. O.; Yantorno, O.; Fadda, S. Lactic Acid Bacteria Biofilms and Their Ability to Mitigate Escherichia Coli O157: H7 Surface Colonization. Lett. Appl. Microbiol. 2021, 73(2), 247–256. DOI: https://doi.org/10.1111/lam.13509.
  • Wang, D.; Liu, Y.; Li, X.; Chen, S.; Deng, J.; Li, C.; Pan, C.; Wang, Y.; Xiang, H.; Feng, Y., et al. Unraveling the Antibacterial Mechanism of Lactiplantibacillus plantarum MY2 Cell-Free Supernatants Against Aeromonas Hydrophila ST3 and Potential Application in Raw Tuna. ST3 And Potential Appl. Raw Tuna. Food Control. 2023, 145, 109512. DOI: 10.1016/j.foodcont.2022.109512.
  • Lv, X.; Ma, H.; Sun, M.; Lin, Y.; Bai, F.; Li, J.; Zhang, B. A Novel Bacteriocin DY4-2 Produced by Lactobacillus Plantarum from Cutlassfish and Its Application as Bio-Preservative for the Control of Pseudomonas Fluorescens in Fresh Turbot (Scophthalmus Maximus) Fillets. Food Control. 2018, 89, 22–31. DOI: 10.1016/j.foodcont.2018.02.002.
  • Tseng, K.-C.; Huang, H.-T.; Huang, S.-N.; Yang, F.-Y.; Li, W.-H.; Nan, F.-H.; Lin, Y.-J. Lactobacillus Plantarum Isolated from Kefir Enhances Immune Responses and Survival of White Shrimp (Penaeus Vannamei) Challenged with Vibrio Alginolyticus. Fish Shellfish Immunol. 2023, 135, 108661. DOI: 10.1016/j.fsi.2023.108661.
  • Tenea, G. N.; Guaña, J. M. Inhibitory Substances Produced by Native Lactobacillus Plantarum UTNCys5-4 Control Microbial Population Growth in Meat. J. Food Qual. 2019, 2019, 9516981. DOI: 10.1155/2019/9516981.
  • Saelim, K.; Jampaphaeng, K.; Maneerat, S. Functional Properties of Lactobacillus Plantarum S0/7 Isolated Fermented Stinky Bean (Sa Taw Dong) and Its Use as a Starter Culture. J. Funct. Foods. 2017, 38, 370–377. DOI: 10.1016/j.jff.2017.09.035.
  • Vataščinová, T.; Pipová, M.; Fraqueza, M. J. R.; Maľa, P.; Dudriková, E.; Drážovská, M.; Lauková, A. Short Communication: Antimicrobial Potential of Lactobacillus Plantarum Strains Isolated from Slovak Raw Sheep Milk Cheeses. J. Dairy. Sci. 2020, 103(8), 6900–6903. DOI: 10.3168/jds.2019-17862.
  • Sakr, E. A. E.; Ahmed, H. A. E.; Abo Saif, F. A. A. Characterization of Low-Cost Glycolipoprotein Biosurfactant Produced by Lactobacillus Plantarum 60 FHE Isolated from Cheese Samples Using Food Wastes Through Response Surface Methodology and Its Potential as Antimicrobial, Antiviral, and Anticancer Activities. Int J Biol Macromol. 2021, 170, 94–106. DOI: 10.1016/j.ijbiomac.2020.12.140.
  • George-Okafor, U.; Ozoani, U.; Tasie, F.; Mba-Omeje, K. The Efficacy of Cell-Free Supernatants from Lactobacillus Plantarum Cs and Lactobacillus Acidophilus ATCC 314 for the Preservation of Home-Processed Tomato-Paste. Sci. African. 2020, 8, e00395. DOI: 10.1016/j.sciaf.2020.e00395.
  • Margalho, L. P.; Jorge, G. P.; Noleto, D. A. P.; Silva, C. E.; Abreu, J. S.; Piran, M. V. F.; Brocchi, M.; Sant’ana, A. S. Biopreservation and Probiotic Potential of a Large Set of Lactic Acid Bacteria Isolated from Brazilian Artisanal Cheeses: From Screening to in Product Approach. Microbiol. Res. 2021, 242, 126622. DOI: 10.1016/j.micres.2020.126622.
  • Golneshin, A.; Gor, M. C.; Williamson, N.; Vezina, B.; Van, T. T. H.; May, B. K.; Smith, A. T. Discovery and Characterisation of Circular Bacteriocin Plantacyclin B21AG from Lactiplantibacillus Plantarum B21. Heliyon. 2020, 6(8), e04715. DOI: 10.1016/j.heliyon.2020.e04715.
  • Wang, H.; Xie, Y.; Zhang, H.; Jin, J.; Zhang, H. Quantitative Proteomic Analysis Reveals the Influence of Plantaricin BM-1 on Metabolic Pathways and Peptidoglycan Synthesis in Escherichia Coli K12. PloS One. 2020, 15(4), e0231975. DOI: https://doi.org/10.1371/journal.pone.0231975.
  • Zhang, Y. M.; Jiang, Y. H.; Li, H. W.; Li, X. Z.; Zhang, Q. L. Purification and Characterization of Lactobacillus Plantarum-Derived Bacteriocin with Activity Against Staphylococcus Argenteus Planktonic Cells and Biofilm. J. Food Sci. 2022, 87(6), 2718–2731. DOI: 10.1111/1750-3841.16148.
  • Sidhu, P. K.; Nehra, K. Purification and Characterization of Bacteriocin Bac23 Extracted from Lactobacillus Plantarum PKLP5 and Its Interaction with Silver Nanoparticles for Enhanced Antimicrobial Spectrum Against Food-Borne Pathogens. LWT. 2021, 139, 110546. DOI: 10.1016/j.lwt.2020.110546.
  • Peng, S.; Song, J.; Zeng, W.; Wang, H.; Zhang, Y.; Xin, J.; Suo, H. A Broad-Spectrum Novel Bacteriocin Produced by Lactobacillus Plantarum SHY 21–2 from Yak Yogurt: Purification, Antimicrobial Characteristics and Antibacterial Mechanism. LWT. 2021, 142, 110955. DOI: 10.1016/j.lwt.2021.110955.
  • Ibrahim, F.; Siddiqui, N. N.; Aman, A.; Qader, S. A. U.; Ansari, A. Characterization, Cytotoxic Analysis and Action Mechanism of Antilisterial Bacteriocin Produced by Lactobacillus Plantarum Isolated from Cheddar Cheese. Int. J. Pept. Res. Ther. 2020, 26(4), 1751–1764. DOI: 10.1007/s10989-019-09982-5.
  • Tenea, G. N.; Pozo, T. D. Antimicrobial Peptides from Lactobacillus Plantarum UTNGt2 Prevent Harmful Bacteria Growth on Fresh Tomatoes. J. Microbiol. Biotechnol. 2019, 29(10), 1553–1560. DOI: 10.4014/jmb.1904.04063.
  • Kavitha, S.; Harikrishnan, A.; Jeevaratnam, K. Characterization and Evaluation of Antibacterial Efficacy of a Novel Antibiotic-Type Compound from a Probiotic Strain Lactobacillus Plantarum KJB23 Against Food-Borne Pathogens. LWT. 2020, 118, 108759. DOI: https://doi.org/10.1016/j.lwt.2019.108759.
  • Zhang, J.; Zhang, C.; Lei, P.; Xin, X.; Liu, D.; Yi, H. Isolation, Purification, Identification, and Discovery of the Antibacterial Mechanism of LD-Phenyllactic Acid Produced by Lactiplantibacillus Plantarum CXG9 Isolated from a Traditional Chinese Fermented Vegetable. Food Control. 2022, 132, 108490. DOI: 10.1016/j.foodcont.2021.108490.
  • Mao, Y.; Zhang, X.; Xu, Z. Identification of Antibacterial Substances of Lactobacillus Plantarum DY-6 for Bacteriostatic Action. Food Sci. Nutr. 2020, 8(6). DOI: 10.1002/fsn3.1585.
  • Hu, C. H.; Ren, L. Q.; Zhou, Y.; Ye, B. C. Characterization of Antimicrobial Activity of Three Lactobacillus Plantarum Strains Isolated from Chinese Traditional Dairy Food. Food Sci. Nutr. 2019, 7(6), 1997–2005. DOI: 10.1002/fsn3.1025.
  • Saleem, M.; Malik, S.; Mehwish, H. M.; Ali, M. W.; Hussain, N.; Khurshid, M.; Rajoka, M. S. R.; Chen, Y. Isolation and Functional Characterization of Exopolysaccharide Produced by Lactobacillus Plantarum S123 Isolated from Traditional Chinese Cheese. Arch. Microbiol. 2021, 203(6), 3061–3070. DOI: 10.1007/s00203-021-02291-w.
  • Sharma, P.; Yadav, M. Enhancing Antibacterial Properties of Bacteriocins Using Combination Therapy. J. Appl. Biol. Biotechnol. 2023, 11(1), 232–243. DOI: 10.7324/JABB.2023.110206.
  • Mohanty, D.; Panda, S.; Kumar, S.; Ray, P. In vitro Evaluation of Adherence and Anti-Infective Property of Probiotic Lactobacillus Plantarum DM 69 Against Salmonella Enterica. Microb. Pathog. 2019, 126, 212–217. DOI: 10.1016/j.micpath.2018.11.014.
  • Lin, T. H.; Pan, T. M. Characterization of an Antimicrobial Substance Produced by Lactobacillus Plantarum NTU 102. J. Microbiol. Immunol. Infect. 2019, 52(3), 409–417. DOI: 10.1016/j.jmii.2017.08.003.
  • Wemmenhove, E.; van Valenberg, H. J. F.; van Hooijdonk, A. C. M.; Wells-Bennik, M. H. J.; Zwietering, M. H. Factors That Inhibit Growth of Listeria Monocytogenes in Nature-Ripened Gouda Cheese: A Major Role for Undissociated Lactic Acid. Food Control. 2018, 84, 413–418. DOI: 10.1016/j.foodcont.2017.08.028.
  • Mohamad, N. I.; Manan, M. A.; Lazim, M. I. M.; Sani, N. A. Antibacterial Activity and Organic Acids Formation by Lactobacillus Sp. Originated from Pickled Guava and Papaya. J Sustain. Sci. Manag. 2022, 17(2), 286–295. DOI: https://doi.org/10.46754/jssm.2022.02.020.
  • Muthusamy, K.; Soundharrajan, I.; Srisesharam, S.; Kim, D.; Kuppusamy, P.; Lee, K. D.; Choi, K. C. Probiotic Characteristics and Antifungal Activity of Lactobacillus Plantarum and Its Impact on Fermentation of Italian Ryegrass at Low Moisture. Applied Sciences. 2020, 10(1), 417. DOI: 10.3390/app10010417.
  • Jang, H. J.; Lee, N. K.; Paik, H. D. Lactobacillus Plantarum G72 Showing Production of Folate and Short-Chain Fatty Acids. Microbiol. Biotechnol. Lett. 2021, 49(1), 18–23. DOI: 10.48022/MBL.2009.09010.
  • Ray Mohapatra, A.; Harikrishnan, A.; Lakshmanan, D.; Jeevaratnam, K. Targeting Staphylococcus Aureus and Its Biofilms with Novel Antibacterial Compounds Produced by Lactiplantibacillus Plantarum SJ33. Arch. Microbiol. 2022, 204(1), 20. DOI: 10.1007/s00203-021-02630-x.
  • Siedler, S.; Balti, R.; Neves, A. R. Bioprotective Mechanisms of Lactic Acid Bacteria Against Fungal Spoilage of Food. Curr. Opin. Biotechnol. 2019, 56, 138–146. DOI: 10.1016/j.copbio.2018.11.015.
  • Huang, L.; Hwang, C. A.; Liu, Y.; Renye, J.; Jia, Z. Growth Competition Between Lactic Acid Bacteria and Listeria Monocytogenes During Simultaneous Fermentation and Drying of Meat Sausages – a Mathematical Modeling. Food. Res. Int. 2022, 158, 111553. DOI: 10.1016/j.foodres.2022.111553.
  • Mellefont, L. A.; McMeekin, T. A.; Ross, T. Effect of Relative Inoculum Concentration on Listeria Monocytogenes Growth in Co-Culture. Int. J. Food Microbiol. 2008, 121(2), 157–168. DOI: 10.1016/j.ijfoodmicro.2007.10.010.
  • Jessie Lau, L. Y.; Chye, F. Y. Antagonistic Effects of Lactobacillus Plantarum 0612 on the Adhesion of Selected Foodborne Enteropathogens in Various Colonic Environments. Food Control. 2018, 91, 237–247. DOI: 10.1016/j.foodcont.2018.04.001.
  • Du, Y.; Li, H.; Xu, W.; Hu, X.; Wu, T.; Chen, J. Cell Surface-Associated Protein Elongation Factor Tu Interacts with Fibronectin Mediating the Adhesion of Lactobacillus Plantarum HC-2 to Penaeus Vannamei Intestinal Epithelium and Inhibiting the Apoptosis Induced by LPS and Pathogen in Caco-2 Cells. Int J Biol Macromol. 2023, 224, 32–47. DOI: 10.1016/j.ijbiomac.2022.11.252.
  • Siedler, S.; Rau, M. H.; Bidstrup, S.; Vento, J. M.; Aunsbjerg, S. D.; Bosma, E. F.; Mcnair, L. M.; Beisel, C. L.; Neves, A. R.; Drake, H. L. Competitive Exclusion is a Major Bioprotective Mechanism of Lactobacilli Against Fungal Spoilage in Fermented Milk Products. Appl. Environ. Microbiol. 2020, 86(7), e02312–19. DOI: 10.1128/AEM.02312-19.
  • Rajkumari, J.; Borkotoky, S.; Murali, A.; Suchiang, K.; Mohanty, S. K.; Busi, S. Attenuation of Quorum Sensing Controlled Virulence Factors and Biofilm Formation in Pseudomonas Aeruginosa by Pentacyclic Triterpenes, Betulin and Betulinic Acid. Microb. Pathog. 2018, 118, 48–60. DOI: 10.1016/j.micpath.2018.03.012.
  • Lv, X.; Cui, T.; Du, H.; Sun, M.; Bai, F.; Li, J.; Zhang, D. Lactobacillus Plantarum CY 1-1: A Novel Quorum Quenching Bacteria and Anti-Biofilm Agent Against Aeromonas Sobria. LWT. 2021, 137, 110439. DOI: 10.1016/j.lwt.2020.110439.
  • Kim, J. H.; Lee, E. S.; Song, K. J.; Kim, B. M.; Ham, J. S.; Oh, M. H. Development of Desiccation-Tolerant Probiotic Biofilms Inhibitory for Growth of Foodborne Pathogens on Stainless Steel Surfaces. Foods. 2022, 11(6), 831. DOI: 10.3390/foods11060831.
  • Toushik, S. H.; Kim, K.; Ashrafudoulla, M.; Mizan, M. F. R.; Roy, P. K.; Nahar, S.; Kim, Y.; Ha, S. D. Korean Kimchi-Derived Lactic Acid Bacteria Inhibit Foodborne Pathogenic Biofilm Growth on Seafood and Food Processing Surface Materials. Food Control. 2021, 129, 108276. DOI: 10.1016/j.foodcont.2021.108276.
  • Lee, J. E.; Lee, N. K.; Paik, H. D. Antimicrobial and Anti-Biofilm Effects of Probiotic Lactobacillus Plantarum KU200656 Isolated from Kimchi. Food Sci. Biotechnol. 2021, 30(1), 97–106. DOI: 10.1007/s10068-020-00837-0.
  • Hossain, M. I.; Mizan, M. F. R.; Roy, P. K.; Nahar, S.; Toushik, S. H.; Ashrafudoulla, M.; Jahid, I. K.; Lee, J.; Ha, S. D. Listeria Monocytogenes Biofilm Inhibition on Food Contact Surfaces by Application of Postbiotics from Lactobacillus Curvatus B.67 and Lactobacillus Plantarum M.2. Food. Res. Int. 2021, 148, 110595. DOI: 10.1016/j.foodres.2021.110595.
  • Tan, L.; Li, S. R.; Jiang, B.; Hu, X. M.; Li, S. Therapeutic Targeting of the Staphylococcus Aureus Accessory Gene Regulator (Agr) System. Front. Microbiol. 2018, 9, 55. DOI: 10.3389/fmicb.2018.00055.
  • Zhao, H.; Zhang, F.; Chai, J.; Wang, J. Effect of Lactic Acid Bacteria on Listeria Monocytogenes Infection and Innate Immunity in Rabbits. Czech. J. Anim. Sci. 2020, 65(1), 23–30. DOI: https://doi.org/10.17221/247/2019-CJAS.
  • Buckley, A.; Turner, J. R. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol. 2018, 10(1), a029314. DOI: 10.1101/cshperspect.a029314.
  • Peng, B.; Cui, Q.; Ma, C.; Yi, H.; Gong, P.; Lin, K.; Liu, T.; Zhang, L. Lactiplantibacillus Plantarum YZX28 Alleviated Intestinal Barrier Dysfunction Induced by Enterotoxigenic Escherichia Coli via Inhibiting Its Virulence Factor Production. Food Biosci. 2022, 50, 102050. DOI: 10.1016/j.fbio.2022.102050.
  • Yue, Y.; He, Z.; Zhou, Y.; Ross, R. P.; Stanton, C.; Zhao, J.; Zhang, H.; Yang, B.; Chen, W. Lactobacillus Plantarum Relieves Diarrhea Caused by Enterotoxin-Producing Escherichia Coli Through Inflammation Modulation and Gut Microbiota Regulation. Food Funct. 2020, 11(12), 10362–10374. DOI: 10.1039/d0fo02670k.
  • Soares, M. B.; Almada, C. N.; Pereira, E. P. R.; Ferreira, B. M.; Balthazar, C. F.; Khorshidian, N.; Rocha, R. S.; Xavier-Santos, D.; Cruz, A. G.; Ranadheera, C. S., et al. Review - Sporeforming Probiotic Bacteria: Characteristics, Health Benefits, and Technological Aspects for Their Applications in Foods and Beverages. Trends Food Sci. Technol. 2023, 138, 453–469. DOI: 10.1016/j.tifs.2023.06.029.
  • Granato, D.; Branco, G. F.; Cruz, A. G.; de Faria, J. A. F.; Shah, N. P. Probiotic Dairy Products as Functional Foods. Comp Rev Food Sci Food Safe. 2010, 9(5), 455–470. DOI: 10.1111/j.1541-4337.2010.00120.x.
  • Kim, H.; Yoo, M. S.; Jeon, H.; Shim, J. J.; Park, W. J.; Kim, J. Y.; Lee, J. L. Probiotic Properties and Safety Evaluation of Lactobacillus Plantarum HY7718 with Superior Storage Stability Isolated from Fermented Squid. Microorganisms. 2023, 11(9), 2254. DOI: 10.3390/microorganisms11092254.
  • Gao, J.; Li, X.; Zhang, G.; Sadiq, F. A.; Simal-Gandara, J.; Xiao, J.; Sang, Y. Probiotics in the Dairy Industry—Advances and Opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20(4), 3937–3982. DOI: 10.1111/1541-4337.12755.
  • Nami, Y.; Vaseghi Bakhshayesh, R.; Manafi, M.; Hejazi, M. A. Hypocholesterolaemic Activity of a Novel Autochthonous Potential Probiotic Lactobacillus Plantarum YS5 Isolated from Yogurt. LWT. 2019, 111, 876–882. DOI: 10.1016/j.lwt.2019.05.057.
  • Kim, H.; Lim, J. J.; Shin, H. Y.; Suh, H. J.; Choi, H. S. Lactobacillus Plantarum K8-Based Paraprobiotics Suppress Lipid Accumulation During Adipogenesis by the Regulation of JAK/STAT and AMPK Signaling Pathways. J. Funct. Foods. 2021, 87, 104824. DOI: 10.1016/j.jff.2021.104824.
  • Pimentel, T. C.; Cruz, A. G.; Pereira, E.; Almeida da Costa, W. K.; da Silva Rocha, R.; Targino de Souza Pedrosa, G.; Rocha, C. D. S.; Alves, J. M.; Alvarenga, V. O.; Sant’ana, A. S., et al. Postbiotics: An Overview of Concepts, Inactivation Technologies, Health Effects, and Driver Trends. Trends Food Sci. Technol. 2023, 138, 199–214. DOI: 10.1016/j.tifs.2023.06.009.
  • Bayarri, S.; Carbonell, I.; Barrios, E. X.; Costell, E. Impact of Sensory Differences on Consumer Acceptability of Yoghurt and Yoghurt-Like Products. Int. Dairy. J. 2011, 21(2), 111–118. DOI: 10.1016/j.idairyj.2010.09.002.
  • Gámbaro, A.; McSweeney, M. B. Sensory Methods Applied to the Development of Probiotic and Prebiotic Foods, 1st; Elsevier Inc: 2020Vol. 94. 10.1016/bs.afnr.2020.06.006.
  • Sáez-Orviz, S.; Marcet, I.; Rendueles, M.; Díaz, M. Bioactive Packaging Based on Delipidated Egg Yolk Protein Edible Films with Lactobionic Acid and Lactobacillus Plantarum CECT 9567: Characterization and Use as Coating in a Food Model. Food Hydrocoll. 2021, 119, 106849. DOI: 10.1016/j.foodhyd.2021.106849.
  • Khodaei, D.; Hamidi-Esfahani, Z. Influence of Bioactive Edible Coatings Loaded with Lactobacillus Plantarum on Physicochemical Properties of Fresh Strawberries. Postharvest. Biol. Technol. 2019, 156, 110944. DOI: 10.1016/j.postharvbio.2019.110944.
  • Speranza, B.; Campaniello, D.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M. R. Viability of Lactobacillus Plantarum on Fresh-Cut Chitosan and Alginate-Coated Apple and Melon Pieces. Front. Microbiol. 2018, 9, 2538. DOI: 10.3389/fmicb.2018.02538.
  • Hua, Q.; Wong, C. H.; Li, D. Postbiotics Enhance the Functionality of a Probiotic Edible Coating for Salmon Fillets and the Probiotic Stability During Simulated Digestion. Food Packag. Shelf Life. 2022, 34, 100954. DOI: 10.1016/j.fpsl.2022.100954.
  • Li, S.; Ma, Y.; Ji, T.; Sameen, D. E.; Ahmed, S.; Qin, W.; Dai, J.; Li, S.; Liu, Y. Cassava Starch/Carboxymethylcellulose Edible Films Embedded with Lactic Acid Bacteria to Extend the Shelf Life of Banana. Carbohydr. Polym. 2020, 248, 116805. DOI: 10.1016/j.carbpol.2020.116805.
  • Hashemi, S. M. B.; Jafarpour, D. Bioactive Edible Film Based on Konjac Glucomannan and Probiotic Lactobacillus Plantarum Strains: Physicochemical Properties and Shelf Life of Fresh-Cut Kiwis. J. Food Sci. 2021, 86(2), 513–522. DOI: 10.1111/1750-3841.15568.
  • Kalantarmahdavi, M.; Khanzadi, S.; Salari, A. Viability of Lactobacillus Plantarum Incorporated with Sourdough Powder-Based Edible Film in Set Yogurt and Subsequent Changes During Post Fermentation Storage. J. Environ. Heal. Sustain. Dev. 2020, 5(4), 3613–3621. DOI: 10.18502/JEHSD.V5I4.4960.
  • Pavli, F.; Argyri, A. A.; Nychas, G. J. E.; Tassou, C.; Chorianopoulos, N. Use of Fourier Transform Infrared Spectroscopy for Monitoring the Shelf Life of Ham Slices Packed with Probiotic Supplemented Edible Films After Treatment with High Pressure Processing. Food. Res. Int. 2018, 106, 1061–1068. DOI: 10.1016/j.foodres.2017.12.064.
  • Souza, M.; Mesquita, A.; Veríssimo, C.; Grosso, C.; Converti, A.; Maciel, M. I. Microencapsulation by Spray Drying of a Functional Product with Mixed Juice of Acerola and Ciriguela Fruits Containing Three Probiotic Lactobacilli. Dry. Technol. 2022, 40(6), 1185–1195. DOI: 10.1080/07373937.2020.1862182.
  • Jouki, M.; Khazaei, N.; Rezaei, F.; Taghavian-Saeid, R. Production of Synbiotic Freeze-Dried Yoghurt Powder Using Microencapsulation and Cryopreservation of L. Plantarum in Alginate-Skim Milk Microcapsules. Int. Dairy. J. 2021, 122, 105133. DOI: 10.1016/j.idairyj.2021.105133.
  • Chean, S. X.; Hoh, P. Y.; How, Y. H.; Nyam, K. L.; Pui, L. P. Microencapsulation of Lactiplantibacillus Plantarum with Inulin and Evaluation of Survival in Simulated Gastrointestinal Conditions and Roselle Juice. Braz. J. Food Technol. 2021, 24, e2020224. DOI: 10.1590/1981-6723.22420.
  • Shoaei, F.; Heshmati, A.; Mahjub, R.; Garmakhany, A. D.; Taheri, M. The Assessment of Microencapsulated Lactobacillus Plantarum Survivability in Rose Petal Jam and the Changes in Physicochemical, Textural and Sensorial Characteristics of the Product During Storage. Sci. Rep. 2022, 12(1). DOI: 10.1038/s41598-022-10224-w.
  • Reyes Escogido, M. D. L.; Barrón Vilchis, D.; Zavala Martínez, L. G.; Angulo Romero, F. Opuntia Robusta Mucilage Combined with Alginate as Encapsulation Matrix for Lactiplantibacillus Plantarum. CyTA - J. Food. 2023, 21(1), 126–132. DOI: 10.1080/19476337.2023.2168303.
  • Zhang, L.; Tang, P.; Li, S.; Wang, X.; Zong, W. Sodium Alginate-Based Wall Materials Microencapsulated Lactobacillus Plantarum CICC 20022: Characteristics and Survivability Study. Food Sci. Biotechnol. 2022, 31(11), 1463–1472. DOI: 10.1007/s10068-022-01134-8.
  • Le, N. T. T.; Bach, L. G.; Nguyen, D. C.; Le, T. H. X.; Pham, K. H.; Nguyen, D. H.; Thi, T. T. H. Evaluation of Factors Affecting Antimicrobial Activity of Bacteriocin from Lactobacillus Plantarum Microencapsulated in Alginate-Gelatin Capsules and Its Application on Pork Meat as a Bio-Preservative. Int. J. Environ. Res. Public Health. 2019, 16(6), 1017. DOI: 10.3390/ijerph16061017.
  • Shafipour Yordshahi, A.; Moradi, M.; Tajik, H.; Molaei, R. Design and Preparation of Antimicrobial Meat Wrapping Nanopaper with Bacterial Cellulose and Postbiotics of Lactic Acid Bacteria. Int. J. Food Microbiol. 2020, 321, 108561. DOI: 10.1016/j.ijfoodmicro.2020.108561.
  • Bustamante, M.; Oomah, B. D.; Rubilar, M.; Shene, C. Effective Lactobacillus Plantarum and Bifidobacterium Infantis Encapsulation with Chia Seed (Salvia Hispanica L.) and Flaxseed (Linum Usitatissimum L.) Mucilage and Soluble Protein by Spray Drying. Food Chem. 2017, 216, 97–105. DOI: 10.1016/j.foodchem.2016.08.019.
  • Praepanitchai, O. A.; Noomhorm, A.; Anal, A. K.; Potes, M. E. Survival and Behavior of Encapsulated Probiotics (Lactobacillus Plantarum) in Calcium-Alginate-Soy Protein Isolate-Based Hydrogel Beads in Different Processing Conditions (pH and Temperature) and in Pasteurized Mango Juice. Biomed Res. Int. 2019, 2019, 1–8. DOI: 10.1155/2019/9768152.
  • Cavalheiro, C. P.; Ruiz-Capillas, C.; Herrero, A. M.; Jiménez-Colmenero, F.; Pintado, T.; de Menezes, C. R.; Fries, L. L. M. Effect of Encapsulated Lactobacillus Plantarum as Probiotic on Dry-Sausages During Chilled Storage. Int. J. Food Sci. Technol. 2020, 55(12), 3613–3621. DOI: https://doi.org/10.1111/ijfs.14695.
  • Phoem, A. N.; Mayiding, A.; Saedeh, F.; Permpoonpattana, P. Evaluation of Lactobacillus Plantarum Encapsulated with Eleutherine Americana Oligosaccharide Extract as Food Additive in Yoghurt. Brazilian J. Microbiol. 2019, 50(1), 237–246. DOI: 10.1007/s42770-018-0017-2.
  • Kuley, E.; Kuscu, M. M.; Durmus, M.; Ucar, Y. Inhibitory Activity of Co-Microencapsulation of Cell Free Supernatant from Lactobacillus Plantarum with Propolis Extracts Towards Fish Spoilage Bacteria. LWT. 2021, 146, 111433. DOI: 10.1016/j.lwt.2021.111433.
  • Tariq, A.; Nageen, H.; Zunaira, H.; Lin, L. Elucidating the Role of Diet in Maintaining Gut Health to Reduce the Risk of Obesity, Cardiovascular and Other Age-Related Inflammatory Diseases: Recent Challenges and Future Recommendations. Gut. Microbe. 2024, 16(1), 2297864. DOI: 10.1080/19490976.2023.2297864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.