144
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Resistant Dextrin Preexistence and Fate: Preparation, Physicochemical and Functional Properties, Physiological Activity, and Food Applications: A Review

, , , , , , , , , & show all

References

  • Swann, O. G.; Kilpatrick, M.; Breslin, M.; Oddy, W. H. Dietary Fiber and Its Associations with Depression and Inflammation. Nutr. Rev. 2020, 78(5), 394–411. DOI: 10.1093/nutrit/nuz072.
  • Han, W.; Ma, S.; Li, L.; Wang, X.; Zheng, X. Application and Development Prospects of Dietary Fibers in Flour Products. J. Chem. 2017, 2017, 1–8. DOI: 10.1155/2017/2163218.
  • Capuano, E. The Behavior of Dietary Fiber in the Gastrointestinal Tract Determines Its Physiological Effect. Crit. Rev. Food Sci. Nutr. 2017, 57(16), 3543–3564. DOI: 10.1080/10408398.2016.1180501.
  • Dhingra, D.; Michael, M.; Rajput, H.; Patil, R. T. Dietary fibre in foods: a review. J. Food Sci. Technol. 2012, 49, 255–266. DOI: 10.1007/s13197-011-0365-5.
  • Włodarczyk, M.; K, Ś. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients. 2021, 13(11), 3808. DOI: 10.3390/nu13113808.
  • Astina, J.; Sapwarobol, S. Resistant Maltodextrin and Metabolic Syndrome: A Review. J. Am. Coll. Nutr. 2019, 38, 380–385. DOI: 10.1080/07315724.2018.1523028.
  • Barczynska, R.; Slizewska, K.; Jochym, K.; Kapusniak, J.; Libudzisz, Z. The tartaric acid-modified enzyme-resistant dextrin from potato starch as potential prebiotic. J. Funct. Foods. 2012, 4(4), 954–962. DOI: 10.1016/j.jff.2012.07.003.
  • Barczynska, R.; Jochym, K.; Slizewska, K.; Kapusniak, J.; Libudzisz, Z. The Effect of Citric Acid-Modified Enzyme-Resistant Dextrin on Growth and Metabolism of Selected Strains of Probiotic and Other Intestinal Bacteria. J. Funct. Foods. 2010, 2(2), 126–133. DOI: 10.1016/j.jff.2010.03.002.
  • Yang, Z.; McClements, D. J.; Xu, Z.; Meng, M.; Li, C.; Chen, L.; Qiu, C.; Long, J.; Jin, Z. Carbohydrate-Based Functional Ingredients Derived from Starch: Current Status and Future Prospects. Food Hydrocolloids. 2022, 131, 107729. DOI: 10.1016/j.foodhyd.2022.107729.
  • Hobden, M. R.; Guérin-Deremaux, L.; Rowland, I.; Gibson, G. R.; Kennedy, O. B. Potential Anti-Obesogenic Properties of Non-Digestible Carbohydrates: Specific Focus on Resistant Dextrin. Proceedings of the Nutrition Society, 2015, 74, 258–267. DOI: 10.1017/S0029665115000087.
  • Li, F.; Atif, M.; Muhammad, A.; Xiang, G. Characterization, Health Benefits, and Food Applications of Enzymatic Digestion-Resistant Dextrin: A Review. Int. J. Biol. Macromol. 2023, 253(4), 126970. DOI: 10.1016/j.ijbiomac.2023.126970.
  • Trithavisup, K.; Shi, Y.; Krusong, K.; Tananuwong, K. Molecular Structure and Properties of Cassava-based Resistant Maltodextrins. Food Chem. 2022, 369, 130876. DOI: 10.1016/j.foodchem.2021.130876.
  • Lin, C.; Lin, J.; Zeng, H.; Wu, Y.; Chang, Y. Indigestible Pyrodextrins Prepared from Corn Starch in the Presence of Glacial Acetic Acid. Carbohydr. Polym. 2018, 188, 68–75. DOI: 10.1016/j.carbpol.2018.01.087.
  • Guangpeng, D.; Zhaobo, G.; Fanghua, L.; Xianbao, S.; Tengteng, Y.; Qian, D.; Mingzhan, Z.; Xingjing, Z. Resistant Dextrin and Method for Preparing the Same. 2019, US10479840B2.
  • Chen, X.; Hou, Y.; Wang, Z.; Liao, A.; Pan, L.; Zhang, M.; Xue, Y.; Wang, J.; Liu, Y.; Huang, J. A Comparative Study of Resistant Dextrins and Resistant Maltodextrins from Different Tuber Crop Starches. Polymers. 2023, 15(23), 4545. DOI: 10.3390/polym15234545.
  • Trithavisup, K.; Krusong, K.; Tananuwong, K. In-Depth Study of the Changes in Properties and Molecular Structure of Cassava Starch During Resistant Dextrin Preparation. Food Chem. 2019, 297, 124996. DOI: 10.1016/j.foodchem.2019.124996.
  • Jochym, K.; Kapusniak, J.; Barczynska, R.; K, K. New Starch Preparations Resistant to Enzymatic Digestion. J. Sci. Food Agric. 2012, 92(4), 886–891. DOI: 10.1002/jsfa.4665.
  • Li, L.; He, T.; Ling, Y.; Li, X.; Sui, C.; Cao, R.; Li, C. Preparation, Structure Characterization and Functional Properties of Pea Dregs Resistant Dextrin. Front. Sustainable. Food. Syst. 2023, 7. DOI: 10.3389/fsufs.2023.1182642.
  • Wang, Y.; Kozlowski, R.; Delgado, G. A. Enzyme Resistant Dextrins from High Amylose Corn Mutant Starches. Die Stärke. 2001, 53(1), 21–26. DOI: 10.1002/1521-379X(200101)53:1<21:AID-STAR21>3.0.CO;2-K.
  • Jochym, K. K.; Nebesny, E. Enzyme-Resistant Dextrins from Potato Starch for Potential Application in the Beverage Industry. Carbohydr. Polym. 2017, 172, 152–158. DOI: 10.1016/j.carbpol.2017.05.041.
  • Lee, D.; Kim, J.; Lim, S. Characterization of Resistant Waxy Maize Dextrins Prepared by Simultaneous Debranching and Crystallization. Food Hydrocolloids. 2021, 112, 106315. DOI: 10.1016/j.foodhyd.2020.106315.
  • Lee, D. J.; Kim, J. Y.; Lim, S. T. Debranched Waxy Maize Resistant Dextrin: Synthesis, Ethanol Fractionation, Crystallization, and Characterization. Carbohydr. Polym. 2023, 301, 120319. DOI: 10.1016/j.carbpol.2022.120319.
  • Xie, A.; Lee, D.; Lim, S. Characterization of Resistant Waxy Maize Dextrins Prepared by Simultaneous Debranching and Crystallization Followed by Acidic or Enzymatic Hydrolysis. Food Hydrocolloids. 2021, 121, 106942. DOI: 10.1016/j.foodhyd.2021.106942.
  • Lam, N. D.; Quynh, T. M.; Diep, T. B.; Binh, P. T.; Lam, T. D. Effect of Gamma Irradiation and Pyrolysis on Indigestible Fraction, Physicochemical Properties, and Molecular Structure of Rice Starch. J. Food Process. Preserv. 2021, 45(10), 1. DOI: 10.1111/jfpp.15880.
  • Wu, J.; Chen, S.; Liu, J. Method for preparing resistant dextrin by using a starch branching enzyme and a cyclodextrin glycosyltransferase. US10988550B2. Reprinted: March 27, 2021.
  • Liu, Z.; Liu, J.; Ren, L.; Wu, J.; Chen, S. Preparation of High-Quality Resistant Dextrin Through Pyrodextrin by a Multienzyme Complex. Food Biosci. 2022, 47, 101701. DOI: 10.1016/j.fbio.2022.101701.
  • Chen, W.; Zhang, T.; Ma, Q.; Zhu, Y.; Shen, R. Structure Characterization and Potential Probiotic Effects of Sorghum and Oat Resistant Dextrins. Foods. 2022, 11(13), 1877. DOI: 10.3390/foods11131877.
  • Zhen, Y.; Zhang, T.; Jiang, B.; Chen, J. Purification and Characterization of Resistant Dextrin. Foods. 2021, 10(1), 185. DOI: 10.3390/foods10010185.
  • Li, Z.; Liu, Y.; Huang, Y.; Tian, Y.; Liu, J.; Wang, S.; Sun, P.; Nie, Y.; Gan, S.; Xu, H. Identification of the Key Structure, Preparation Conditions and Properties of Resistant Dextrin for Indigestibility Based on Simulated Gastrointestinal Conditions. International Journal Of Food Science & Technology. 2022, 57(11), 7233–7244. DOI: 10.1111/ijfs.16070.
  • Wang, Y.; Huang, Z.; Liu, Z.; Luo, S.; Liu, C.; Hu, X. Preparation and characterization of octenyl succinate beta-limit dextrin. Carbohydr. Polym. 2020, 229, 115527. DOI: 10.1016/j.carbpol.2019.115527.
  • Bangoura, A. O.; Jian, T.; He, Q. Yeast Application for Desalting Fibersol-2. International Journal Of Food Science & Technology. 2006, 41(9), 997–1001. DOI: 10.1111/j.1365-2621.2006.01064.x.
  • Yu, S.; Dong, K.; Pora, B. L. R.; Hasjim, J. The Roles of a Native Starch and a Resistant Dextrin in Texture Improvement and Low Glycemic Index of Biscuits. Processes. 2022, 10(11), 2404. DOI: 10.3390/pr10112404.
  • Luo, S.; Wu, X.; Xu, P.; Pan, L.; Zheng, Z.; Cao, L.; Zhao, Y.; Jiang, S. Enzyme-Resistant Dextrin from Chinese Dam Starch for Potential Application in Beverage Industry: Preparation, Physicochemical Properties and in vitro Digestion. Current Topics Nutraceutical Res. 2019, 17(2), 140–147. DOI: 10.37290/ctnr2641-452X.17:140-147.
  • Zhang, Y.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Chen, Y.; Yao, W. The Mechanism About the Resistant Dextrin Improving Sensorial Quality of Rice Wine and Red Wine. J. Food Process. Preserv. 2017, 41(6), e13281. DOI: 10.1111/jfpp.13281.
  • Han, X.; Kang, J.; Bai, Y.; Xue, M.; Shi, Y. Structure of Pyrodextrin in Relation to Its Retrogradation Properties. Food Chem. 2018, 242, 169–173. DOI: 10.1016/j.foodchem.2017.09.015.
  • Bai, Y.; Shi, Y. Chemical Structures in Pyrodextrin Determined by Nuclear Magnetic Resonance Spectroscopy. Carbohydr. Polym. 2016, 151, 426–433. DOI: 10.1016/j.carbpol.2016.05.058.
  • Śliżewska, K.; Libudzisz, Z.; Barczyńska, R.; Kapuśniak, J.; Zduńczyk, Z.; Juśkiewicz, J. Dietary resistant dextrins positively modulate fecal and cecal microbiota composition in young rats. Acta Biochim. Pol. 2015, 62(4), 677–681. DOI: 10.18388/abp.2015_1101.
  • Li, Z. R.; Liu, Y.; Huang, Y. H.; Tian, Y. J.; Liu, J. J.; Wang, S. S.; Sun, P.; Nie, Y. P.; Gan, S. B.; Xu, H. Identification of the Key Structure, Preparation Conditions and Properties of Resistant Dextrin for Indigestibility Based on Simulated Gastrointestinal Conditions. Int. J. Food Sci. Tech. 2022, 57(11), 7233–7244. DOI: 10.1111/ijfs.16070.
  • Laurentin, A.; Cárdenas, M.; Ruales, J.; Pérez, E.; Tovar, J. Preparation of Indigestible Pyrodextrins from Different Starch Sources. J. Agric. Food Chem. 2003, 51(18), 5510–5515. DOI: 10.1021/jf0341518.
  • Kishimoto, Y.; Oga, H.; Tagami, H.; Okuma, K.; Gordon, D. T. Suppressive Effect of Resistant Maltodextrin on Postprandial Blood Triacylglycerol Elevation. Eur. J. Nutr. 2007, 46(3), 133–138. DOI: 10.1007/s00394-007-0643-1.
  • Kilua, A.; Pelpolage, S.; Goto, A.; Nakayama, Y.; Kitazono, E.; Toyohara, K.; Nagata, R.; Fukuma, N.; Han, K.; Fukushima, M. Deciphering the Colonic Fermentation Characteristics of Agavin and Digestion-Resistant Maltodextrin in a Simulated Batch Fermentation System. Int. J. Biol. Macromol. 2021, 189, 151–159. DOI: 10.1016/j.ijbiomac.2021.08.063.
  • Kondo, T.; Handa, K.; Genda, T.; Hino, S.; Hamaguchi, N.; Morita, T. Digestion-Resistant Dextrin Derivatives are Moderately Digested in the Small Intestine and Contribute More to Energy Production Than Predicted from Large-Bowel Fermentation in Rats. J. Nutr. 2017, 147(3), 330–336. DOI: 10.3945/jn.116.239855.
  • Barber, C.; Sabater, C.; Ávila-Gálvez, M. Á.; Vallejo, F.; Bendezu, R. A.; Guérin-Deremaux, L.; Guarner, F.; Espín, J. C.; Margolles, A.; Azpiroz, F. Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients. 2022, 14(21), 4611. DOI: 10.3390/nu14214611.
  • Aliasgharzadeh, A.; Dehghan, P.; Gargari, B. P.; Asghari-Jafarabadi, M. Resistant Dextrin, as a Prebiotic, Improves Insulin Resistance and Inflammation in Women with Type 2 Diabetes: A Randomised Controlled Clinical Trial. Br. J. Nutr. 2015, 113(2), 321–330. DOI: 10.1017/S0007114514003675.
  • Li, S.; Guerin-Deremaux, L.; Pochat, M.; Wils, D.; Reifer, C.; Miller, L. E. NUTRIOSE Dietary Fiber Supplementation Improves Insulin Resistance and Determinants of Metabolic Syndrome in Overweight Men: A Double-Blind, Randomized, Placebo-Controlled Study. Appl. Physiol. Nutr. Metab. 2010, 35(6), 773–782. DOI: 10.1139/H10-074.
  • He, B.; Nohara, K.; Ajami, N. J. Transmissible Microbial and Metabolomic Remodeling by Soluble Dietary Fiber Improves Metabolic Homeostasis. Sci. Rep. 2015, 5(1), 188–205. DOI: 10.1038/srep10604.
  • Hu, Q.; Lu, Y.; Hu, F.; He, S.; Xu, X.; Niu, Y.; Zhang, H.; Li, X.; Su, Q. Resistant Dextrin Reduces Obesity and Attenuates Adipose Tissue Inflammation in High-Fat Diet-Fed Mice. Int. J. Med. Sci. 2020, 17(17), 2611–2621. DOI: 10.7150/ijms.45723.
  • Farhangi, M. A.; Javid, A. Z.; Sarmadi, B.; Karimi, P.; Dehghan, P. A Randomized Controlled Trial on the Efficacy of Resistant Dextrin, as Functional Food, in Women with Type 2 Diabetes: Targeting the Hypothalamic–Pituitary–Adrenal Axis and Immune System. Clin. Nutr. 2018, 37(4), 1216–1223. DOI: 10.1016/j.clnu.2017.06.005.
  • Laetitia, G.; Marine, P.; Cheryl, R.; Daniel, W.; Susan, C.; Larry, E. M. The Soluble Fiber NUTRIOSE Induces a Dose-Dependent Beneficial Impact on Satiety Over Time in Humans. Nutr. Res. 2011, 131(9), 665–672. DOI: 10.1016/j.nutres.2011.09.004.
  • Emilien, C.; Hsu, W.; Hollis, J. The Effect of Soluble Fiber Dextrin on Subjective and Physiological Markers of Appetite: A Randomized Trial. Nutrients. 2020, 12(11), 3341. DOI: 10.3390/nu12113341.
  • Hira, T.; Ikee, A.; Kishimoto, Y.; Kanahori, S.; Hara, H. Resistant Maltodextrin Promotes Fasting Glucagon-Like Peptide-1 Secretion and Production Together with Glucose Tolerance in Rats. Br. J. Nutr. 2015, 114(1), 34–42. DOI: 10.1017/S0007114514004322.
  • Hobden, M. R.; Commane, D. M.; Guérin-Deremaux, L.; Wils, D.; Thabuis, C.; Martin-Morales, A.; Wolfram, S.; Dìaz, A.; Collins, S.; Morais, I., et al. Impact of Dietary Supplementation with Resistant Dextrin (NUTRIOSE®) on Satiety, Glycaemia, and Related Endpoints, in Healthy Adults. Eur. J. Nutr. 2021, 60(8), 4635–4643. DOI: 10.1007/s00394-021-02618-9.
  • Mateo-Gallego, R.; Moreno-Indias, I.; Bea, A. M.; Sánchez-Alcoholado, L.; Fumanal, A. J.; Quesada-Molina, M.; Prieto-Martín, A.; Gutiérrez-Repiso, C.; Civeira, F.; Tinahones, F. J. An Alcohol-Free Beer Enriched with Isomaltulose and a Resistant Dextrin Modulates Gut Microbiome in Subjects with Type 2 Diabetes Mellitus and Overweight or Obesity: A Pilot Study. Food Funct. 2021, 12(8), 3635–3646. DOI: 10.1039/D0FO03160G.
  • Mateo-Gallego, R.; Pérez-Calahorra, S.; Lamiquiz-Moneo, I.; Marco-Benedí, V.; Bea, A. M.; Fumanal, A. J.; Prieto-Martín, A.; Laclaustra, M.; Cenarro, A.; Civeira, F. Effect of an Alcohol-Free Beer Enriched with Isomaltulose and a Resistant Dextrin on Insulin Resistance in Diabetic Patients with Overweight or Obesity. Clin. Nutr. 2020, 39(2), 475–483. DOI: 10.1016/j.clnu.2019.02.025.
  • Guérin-Deremaux, L.; Pochat, M.; Reifer, C.; Daniel, W.; Susan, C.; Miller, L. E. The Soluble Fiber NUTRIOSE Induces a Dose-Dependent Beneficial Impact on Satiety Over Time in Humans. Nutr. Res. 2011, 31(9), 665–672. DOI: 10.1016/j.nutres.2011.09.004.
  • Commane, D. M.; Kennedy, O. B.; Hobden, M. R.; Wils, D.; Thabuis, C.; Martin-Morales, A.; Wolfram, S.; Dìaz, A.; Collins, S.; Morais, I., et al. Impact of Dietary Supplementation with Resistant Dextrin (NUTRIOSEⓇ) on Satiety, Glycaemia, and Related Endpoints, in Healthy Adults. Eur. J. Nutr. 2021, 60(8), 4635–4643. DOI: 10.1007/s00394-021-02618-9.
  • Verdich, C.; Flint, A.; Gutzwiller, J.-P.; Naslund, E.; Beglinger, C.; Hellstrom, P.; Long, S.; Morgan, L.; Holst, J.; Astrup, A. A Meta-Analysis of the Effect of Glucagon-Like Peptide-1 (7–36) Amide on Ad Libitum Energy Intake in Humans. J. Clin. Endocrinol. Metab. 2001, 86(9), 4382–4389. DOI: 10.1210/jcem.86.9.7877.
  • Nathaniel, N. D.; Lisa, K.-L.; Julie, K. S.; Swanson, K. S.; Zinn, K. E.; Nava, G. M.; Ohkuma, K.; Kanahori, S.; Gordon, D. T.; Fahey, G. C. A novel resistant maltodextrin alters gastrointestinal tolerance factors, fecal characteristics, and fecal microbiota in healthy adult humans. J. Am. Coll. Nutr. 2008, 27(2), 356–366. DOI: 10.1080/07315724.2008.10719712.
  • Den Besten, G.; van Eunen, K.; Groen, A. K.; Venema, K.; Reijngoud, D.-J.; Bakker, B. M. The Role of Short-Chain Fatty Acids in the Interplay Between Diet, Gut Microbiota, and Host Energy Metabolism. Journal of Lipid Research. 2013, 54(9), 2325–2340. DOI: 10.1194/jlr.R036012.
  • Hu, J.; Lin, S.; Zheng, B.; Cheung, P. C. Short-Chain Fatty Acids in Control of Energy Metabolism. Crit. Rev. Food Sci. Nutr. 2017, 58(8), 1243–1249. DOI: 10.1080/10408398.2016.1245650.
  • Byrne, C. S.; Chambers, E. S.; Morrison, D. J.; Frost, G. The Role of Short Chain Fatty Acids in Appetite Regulation and Energy Homeostasis. Int. J. Obes. (Lond). 2015, 39(9), 1331–8. DOI: 10.1038/ijo.2015.84.84.
  • Sasaki, H.; Hayashi, K.; Imamura, M.; Hirota, Y.; Hosoki, H.; Nitta, L.; Furutani, A.; Shibata, S. Combined Resistant Dextrin and Low-Dose Mg Oxide Administration Increases Short-Chain Fatty Acid and Lactic Acid Production by Gut Microbiota. J. Nutr. Biochem. 2023, 120, 109420. DOI: 10.1016/j.jnutbio.2023.109420.
  • Baer, D. J.; Stote, K. S.; Henderson, T.; Paul, D. R.; Okuma, K.; Tagami, H.; Kanahori, S.; Gordon, D. T.; Rumpler, W. V.; Ukhanova, M. The Metabolizable Energy of Dietary Resistant Maltodextrin is Variable and Alters Fecal Microbiota Composition in Adult Men-3. J. Nutr. 2014, 144(7), 1023–1029. DOI: 10.3945/jn.113.185298.
  • Slizewska, K. The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic. Acta Biochim. Pol. 2013, 60(4), 671–675. DOI: 10.18388/abp.2013_2039.
  • Włodarczyk, M.; Śliżewska, K.; Barczyńska, R.; Kapuśniak, J. Effects of Resistant Dextrin from Potato Starch on the Growth Dynamics of Selected Co-Cultured Strains of Gastrointestinal Bacteria and the Activity of Fecal Enzymes. Nutrients. 2022, 14(10), 2158. DOI: 10.3390/nu14102158.
  • Zhang, Z.; Chen, X.; Cui, B. Modulation of the Fecal Microbiome and Metabolome by Resistant Dextrin Ameliorates Hepatic Steatosis and Mitochondrial Abnormalities in Mice. Food Funct. 2021, 12(10), 4504–4518. DOI: 10.1039/d1fo00249j.
  • Slizewska, K.; Kapusniak, J.; Barczynska, R.; Jochym, K. Resistant Dextrins as Prebiotic; Carbohydrates-comprehensive studies on glycobiology and glycotechnology: IntechOpen, 2012; pp. 261–288. DOI: 10.5772/51573.
  • Abellan, R.; Maria, S.; Barnuevo, E.; Luque Rubia, A. J.; Sánchez Ayllón, F.; Aldeguer García, M.; García Santamaría, C.; López Román, F. J. Digestion-resistant Maltodextrin Effects on Colonic Transit Time and Stool Weight: A Randomized Controlled Clinical Study. Eur. J. Nutr. 2016, 55(8), 2389–2397. DOI: 10.1007/s00394-015-1045-4.
  • Yuka, K.; Yuko, Y.; Shoko, M.; Hiroshi, O.; Takako, Y.; Hiroyuki, T.; Chieko, H.; Kunio, Y. Effect of Resistant Maltodextrin on Digestion and Absorption of Lipids. J. Health Sci. 2009, 55(5), 838–844. DOI: 10.1248/jhs.55.838.
  • Ikeda, I.; Tamakuni, K.; Sakuma, T.; Ozawa, R.; Inoue, N.; Kishimoto, Y. Resistant Maltodextrin Decreases Micellar Solubility of Lipids and Diffusion of Bile Salt Micelles and Suppresses Incorporation of Micellar Fatty Acids into Caco-2 Cells. J. Nutr. Sci. Vitaminol. (Tokyo). 2016, 62, 335–340. DOI: 10.3177/jnsv.62.335.
  • Takao, T.; Junichi, N.; Yoshinori, K. Effect of Carbonated Beverage Containing Resistant Maltodextrin on Postprandial Serum Triglyceride-A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Jpn. Pharmacol. Ther. 2011, 339, 813–821.
  • Kishimoto, Y.; Yoshikawa, Y.; Miyazato, S.; Oga, H.; Yamada, T.; Tagami, H.; Hashizume, C.; Yamamoto, K. Effect of Resistant Maltodextrin on Digestion and Absorption of Lipids. J. Health Sci. 2009, 55(5), 838–844. DOI: 10.1248/jhs.55.838.
  • Farhangi, M. A.; Dehghan, P.; Namazi, N. Prebiotic Supplementation Modulates Advanced Glycation End-Products (AGEs), Soluble Receptor for AGEs (sRage), and Cardiometabolic Risk Factors Through Improving Metabolic Endotoxemia: A Randomized-Controlled Clinical Trial. Eur. J. Nutr. 2020, 59(7), 3009–3021. DOI: 10.1007/s00394-019-02140-z.
  • Miyazato, S.; Nakagawa, C.; Kishimoto, Y.; Tagami, H.; Hara, H. Promotive Effects of Resistant Maltodextrin on Apparent Absorption of Calcium, Magnesium, Iron and Zinc in Rats. Eur. J. Nutr. 2010, 49(3), 165–171. DOI: 10.1007/s00394-009-0062-6.
  • Gholizadeh Shamasbi, S.; Dehgan, P.; Mohammad-Alizadeh Charandabi, S.; Aliasgarzadeh, A.; Mirghafourvand, M. The Effect of Resistant Dextrin as a Prebiotic on Metabolic Parameters and Androgen Level in Women with Polycystic Ovarian Syndrome: A Randomized, Triple-Blind, Controlled, Clinical Trial. Eur. J. Nutr. 2019, 58(2), 629–640. DOI: 10.1007/s00394-018-1648-7.
  • Saleh Ghadimi, S.; Dehghan, P.; Sarmadi, B.; Maleki, P. Improvement of Sleep by Resistant Dextrin Prebiotic in Type 2 Diabetic Women Coincides with Attenuation of Metabolic Endotoxemia: Involvement of Gut-Brain Axis. J. Sci. Food Agric. 2022, 102(12), 1. DOI: 10.1002/jsfa.11876.
  • Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients. 2013, 5(4), 1417–1435. DOI: 10.3390/nu5041417.
  • Goto, T.; Umeda, T.; Hino, S.; Morita, T.; Nishimura, N. Oral Intake of Slowly Digestible α-Glucan Such as Resistant Maltodextrin Leads to Increased Secretion of Glucagon-Like Peptide-2 in Rats and Helps Thicken Their Ileal Mucosae. J. Nutr. Sci. Vitaminol. (Tokyo). 2022, 68(2), 104–111. DOI: 10.3177/jnsv.68.104.
  • Wang, H.; Bu, X.; Chen, F.; Wang, Y.; Chen, Y. Resistant Dextrin Protects Against Pathological Bone Loss in Ovariectomized Rats and Inhibits RANKL-Induced Osteoclastogenesis. Histol. Histopathol. 2022, 37(11), 18492. DOI: 10.14670/HH-18-492.
  • Wang, Y.; Huang, Z.; Liu, Z.; Luo, S.; Liu, C.; Hu, X. Preparation and characterization of octenyl succinate β-limit dextrin. Carbohydr. Polym. 2020, 229, 115527. DOI: 10.1016/j.carbpol.2019.115527.
  • Barczynska, R.; Zawierucha, I.; Bandurska, K.; Kapusniak, J. Lactose-Free Milk Enriched with Resistant Dextrin. Postepy Hig. Med. Dosw. 2018, 72, 781–787. DOI: 10.5604/01.3001.0012.3278.
  • Cai, X.; Yu, H.; Liu, L.; Lu, T.; Li, J.; Ji, Y.; Le, Z.; Bao, L.; Ma, W.; Xiao, R., et al. Milk Powder Co-Supplemented with Inulin and Resistant Dextrin Improves Glycemic Control and Insulin Resistance in Elderly Type 2 Diabetes Mellitus: A 12-Week Randomized, Double-Blind, Placebo-Controlled Trial. Mol. Nutr. Food Res. 2018, 62(24), 62. DOI: 10.1002/mnfr.201800865.
  • Arilla, E.; Igual, M.; Martínez-Monzó, J.; Codoñer-Franch, P.; García-Segovia, P. Impact of Resistant Maltodextrin Addition on the Physico-Chemical Properties in Pasteurised Orange Juice. Foods. 2020, 9(12), 1832. DOI: 10.3390/foods9121832.
  • Huang, Z.; Wang, J. J.; Chen, Y.; Wei, N.; Hou, Y.; Bai, W.; Hu, S. Effect of Water-Soluble Dietary Fiber Resistant Dextrin on Flour and Bread Qualities. Food Chem. 2020, 317, 126452. DOI: 10.1016/j.foodchem.2020.126452.
  • Emami, N.; Dehghan, P.; Mohtarami, F.; Ostadrahimi, A.; Azizi, M. H. Physicochemical, Textural, and Sensory Evaluation of Reduced Fat Gluten- Free Biscuit Prepared with Inulin and Resistant Dextrin Prebiotic. J. agricultural sci. technol. 2018, 20(4), 719–731.
  • Astina, J.; Saphyakhajorn, W.; Borompichaichartkul, C.; Sapwarobol, S. Tapioca Resistant Maltodextrin as a Carbohydrate Source of Oral Nutrition Supplement (ONS) on Metabolic Indicators: A Clinical Trial. Nutrients. 2022, 14(5), 14. DOI: 10.3390/nu14050916.
  • Gracia, M.; Mercedes, A.; José, M. O.; José, A. F. L. Spray-Drying of Pomegranate Juice with Prebiotic Dietary Fibre. International Journal Of Food Science & Technology. 2016, 51(3), 633–640. DOI: 10.1111/ijfs.13021.
  • Arilla, E.; Garcia-Segovia, P.; Martinez-Monzo, J.; Codoner-Franch, P.; Igual, M. Effect of Adding Resistant Maltodextrin to Pasteurized Orange Juice on Bioactive Compounds and Their Bioaccessibility. Foods. 2021, 10(6), 1198. DOI: 10.3390/foods10061198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.