32
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Vitexin: A Dietary Flavonoid with Potential Protective Effects Against Liver Diseases

, , , , , , , & show all

References

  • Cheng, M. L.; Nakib, D.; Perciani, C. T.; MacParland, S. A. The Immune Niche of the Liver. Clin Sci. (Lond). 2021, 135(20), 2445–2466. DOI: 10.1042/cs20190654.
  • Xiao, J.; Wang, F.; Wong, N. K.; He, J.; Zhang, R.; Sun, R.; Xu, Y.; Liu, Y.; Li, W.; Koike, K., et al. Global Liver Disease Burdens and Research Trends: Analysis from a Chinese Perspective. J. Hepatol. 2019, 71 (1), 212–221. DOI: 10.1016/j.jhep.2019.03.004.
  • Asrani, S. K.; Devarbhavi, H.; Eaton, J.; Kamath, P. S. Burden of Liver Diseases in the World. J. Hepatol. 2019, 70(1), 151–171. DOI: 10.1016/j.jhep.2018.09.014.
  • Neshat, S. Y.; Quiroz, V. M.; Wang, Y.; Tamayo, S.; Doloff, J. C. Liver Disease: Induction, Progression, Immunological Mechanisms, and Therapeutic Interventions. Int. J. Mol. Sci. 2021, 22(13), 6777. DOI: 10.3390/ijms22136777.
  • Ye, Y.; Zhou, J. The Protective Activity of Natural Flavonoids Against Osteoarthritis by Targeting NF-Κb Signaling Pathway. Front. Endocrinol. (Lausanne). 2023, 14, 1117489. DOI: 10.3389/fendo.2023.1117489.
  • Darband, S. G.; Kaviani, M.; Yousefi, B.; Sadighparvar, S.; Pakdel, F. G.; Attari, J. A.; Mohebbi, I.; Naderi, S.; Majidinia, M. Quercetin: A Functional Dietary Flavonoid with Potential Chemo-Preventive Properties in Colorectal Cancer. J. Cell. Physiol. 2018, 233(9), 6544–6560. DOI: 10.1002/jcp.26595.
  • Badshah, S. L.; Faisal, S.; Muhammad, A.; Poulson, B. G.; Emwas, A. H.; Jaremko, M. Antiviral Activities of Flavonoids. Biomed. Pharmacother. 2021, 140, 111596. DOI: 10.1016/j.biopha.2021.111596.
  • Tan, Z.; Deng, J.; Ye, Q.; Zhang, Z. The Antibacterial Activity of Natural-Derived Flavonoids. Curr. Top. Med. Chem. 2022, 22(12), 1009–1019. DOI: 10.2174/1568026622666220221110506.
  • Zhang, L.; Schuppan, D. Traditional Chinese Medicine (TCM) for Fibrotic Liver Disease: Hope and Hype. J. Hepatol. 2014, 61(1), 166–168. DOI: 10.1016/j.jhep.2014.03.009.
  • Liu, Y.; Wang, S.; Kan, J.; Zhang, J.; Zhou, L.; Huang, Y.; Zhang, Y. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling. Curr. Neuropharmacol. 2020, 18(4), 260–276. DOI: 10.2174/1570159x17666191101125530.
  • Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional Chinese Medicine for Cardiovascular Disease: Evidence and Potential Mechanisms. J. Am. Coll. Cardiol. 2017, 69(24), 2952–2966. DOI: 10.1016/j.jacc.2017.04.041.
  • Meng, J.; Zhu, Y.; Ma, H.; Wang, X.; Zhao, Q. The Role of Traditional Chinese Medicine in the Treatment of Cognitive Dysfunction in Type 2 Diabetes. J. Ethnopharmacol. 2021, 280, 114464. DOI: 10.1016/j.jep.2021.114464.
  • He, J. D.; Wang, Z.; Li, S. P.; Xu, Y. J.; Yu, Y.; Ding, Y. J.; Yu, W. L.; Zhang, R. X.; Zhang, H. M.; Du, H. Y. Vitexin Suppresses Autophagy to Induce Apoptosis in Hepatocellular Carcinoma via Activation of the JNK Signaling Pathway. Oncotarget. 2016, 7(51), 84520–84532. DOI: 10.18632/oncotarget.11731.
  • Lund, J. A.; Brown, P. N.; Shipley, P. R. Quantification of North American and European Crataegus Flavonoids by Nuclear Magnetic Resonance Spectrometry. Fitoterapia. 2020, 143, 104537. DOI: 10.1016/j.fitote.2020.104537.
  • Yao, Y.; Cheng, X. Z.; Wang, L. X.; Wang, S. H.; Ren, G. Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna Umbellata L.) in China. Int. J. Mol. Sci. 2012, 13(3), 2707–2716. DOI: 10.3390/ijms13032707.
  • Kim, G. H.; Lim, K.; Yang, H. S.; Lee, J. K.; Kim, Y.; Park, S. K.; Kim, S. H.; Park, S.; Kim, T. H.; Moon, J. S., et al. Improvement in Neurogenesis and Memory Function by Administration of Passiflora Incarnata L. Extract Applied to Sleep Disorder in Rodent Models. J. Chem. Neuroanat. 2019. 98, 27–40. DOI: 10.1016/j.jchemneu.2019.03.005.
  • Gaitan, E.; Lindsay, R. H.; Reichert, R. D.; Ingbar, S. H.; Cooksey, R. C.; Legan, J.; Meydrech, E. F.; Hill, J.; Kubota, K. Antithyroid and Goitrogenic Effects of Millet: Role of C-Glycosylflavones. J. Clin. Endocrinol. Metab. 1989, 68(4), 707–714. DOI: 10.1210/jcem-68-4-707.
  • Moheb, A.; Ibrahim, R. K.; Roy, R.; Sarhan, F. Changes in Wheat Leaf Phenolome in Response to Cold Acclimation. Phytochemistry. 2011, 72(18), 2294–2307. DOI: 10.1016/j.phytochem.2011.08.021.
  • Li, S.; Liang, T.; Zhang, Y.; Huang, K.; Yang, S.; Lv, H.; Chen, Y.; Zhang, C.; Guan, X. Vitexin Alleviates High-Fat Diet Induced Brain Oxidative Stress and Inflammation via Anti-Oxidant, Anti-Inflammatory and Gut Microbiota Modulating Properties. Free Radic Biol Med. 2021, 171, 332–344. DOI: 10.1016/j.freeradbiomed.2021.05.028.
  • Liu, X.; Jiang, Q.; Liu, H.; Luo, S. Vitexin Induces Apoptosis Through Mitochondrial Pathway and PI3K/Akt/mTOR Signaling in Human Non-Small Cell Lung Cancer A549 Cells. Biol. Res. 2019, 52(1), 7. DOI: 10.1186/s40659-019-0214-y.
  • Król-Kogus, B.; Głód, D.; Hałasa, R.; Krauze-Baranowska, M.; Pobłocka-Olech, L. 2D LC As a Tool for Standardization of Foenugraeci Semen Extracts Containing Compounds with Anti-Helicobacter pylori Activity. Food Funct. 2021, 12(6), 2686–2692. DOI: 10.1039/d1fo00226k.
  • Ninfali, P.; Antonelli, A.; Magnani, M.; Scarpa, E. S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients. 2020, 12(9), 2534. DOI: 10.3390/nu12092534.
  • Xue, W.; Wang, X.; Tang, H.; Sun, F.; Zhu, H.; Huang, D.; Dong, L. Vitexin Attenuates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Mitochondrial Dysfunction Induced by Mitochondrial Dynamics Imbalance. Biomed. Pharmacother. 2020, 124, 109849. DOI: 10.1016/j.biopha.2020.109849.
  • Noor, K. K.; Ijaz, M. U.; Ehsan, N.; Tahir, A.; Yeni, D. K.; Neamul Kabir Zihad, S. M.; Uddin, S. J.; Ashraf, A.; Simal-Gandara, J. Hepatoprotective Role of Vitexin Against Cadmium-Induced Liver Damage in Male Rats: A Biochemical, Inflammatory, Apoptotic and Histopathological Investigation. Biomed. Pharmacother. 2022, 150, 112934. DOI: 10.1016/j.biopha.2022.112934.
  • Li, C.; Chen, Y.; Yuan, X.; He, L.; Li, X.; Huang, S.; Hou, S.; Liang, J. Vitexin Ameliorates Chronic Stress Plub High Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Inhibiting Inflammation. Eur. J. Pharmacol. 2020, 882, 173264. DOI: 10.1016/j.ejphar.2020.173264.
  • Hamza, A. A.; Lashin, F. M.; Gamel, M.; Hassanin, S. O.; Abdalla, Y.; Amin, A. Hawthorn Herbal Preparation from Crataegus Oxyacantha Attenuates in vivo Carbon Tetrachloride -Induced Hepatic Fibrosis via Modulating Oxidative Stress and Inflammation. Antioxidants (Basel). 2020, 9(12), 1173. DOI: 10.3390/antiox9121173.
  • Lee, J. H.; Mohan, C. D.; Shanmugam, M. K.; Rangappa, S.; Sethi, G.; Siveen, K. S.; Chinnathambi, A.; Alahmadi, T. A.; Alharbi, S. A.; Basappa, S., et al. Vitexin Abrogates Invasion and Survival of Hepatocellular Carcinoma Cells Through Targeting STAT3 Signaling Pathway. Biochimie. 2020. 175, 58–68. DOI: 10.1016/j.biochi.2020.05.006.
  • He, M.; Min, J. W.; Kong, W. L.; He, X. H.; Li, J. X.; Peng, B. W. A Review on the Pharmacological Effects of Vitexin and Isovitexin. Fitoterapia. 2016, 115, 74–85. DOI: 10.1016/j.fitote.2016.09.011.
  • Che Zain, M. S.; Osman, M. F.; Lee, S. Y.; Shaari, K. UHPLC-UV/PDA Method Validation for Simultaneous Quantification of Luteolin and Apigenin Derivatives from Elaeis Guineensis Leaf Extracts: An Application for Antioxidant Herbal Preparation. Molecules. 2021, 26(4), 1084. DOI: 10.3390/molecules26041084.
  • Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; Nassiri-Asl, M. Review of the Effects of Vitexin in Oxidative Stress-Related Diseases. Food Sci. Nutr. 2020, 8(6), 2569–2580. DOI: 10.1002/fsn3.1567.
  • Praveena, R.; Sadasivam, K.; Kumaresan, R.; Deepha, V.; Sivakumar, R. Experimental and DFT Studies on the Antioxidant Activity of a C-Glycoside from Rhynchosia Capitata. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 103, 442–452. DOI: 10.1016/j.saa.2012.11.001.
  • Luo, J.; Cai, W.; Wu, T.; Xu, B. Phytochemical Distribution in Hull and Cotyledon of Adzuki Bean (Vigna Angularis L.) and Mung Bean (Vigna Radiate L.), and Their Contribution to Antioxidant, Anti-Inflammatory and Anti-Diabetic Activities. Food Chem. 2016, 201, 350–360. DOI: 10.1016/j.foodchem.2016.01.101.
  • Bai, Y.; Chang, J.; Xu, Y.; Cheng, D.; Liu, H.; Zhao, Y.; Yu, Z. Antioxidant and Myocardial Preservation Activities of Natural Phytochemicals from Mung Bean (Vigna Radiata L.) Seeds. J. Agric. Food. Chem. 2016, 64(22), 4648–4655. DOI: 10.1021/acs.jafc.6b01538.
  • Yao, Y.; Cheng, X.; Wang, L.; Wang, S.; Ren, G. A Determination of Potential α-Glucosidase Inhibitors from Azuki Beans (Vigna Angularis). Int. J. Mol. Sci. 2011, 12(10), 6445–6451. DOI: 10.3390/ijms12106445.
  • Xiaofang, P.; Zheng, Z.; Kawing, C.; Shan, F.; Ren, G.-X.; Chen, F.; Wang, M. Inhibitory Effect of Mung Bean Extract and Its Constituents Vitexin and Isovitexin on the Formation of Advanced Glycation Endproducts. Food Chem. 2008, 106(2), 475–481. DOI: 10.1016/j.foodchem.2007.06.016.
  • Zucolotto, S. M.; Fagundes, C.; Reginatto, F. H.; Ramos, F. A.; Castellanos, L.; Duque, C.; Schenkel, E. P. Analysis of C-Glycosyl Flavonoids from South American Passiflora Species by HPLC-DAD and HPLC-MS. Phytochem. Anal. 2012, 23(3), 232–239. DOI: 10.1002/pca.1348.
  • Bedell, S.; Wells, J.; Liu, Q.; Breivogel, C. Vitexin As an Active Ingredient in Passion Flower with Potential As an Agent for Nicotine Cessation: Vitexin Antagonism of the Expression of Nicotine Locomotor Sensitization in Rats. Pharm. Biol. 2019, 57(1), 8–12. DOI: 10.1080/13880209.2018.1561725.
  • Alves, J. S. F.; Silva, A.; da Silva, R. M.; Tiago, P. R. F.; de Carvalho, T. G.; de Araújo Júnior, R. F.; de Azevedo, E. P.; Lopes, N. P.; Ferreira, L. S.; Gavioli, E. C., et al. In vivo Antidepressant Effect of Passiflora Edulis F. Flavicarpa into Cationic Nanoparticles: Improving Bioactivity and Safety. Pharmaceutics. 2020, 12(4), 383.
  • Anzoise, M. L.; Marrassini, C.; Bach, H.; Gorzalczany, S. Beneficial Properties of Passiflora Caerulea on Experimental Colitis. J. Ethnopharmacol. 2016, 194, 137–145. DOI: 10.1016/j.jep.2016.09.002.
  • de Oliveira, P. T. F.; Dos Santos, E. L.; da Silva, W. A. V.; Ferreira, M. R. A.; Soares, L. A. L.; da Silva, F. A.; da Silva, F. S. B. Production of Biomolecules of Interest to the Anxiolytic Herbal Medicine Industry in Yellow Passionfruit Leaves (Passiflora Edulis F. Flavicarpa) Promoted by Mycorrhizal Inoculation. J. Sci. Food Agric. 2019, 99(7), 3716–3720. DOI: 10.1002/jsfa.9598.
  • Colomeu, T. C.; de Figueiredo, D.; de Matos da Silva, P.; Fernandes, L. G. R.; Zollner, R. L. Antiproliferative and Pro-Oxidant Effect of Polyphenols in Aqueous Leaf Extract of Passiflora Alata Curtis on Activated T Lymphocytes from Non-Obese Diabetic (NOD SHILT/J) Mice. Antioxidants (Basel). 2022, 11(8), 1503. DOI: 10.3390/antiox11081503.
  • Colomeu, T. C.; Figueiredo, D.; Cazarin, C. B.; Schumacher, N. S.; Maróstica, M. R., Jr.; Meletti, L. M.; Zollner, R. L. Antioxidant and Anti-Diabetic Potential of Passiflora Alata Curtis Aqueous Leaves Extract in Type 1 Diabetes Mellitus (NOD-Mice). Int. Immunopharmacol. 2014, 18(1), 106–115. DOI: 10.1016/j.intimp.2013.11.005.
  • Vargas, A. J.; Geremias, D. S.; Provensi, G.; Fornari, P. E.; Reginatto, F. H.; Gosmann, G.; Schenkel, E. P.; Fröde, T. S. Passiflora Alata and Passiflora Edulis Spray-Dried Aqueous Extracts Inhibit Inflammation in Mouse Model of Pleurisy. Fitoterapia. 2007, 78(2), 112–119. DOI: 10.1016/j.fitote.2006.09.030.
  • da Silva Morrone, M.; de Assis, A. M.; da Rocha, R. F.; Gasparotto, J.; Gazola, A. C.; Costa, G. M.; Zucolotto, S. M.; Castellanos, L. H.; Ramos, F. A.; Schenkel, E. P., et al. Passiflora Manicata (Juss.) Aqueous Leaf Extract Protects Against Reactive Oxygen Species and Protein Glycation in vitro and ex vivo Models. Food. Chem. Toxicol. 2013, 60, 45–51. DOI: 10.1016/j.fct.2013.07.028.
  • Nassiri-Asl, M.; Shariati-Rad, S.; Zamansoltani, F. Anticonvulsant Effects of Aerial Parts of Passiflora Incarnata Extract in Mice: Involvement of Benzodiazepine and Opioid Receptors. BMC Complement. Altern. Med. 2007, 7(1), 26. DOI: 10.1186/1472-6882-7-26.
  • Gomes, S. V. F.; Portugal, L. A.; dos Anjos, J. P.; de Jesus, O. N.; de Oliveira, E. J.; David, J. P.; David, J. M. Accelerated Solvent Extraction of Phenolic Compounds Exploiting a Box-Behnken Design and Quantification of Five Flavonoids by HPLC-DAD in Passiflora Species. Microchem. J. 2017, 132, 28–35. DOI: 10.1016/j.microc.2016.12.021.
  • Gu, C. B.; Ma, H.; Ning, W. J.; Niu, L. L.; Han, H. Y.; Yuan, X. H.; Fu, Y. J. Characterization, Culture Medium Optimization and Antioxidant Activity of an Endophytic Vitexin-Producing Fungus Dichotomopilus Funicola Y3 from Pigeon Pea [Cajanus Cajan (L.) Millsp.]. J. Appl. Microbiol. 2018, 125(4), 1054–1065. DOI: 10.1111/jam.13928.
  • Wei, Z. F.; Jin, S.; Luo, M.; Pan, Y. Z.; Li, T. T.; Qi, X. L.; Efferth, T.; Fu, Y. J.; Zu, Y. G. Variation in Contents of Main Active Components and Antioxidant Activity in Leaves of Different Pigeon Pea Cultivars During Growth. J. Agric. Food. Chem. 2013, 61(42), 10002–10009. DOI: 10.1021/jf402455m.
  • Ni, Q.; Xu, G.; Wang, Z.; Gao, Q.; Wang, S.; Zhang, Y. Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa Argenteastriatus Leaves. Int. J. Mol. Sci. 2012, 13(2), 2249–2262. DOI: 10.3390/ijms13022249.
  • Shu, G.; Kong, F.; Xu, D.; Yin, L.; He, C.; Lin, J.; Fu, H.; Wang, K.; Tian, Y.; Zhao, X. Bamboo Leaf Flavone Changed the Community of Cecum Microbiota and Improved the Immune Function in Broilers. Sci. Rep. 2020, 10(1), 12324. DOI: 10.1038/s41598-020-69010-1.
  • Yang, J. H.; Choi, M. H.; Yang, S. H.; Cho, S. S.; Park, S. J.; Shin, H. J.; Ki, S. H. Potent Anti-Inflammatory and Antiadipogenic Properties of Bamboo (Sasa Coreana Nakai) Leaves Extract and Its Major Constituent Flavonoids. J. Agric. Food. Chem. 2017, 65(31), 6665–6673. DOI: 10.1021/acs.jafc.7b02203.
  • Li, Y.; Chen, B.; Cao, H. Y.; Li, J. E.; Chen, L. L.; Zhang, Q. F. Pancreatic Lipase Inhibitory Activity of Bambusa Multiplex Cv. Fernleaf Leaf Extract in vitro and in vivo. Food Funct. 2021, 12(16), 7440–7447. DOI: 10.1039/d1fo01168e.
  • Cao, G.; Yu, Y.; Wang, H.; Liu, J.; Zhang, X.; Yu, Y.; Li, Z.; Zhang, Y.; Yang, C. Effects of Oral Administration of Bamboo (Dendrocalamus Membranaceus) Leaf Flavonoids on the Antioxidant Capacity, Caecal Microbiota, and Serum Metabolome of Gallus Gallus Domesticus. Front Nutr. 2022, 9, 848532. DOI: 10.3389/fnut.2022.848532.
  • Yang, J. P.; He, H.; Lu, Y. H. Four Flavonoid Compounds from Phyllostachys Edulis Leaf Extract Retard the Digestion of Starch and Its Working Mechanisms. J. Agric. Food. Chem. 2014, 62(31), 7760–7770. DOI: 10.1021/jf501931m.
  • Gaitan, E.; Cooksey, R. C.; Legan, J.; Lindsay, R. H. Antithyroid Effects in vivo and in vitro of Vitexin: A C-Glucosylflavone in Millet. J. Clin. Endocrinol. Metab. 1995, 80(4), 1144–1147. DOI: 10.1210/jcem.80.4.7714083.
  • Zhang, J.; Yuan, K.; Zhou, W. L.; Zhou, J.; Yang, P. Studies on the Active Components and Antioxidant Activities of the Extracts of Mimosa Pudica Linn. from Southern China. Pharmacogn. Mag. 2011, 7(25), 35–39. DOI: 10.4103/0973-1296.75899.
  • Zhang, Y.; Ma, X. M.; Wang, X. C.; Liu, J. H.; Huang, B. Y.; Guo, X. Y.; Xiong, S. P.; La, G. X. UPLC-QTOF Analysis Reveals Metabolomic Changes in the Flag Leaf of Wheat (Triticum Aestivum L.) Under Low-Nitrogen Stress. Plant Physiol. Biochem. 2017, 111, 30–38. DOI: 10.1016/j.plaphy.2016.11.009.
  • Costa, E. C.; Menezes, P. M. N.; Silva, F. S.; Ribeiro, L. A. A.; Rolim, L. A.; Araújo, E.; Nunes, X. P. Jatropha Mutabilis, a New Source of Vitexin: HPLC Quantification and Pharmacological Evaluation. Nat. Prod. Res. 2021, 35(24), 6200–6203. DOI: 10.1080/14786419.2020.1837807.
  • Lee, J. H.; Lee, S.; Nguyen, Q. N.; Phung, H. M.; Shin, M. S.; Kim, J. Y.; Choi, H.; Shim, S. H.; Kang, K. S. Identification of the Active Ingredient and Beneficial Effects of Vitex Rotundifolia Fruits on Menopausal Symptoms in Ovariectomized Rats. Biomolecules. 2021, 11(7), 1033. DOI: 10.3390/biom11071033.
  • Sarkar, M. K.; Kar, A.; Jayaraman, A.; Kar Mahapatra, S.; Vadivel, V. Vitexin Isolated from Prosopis Cineraria Leaves Induce Apoptosis in K-562 Leukemia Cells via Inhibition of the BCR-ABL-Ras-Raf Pathway. J. Pharm. Pharmacol. 2022, 74(1), 103–111. DOI: 10.1093/jpp/rgab085.
  • Malar, D. S.; Prasanth, M. I.; Shafreen, R. B.; Balamurugan, K.; Devi, K. P. Grewia Tiliaefolia and Its Active Compound Vitexin Regulate the Expression of Glutamate Transporters and Protect Neuro-2a Cells from Glutamate Toxicity. Life. sci. 2018, 203, 233–241. DOI: 10.1016/j.lfs.2018.04.047.
  • Sheeja Malar, D.; Beema Shafreen, R.; Karutha Pandian, S.; Pandima Devi, K. Cholinesterase Inhibitory, Anti-Amyloidogenic and Neuroprotective Effect of the Medicinal Plant Grewia Tiliaefolia - an in vitro and in silico Study. Pharm. Biol. 2017, 55(1), 381–393. DOI: 10.1080/13880209.2016.1241811.
  • Sae-Tan, S.; Kumrungsee, T.; Yanaka, N. Mungbean Seed Coat Water Extract Inhibits Inflammation in LPS-Induced Acute Liver Injury Mice and LPS-Stimulated RAW 246.7 Macrophages via the Inhibition of Tak1/iκbα/nf-Κb. J. Food Sci. Technol. 2020, 57(7), 2659–2668. DOI: 10.1007/s13197-020-04302-y.
  • Hwang, J. W.; Yao, H.; Caito, S.; Sundar, I. K.; Rahman, I. Redox Regulation of SIRT1 in Inflammation and Cellular Senescence. Free Radic Biol Med. 2013, 61, 95–110. DOI: 10.1016/j.freeradbiomed.2013.03.015.
  • Wu, H.; Zhang, G.; Huang, L.; Pang, H.; Zhang, N.; Chen, Y.; Wang, G. Hepatoprotective Effect of Polyphenol-Enriched Fraction from Folium Microcos on Oxidative Stress and Apoptosis in Acetaminophen-Induced Liver Injury in Mice. Oxid. Med. Cell Longev. 2017, 2017, 3631565. DOI: 10.1155/2017/3631565.
  • Fursule, R. A.; Patil, S. D. Hepatoprotective and Antioxidant Activity of Phaseolus Trilobus, Ait on Bile Duct Ligation Induced Liver Fibrosis in Rats. J. Ethnopharmacol. 2010, 129(3), 416–419. DOI: 10.1016/j.jep.2010.04.021.
  • Inamdar, S.; Joshi, A.; Malik, S.; Boppana, R.; Ghaskadbi, S. Vitexin Alleviates Non-Alcoholic Fatty Liver Disease by Activating AMPK in High Fat Diet Fed Mice. Biochem. Biophys. Res. Commun. 2019, 519(1), 106–112. DOI: 10.1016/j.bbrc.2019.08.139.
  • Hussain, A.; Cho, J. S.; Kim, J. S.; Lee, Y. I. Protective Effects of Polyphenol Enriched Complex Plants Extract on Metabolic Dysfunctions Associated with Obesity and Related Nonalcoholic Fatty Liver Diseases in High Fat Diet-Induced C57BL/6 Mice. Molecules. 2021, 26(2), 302. DOI: 10.3390/molecules26020302.
  • Seyedan, A.; Mohamed, Z.; Alshagga, M. A.; Koosha, S.; Alshawsh, M. A. Cynometra Cauliflora Linn. Attenuates Metabolic Abnormalities in High-Fat Diet-Induced Obese Mice. J. Ethnopharmacol. 2019, 236, 173–182. DOI: 10.1016/j.jep.2019.03.001.
  • Yu, Y.; Li, Z.; Cao, G.; Huang, S.; Yang, H. Bamboo Leaf Flavonoids Extracts Alleviate Oxidative Stress in HepG2 Cells via Naturally Modulating Reactive Oxygen Species Production and Nrf2-Mediated Antioxidant Defense Responses. J. Food Sci. 2019, 84(6), 1609–1620. DOI: 10.1111/1750-3841.14609.
  • Jiang, Y.; Gong, Q.; Gong, Y.; Zhuo, C.; Huang, J.; Tang, Q. Vitexin Attenuates Non-Alcoholic Fatty Liver Disease Lipid Accumulation in High Fat-Diet Fed Mice by Activating Autophagy and Reducing Endoplasmic Reticulum Stress in Liver. Biol. Pharm. Bull. 2022, 45(3), 260–267. DOI: 10.1248/bpb.b21-00716.
  • Gu, W. J.; Wang, R. Q.; Cai, Z. W.; Lin, X. J.; Zhang, L.; Chen, R. C.; Li, R.; Zhang, W. H.; Ji, X. M.; Shui, G. H., et al. Hawthorn Total Flavonoids Ameliorate Ambient Fine Particulate Matter-Induced Insulin Resistance and Metabolic Abnormalities of Lipids in Mice. Ecotoxicol. Environ. Saf. 2023, 249, 249. DOI: 10.1016/j.ecoenv.2022.114456.
  • Yuan, H.; Duan, S.; Guan, T.; Yuan, X.; Lin, J.; Hou, S.; Lai, X.; Huang, S.; Du, X.; Chen, S. Vitexin Protects Against Ethanol-Induced Liver Injury Through Sirt1/p53 Signaling Pathway. Eur. J. Pharmacol. 2020, 873, 173007. DOI: 10.1016/j.ejphar.2020.173007.
  • Ding, C.; Shen, H.; Tian, Z.; Kang, M.; Ma, J.; He, Q.; Wang, J.; Zhang, Y.; Deng, Y.; Wang, D. Protective Effect of Hawthorn Vitexin on the Ethanol-Injured DNA of BRL-3A Hepatocytes. Medicine. 2021, 100(50), e28228. DOI: 10.1097/md.0000000000028228.
  • Liu, X. N.; Zhao, Y. L.; Gao, E. Z.; Liu, T.; Yu, X. H.; Yu, Z. G. 绿豆黄酮对小鼠急性酒精性肝损伤的干预作用. J. Shenyang Pharmaceutical Univ. 2015, 32(1), 55–58.
  • Liu, T.; Yu, X. H.; Gao, E. Z.; Liu, X. N.; Sun, L. J.; Li, H. L.; Wang, P.; Zhao, Y. L.; Yu, Z. G. Hepatoprotective Effect of Active Constituents Isolated from Mung Beans (Phaseolus Radiatus L.) in an Alcohol-Induced Liver Injury Mouse Model. J. Food Biochem. 2014, 38(5), 453–459. DOI: 10.1111/jfbc.12083.
  • Elsayed, H. E.; Ebrahim, H. Y.; Mady, M. S.; Khattab, M. A.; El-Sayed, E. K.; Moharram, F. A. Ethnopharmacological Impact of Melaleuca Rugulosa (Link) Craven Leaves Extract on Liver Inflammation. J. Ethnopharmacol. 2022, 292, 115215. DOI: 10.1016/j.jep.2022.115215.
  • Zhang, L.; Chen, D.; Tu, Y.; Sang, T.; Pan, T.; Lin, H.; Cai, C.; Jin, X.; Wu, F.; Xu, L., et al. Vitexin Attenuates Autoimmune Hepatitis in Mouse Induced by Syngeneic Liver Cytosolic Proteins via Activation of AMPK/AKT/GSK-3β/Nrf2 Pathway. Eur. J. Pharmacol. 2022, 917, 174720. DOI: 10.1016/j.ejphar.2021.174720.
  • Duan, S.; Du, X.; Chen, S.; Liang, J.; Huang, S.; Hou, S.; Gao, J.; Ding, P. Effect of Vitexin on Alleviating Liver Inflammation in a Dextran Sulfate Sodium (DSS)-Induced Colitis Model. Biomed. Pharmacother. 2020, 121, 109683. DOI: 10.1016/j.biopha.2019.109683.
  • Sharma, P.; Bodhankar, S. L.; Thakurdesai, P. A. Protective Effect of Aqueous Extract of Feronia Elephantum Correa Leaves on Thioacetamide Induced Liver Necrosis in Diabetic Rats. Asian Pac. J. Trop. Biomed. 2012, 2(9), 691–695. DOI: 10.1016/s2221-1691(12)60211-1.
  • He, J.; Yang, R. Effects of Propofol and Vitexin on Apoptosis in Rat Liver Ischemia Reperfusion Injury. Pakistan J. Zool. 2022, 54(3), 1463–1466. DOI: 10.17582/journal.pjz/20200321080348.
  • Sahreen, S.; Khan, M. R.; Khan, R. A. Hepatoprotective Effects of Methanol Extract of Carissa Opaca Leaves on CCl4-Induced Damage in Rat. BMC Complement. Altern. Med. 2011, 11(1), 48. DOI: 10.1186/1472-6882-11-48.
  • Lunardi, R. F.; Wohlenberg, M.; Medeiros, N.; Agostini, F.; Funchal, C.; Dani, C. In vitro Antioxidant Capacity of Tea of Echinodorus Grandiforus, “Leather hat,” in Wistar Rat Liver. An. Acad. Bras. Cienc. 2014, 86(3), 1451–1462. DOI: 10.1590/0001-3765201420130507.
  • Zhang, C.; Li, S.; Sun, C.; Liu, L.; Fang, Y.; Yang, X.; Pan, X.; Zhang, B. Vitexin Ameliorates Glycochenodeoxycholate-Induced Hepatocyte Injury Through SIRT6 and JAK2/STAT3 Pathways. Iran J. Basic Med. Sci. 2021, 24(12), 1717–1725. DOI: 10.22038/ijbms.2021.59424.13196.
  • Shi, Y. Y.; Deng, L. D.; Rao, W. W.; Xu, Q. 牡荆素对人肝细胞癌SMMC-7721细胞的增殖抑制作用及其机制的影响. Chin. J. Hosp. Pharm. 2016, 36(5), 366–371.
  • Bedogni, G.; Miglioli, L.; Masutti, F.; Tiribelli, C.; Marchesini, G.; Bellentani, S. Prevalence of and Risk Factors for Nonalcoholic Fatty Liver Disease: The Dionysos Nutrition and Liver Study. Hepatology. 2005, 42(1), 44–52. DOI: 10.1002/hep.20734.
  • Younossi, Z.; Anstee, Q. M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology. 2018, 15(1), 11–20. DOI: 10.1038/nrgastro.2017.109.
  • Kotronen, A.; Yki-Järvinen, H. Fatty Liver: A Novel Component of the Metabolic Syndrome. Arterioscler Thromb. Vasc. Biol. 2008, 28(1), 27–38. DOI: 10.1161/atvbaha.107.147538.
  • Eslam, M.; Newsome, P. N.; Sarin, S. K.; Anstee, Q. M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J. F.; Schattenberg, J. M., et al. A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. J. Hepatol. 2020, 73 (1), 202–209. DOI: 10.1016/j.jhep.2020.03.039.
  • Fouad, Y.; Waked, I.; Bollipo, S.; Gomaa, A.; Ajlouni, Y.; Attia, D. What’s in a Name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int. 2020, 40(6), 1254–1261. DOI: 10.1111/liv.14478.
  • Powell, E. E.; Wong, V. W.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet. 2021, 397(10290), 2212–2224. DOI: 10.1016/s0140-6736(20)32511-3.
  • Serfaty, L.; Lemoine, M. Definition and Natural History of Metabolic Steatosis: Clinical Aspects of NAFLD, NASH and Cirrhosis. Diabetes Metab. 2008, 34(6), 634–637. DOI: 10.1016/s1262-3636(08)74597-x.
  • Gerges, S. H.; Wahdan, S. A.; Elsherbiny, D. A.; El-Demerdash, E. Non-Alcoholic Fatty Liver Disease: An Overview of Risk Factors, Pathophysiological Mechanisms, Diagnostic Procedures, and Therapeutic Interventions. Life. sci. 2021, 271, 119220. DOI: 10.1016/j.lfs.2021.119220.
  • Esler, W. P.; Bence, K. K. Metabolic Targets in Nonalcoholic Fatty Liver Disease. Cell. Mol. Gastroenterol. Hepatol. 2019, 8(2), 247–267. DOI: 10.1016/j.jcmgh.2019.04.007.
  • Manne, V.; Handa, P.; Kowdley, K. V. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2018, 22(1), 23–37. DOI: 10.1016/j.cld.2017.08.007.
  • Buzzetti, E.; Pinzani, M.; Tsochatzis, E. A. The Multiple-Hit Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD). Metabolism. 2016, 65(8), 1038–1048. DOI: 10.1016/j.metabol.2015.12.012.
  • Neuschwander-Tetri, B. A. Non-Alcoholic Fatty Liver Disease. BMC Med. 2017, 15(1), 45. DOI: 10.1186/s12916-017-0806-8.
  • Paternostro, R.; Trauner, M. Current Treatment of Non-Alcoholic Fatty Liver Disease. J. Intern. Med. 2022, 292(2), 190–204. DOI: 10.1111/joim.13531.
  • Yan, M. X.; Chen, Z. Y.; He, B. H. 山楂叶总黄酮对非酒精性脂肪性肝炎大鼠肝组织NF-κB及其抑制物表达的影响. China J. Tradit. Chin. Med. And Pharm. 2009, 2, 139–143.
  • Wang, S.; Kaufman, R. J. How Does Protein Misfolding in the Endoplasmic Reticulum Affect Lipid Metabolism in the Liver? Curr. Opin. Lipidol. 2014, 25(2), 125–132. DOI: 10.1097/mol.0000000000000056.
  • Ipsen, D. H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular Mechanisms of Hepatic Lipid Accumulation in Non-Alcoholic Fatty Liver Disease. Cell. Mol. Life Sci. 2018, 75(18), 3313–3327. DOI: 10.1007/s00018-018-2860-6.
  • Stern, J. H.; Rutkowski, J. M.; Scherer, P. E. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis Through Adipose Tissue Crosstalk. Cell Metab. 2016, 23(5), 770–784. DOI: 10.1016/j.cmet.2016.04.011.
  • Friedman, S. L.; Neuschwander-Tetri, B. A.; Rinella, M.; Sanyal, A. J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24(7), 908–922. DOI: 10.1038/s41591-018-0104-9.
  • Takaki, A.; Kawai, D.; Yamamoto, K. Multiple Hits, Including Oxidative Stress, As Pathogenesis and Treatment Target in Non-Alcoholic Steatohepatitis (NASH). Int. J. Mol. Sci. 2013, 14(10), 20704–20728. DOI: 10.3390/ijms141020704.
  • Yang, J.; Fernández-Galilea, M.; Martínez-Fernández, L.; González-Muniesa, P.; Pérez-Chávez, A.; Martínez, J. A.; Moreno-Aliaga, M. J. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutr. 2019, 11(4), 872. DOI: 10.3390/nu11040872.
  • Caldwell, S. H.; Swerdlow, R. H.; Khan, E. M.; Iezzoni, J. C.; Hespenheide, E. E.; Parks, J. K.; Parker, W. D., Jr. Mitochondrial Abnormalities in Non-Alcoholic Steatohepatitis. J. Hepatol. 1999, 31(3), 430–434. DOI: 10.1016/s0168-8278(99)80033-6.
  • Nassir, F.; Ibdah, J. A. Role of Mitochondria in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15(5), 8713–8742. DOI: 10.3390/ijms15058713.
  • Videla, L. A.; Rodrigo, R.; Orellana, M.; Fernandez, V.; Tapia, G.; Quiñones, L.; Varela, N.; Contreras, J.; Lazarte, R.; Csendes, A., et al. Oxidative Stress-Related Parameters in the Liver of Non-Alcoholic Fatty Liver Disease Patients. Clin Sci. (Lond). 2004, 106 (3), 261–268. DOI: 10.1042/cs20030285.
  • Park, M. H.; Kim, D. H.; Kim, M. J.; Lee, E. K.; An, H. J.; Jeong, J. W.; Kim, H. R.; Kim, S. J.; Yu, B. P.; Moon, H. R., et al. Effects of MHY908, a New Synthetic PPARα/γ Dual Agonist, on Inflammatory Responses and Insulin Resistance in Aged Rats. J Gerontol A Biol Sci Med Sci. 2016, 71(3), 300–309.
  • Zorov, D. B.; Juhaszova, M.; Sollott, S. J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94(3), 909–950. DOI: 10.1152/physrev.00026.2013.
  • Chandel, N. S. Evolution of Mitochondria As Signaling Organelles. Cell Metab. 2015, 22(2), 204–206. DOI: 10.1016/j.cmet.2015.05.013.
  • Hotamisligil, G. S. Inflammation and Metabolic Disorders. Nature. 2006, 444(7121), 860–867. DOI: 10.1038/nature05485.
  • Roh, Y. S.; Seki, E. Toll-Like Receptors in Alcoholic Liver Disease, Non-Alcoholic Steatohepatitis and Carcinogenesis. J. Gastroenterol. Hepatol. 2013, Suppl 28(S1), 38–42. DOI: 10.1111/jgh.12019.
  • Wen, Y.; Lambrecht, J.; Ju, C.; Tacke, F. Hepatic Macrophages in Liver Homeostasis and Diseases-Diversity, Plasticity and Therapeutic Opportunities. Cell. Mol. Immunol. 2021, 18(1), 45–56. DOI: 10.1038/s41423-020-00558-8.
  • Cobbina, E.; Akhlaghi, F. Non-Alcoholic Fatty Liver Disease (NAFLD) - Pathogenesis, Classification, and Effect on Drug Metabolizing Enzymes and Transporters. Drug Metab. Rev. 2017, 49(2), 197–211. DOI: 10.1080/03602532.2017.1293683.
  • Xu, X.; Poulsen, K. L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted Therapeutics and Novel Signaling Pathways in Non-Alcohol-Associated Fatty Liver/Steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022, 7(1), 287. DOI: 10.1038/s41392-022-01119-3.
  • Luci, C.; Bourinet, M.; Leclère, P. S.; Anty, R.; Gual, P. Chronic Inflammation in Non-Alcoholic Steatohepatitis: Molecular Mechanisms and Therapeutic Strategies. Front. Endocrinol. (Lausanne). 2020, 11, 597648. DOI: 10.3389/fendo.2020.597648.
  • Peverill, W.; Powell, L. W.; Skoien, R. Evolving Concepts in the Pathogenesis of NASH: Beyond Steatosis and Inflammation. Int. J. Mol. Sci. 2014, 15(5), 8591–8638. DOI: 10.3390/ijms15058591.
  • Zhang, C. H.; Zhou, B. G.; Sheng, J. Q.; Chen, Y.; Cao, Y. Q.; Chen, C. Molecular Mechanisms of Hepatic Insulin Resistance in Nonalcoholic Fatty Liver Disease and Potential Treatment Strategies. Pharmacol. Res. 2020, 159, 104984. DOI: 10.1016/j.phrs.2020.104984.
  • Hwang, K. A.; Hwang, Y. J.; Kim, G. R.; Choe, J. S. Extracts from Aralia Elata (Miq) Seem Alleviate Hepatosteatosis via Improving Hepatic Insulin Sensitivity. BMC Complement. Altern. Med. 2015, 15(1), 347. DOI: 10.1186/s12906-015-0871-5.
  • Roberts, C. K.; Hevener, A. L.; Barnard, R. J. Metabolic Syndrome and Insulin Resistance: Underlying Causes and Modification by Exercise Training. Compr. Physiol. 2013, 3(1), 1–58. DOI: 10.1002/cphy.c110062.
  • Smith, U.; Axelsen, M.; Carvalho, E.; Eliasson, B.; Jansson, P. A.; Wesslau, C. Insulin Signaling and Action in Fat Cells: Associations with Insulin Resistance and Type 2 Diabetes. Ann. N Y Acad. Sci. 1999, 892(1), 119–126. DOI: 10.1111/j.1749-6632.1999.tb07790.x.
  • Petersen, K. F.; Shulman, G. I. Etiology of Insulin Resistance. Am. j. med. 2006, 119(Suppl 5), S10–6. DOI: 10.1016/j.amjmed.2006.01.009.
  • Seitz, H. K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic Liver Disease. Nat. Rev. Dis. Primers. 2018, 4(1), 16. DOI: 10.1038/s41572-018-0014-7.
  • Sherlock, S. Alcoholic Liver Disease. Lancet. 1995, 345(8944), 227–229. DOI: 10.1016/s0140-6736(95)90226-0.
  • Louvet, A.; Mathurin, P. Alcoholic Liver Disease: Mechanisms of Injury and Targeted Treatment. Nature Reviews Gastroenterology & Hepatology. 2015, 12(4), 231–242. DOI: 10.1038/nrgastro.2015.35.
  • Ko, S.; Russell, J. O.; Molina, L. M.; Monga, S. P. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. Annu. Rev. Pathol. 2020, 15(1), 23–50. DOI: 10.1146/annurev-pathmechdis-012419-032824.
  • Stravitz, R. T.; Lee, W. M. Acute Liver Failure. Lancet. 2019, 394(10201), 869–881. DOI: 10.1016/s0140-6736(19)31894-x.
  • Hoppmann, N. A.; Gray, M. E.; McGuire, B. M. Drug-Induced Liver Injury in the Setting of Chronic Liver Disease. Clin. Liver Dis. 2020, 24(1), 89–106. DOI: 10.1016/j.cld.2019.09.006.
  • Li, X.; Tang, J.; Mao, Y. Incidence and Risk Factors of Drug-Induced Liver Injury. Liver Int. 2022, 42(9), 1999–2014. DOI: 10.1111/liv.15262.
  • Hoofnagle, J. H.; Björnsson, E. S. Drug-Induced Liver Injury - Types and Phenotypes. N. Engl. J. Med. 2019, 381(3), 264–273. DOI: 10.1056/NEJMra1816149.
  • Garcia-Cortes, M.; Robles-Diaz, M.; Stephens, C.; Ortega-Alonso, A.; Lucena, M. I.; Andrade, R. J. Drug Induced Liver Injury: An Update. Arch. Toxicol. 2020, 94(10), 3381–3407. DOI: 10.1007/s00204-020-02885-1.
  • Abboud, G.; Kaplowitz, N. Drug-Induced Liver Injury. Drug Saf. 2007, 30(4), 277–294. DOI: 10.2165/00002018-200730040-00001.
  • Jaeschke, H. Pathophysiology of Hepatic Ischemia-Reperfusion Injury: The Role of Complement Activation. Gastroenterol. 1994, 107(2), 583–586. DOI: 10.1016/0016-5085(94)90188-0.
  • Basu, S. Carbon Tetrachloride-Induced Lipid Peroxidation: Eicosanoid Formation and Their Regulation by Antioxidant Nutrients. Toxicology. 2003, 189(1–2), 113–127. DOI: 10.1016/s0300-483x(03)00157-4.
  • Mihailovic, V.; Misic, D.; Matic, S.; Mihailovic, M.; Stanic, S.; Vrvic, M. M.; Katanic, J.; Mladenovic, M.; Stankovic, N.; Boroja, T., et al. Comparative Phytochemical Analysis of Gentiana Cruciata L. Roots and Aerial Parts, and Their Biological Activities. Ind. Crops Prod. 2015. 73, 49–62. DOI: 10.1016/j.indcrop.2015.04.013.
  • Lin, T. L.; Shu, C. C.; Chen, Y. M.; Lu, J. J.; Wu, T. S.; Lai, W. F.; Tzeng, C. M.; Lai, H. C.; Lu, C. C. Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides from Gut Microbiome. Front. Pharmacol. 2020, 11, 554. DOI: 10.3389/fphar.2020.00554.
  • Schiessel, C.; Forsthove, C.; Keppler, D. 45Calcium Uptake During the Transition from Reversible to Irreversible Liver Injury Induced by D-Galactosamine in vivo. Hepatology. 1984, 4(5), 855–861. DOI: 10.1002/hep.1840040510.
  • Banskota, A. H.; Tezuka, Y.; Adnyana, I. K.; Xiong, Q.; Hase, K.; Tran, K. Q.; Tanaka, K.; Saiki, I.; Kadota, S. Hepatoprotective Effect of Combretum Quadrangulare and Its Constituents. Biol. Pharm. Bull. 2000, 23(4), 456–460. DOI: 10.1248/bpb.23.456.
  • Wu, M. M.; Wang, C. L.; Mai, C. T.; Chen, J. N.; Lai, X. P.; He, L.; Huang, S.; Zhang, X. J. Flavonoids from Livistona Chinensis Fruit Ameliorates Lps/D-GalN-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Inflammation. J. Funct. Foods. 2019, 61, 61. DOI: 10.1016/j.jff.2019.103460.
  • Smith, R. P.; Wilcox, D. E. Toxicology of Selected Nitric Oxide-Donating Xenobiotics, with Particular Reference to Azide. Crit. Rev. Toxicol. 1994, 24(4), 355–377. DOI: 10.3109/10408449409017923.
  • Singh, C.; Prakash, C.; Mishra, P.; Tiwari, K. N.; Mishra, S. K.; More, R. S.; Kumar, V.; Singh, J. Hepatoprotective Efficacy of Premna Integrifolia L. Leaves Against Aflatoxin B1-Induced Toxicity in Mice. Toxicon. 2019, 166, 88–100. DOI: 10.1016/j.toxicon.2019.05.014.
  • Alcolado, R.; Arthur, M. J.; Iredale, J. P. Pathogenesis of Liver Fibrosis. Clin Sci. (Lond). 1997, 92(2), 103–112. DOI: 10.1042/cs0920103.
  • Friedman, S. L. Liver Fibrosis – from Bench to Bedside. J. Hepatol. 2003, 38(Suppl 1), S38–53. DOI: 10.1016/s0168-8278(02)00429-4.
  • Heymann, F.; Tacke, F. Immunology in the Liver–From Homeostasis to Disease. Nature Reviews Gastroenterology & Hepatology. 2016, 13(2), 88–110. DOI: 10.1038/nrgastro.2015.200.
  • Friedman, S. L. Mechanisms of Hepatic Fibrogenesis. Gastroenterol. 2008, 134(6), 1655–1669. DOI: 10.1053/j.gastro.2008.03.003.
  • Köhler, U. A.; Böhm, F.; Rolfs, F.; Egger, M.; Hornemann, T.; Pasparakis, M.; Weber, A.; Werner, S. NF-κB/RelA and Nrf2 Cooperate to Maintain Hepatocyte Integrity and to Prevent Development of Hepatocellular Adenoma. J. Hepatol. 2016, 64(1), 94–102. DOI: 10.1016/j.jhep.2015.08.033.
  • Papanikolaou, I. G.; Katselis, C.; Apostolou, K.; Feretis, T.; Lymperi, M.; Konstadoulakis, M. M.; Papalois, A. E.; Zografos, G. C. Mesenchymal Stem Cells Transplantation Following Partial Hepatectomy: A New Concept to Promote Liver Regeneration-Systematic Review of the Literature Focused on Experimental Studies in Rodent Models. Stem Cells Int. 2017, 2017, 7567958. DOI: 10.1155/2017/7567958.
  • Hirschfield, G. M.; Heathcote, E. J.; Gershwin, M. E. Pathogenesis of Cholestatic Liver Disease and Therapeutic Approaches. Gastroenterol. 2010, 139(5), 1481–1496. DOI: 10.1053/j.gastro.2010.09.004.
  • Gossard, A. A.; Talwalkar, J. A. Cholestatic Liver Disease. Med. Clin. North Am. 2014, 98(1), 73–85. DOI: 10.1016/j.mcna.2013.09.002.
  • Yokoda, R. T.; Carey, E. J. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. Am. J. Gastroenterol. 2019, 114(10), 1593–1605. DOI: 10.14309/ajg.0000000000000268.
  • Pasha, T. M.; Lindor, K. D. Diagnosis and Therapy of Cholestatic Liver Disease. Med. Clin. North Am. 1996, 80(5), 995–1019. DOI: 10.1016/s0025-7125(05)70477-6.
  • Wei, C.; Qiu, J.; Wu, Y.; Chen, Z.; Yu, Z.; Huang, Z.; Yang, K.; Hu, H.; Liu, F. Promising Traditional Chinese Medicine for the Treatment of Cholestatic Liver Disease Process (Cholestasis, Hepatitis, Liver Fibrosis, Liver Cirrhosis). J. Ethnopharmacol. 2022, 297, 115550. DOI: 10.1016/j.jep.2022.115550.
  • Goldstein, J.; Levy, C. Novel and Emerging Therapies for Cholestatic Liver Diseases. Liver Int. 2018, 38(9), 1520–1535. DOI: 10.1111/liv.13880.
  • Wagner, M.; Fickert, P. Drug Therapies for Chronic Cholestatic Liver Diseases. Annu. Rev. Pharmacol. Toxicol. 2020, 60(1), 503–527. DOI: 10.1146/annurev-pharmtox-010818-021059.
  • El-Serag, H. B.; Rudolph, K. L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterol. 2007, 132(7), 2557–2576. DOI: 10.1053/j.gastro.2007.04.061.
  • Petrick, J. L.; Braunlin, M.; Laversanne, M.; Valery, P. C.; Bray, F.; McGlynn, K. A. International Trends in Liver Cancer Incidence, Overall and by Histologic Subtype, 1978-2007. Int, J, Cancer. 2016, 139(7), 1534–1545. DOI: 10.1002/ijc.30211.
  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68(6), 394–424. DOI: 10.3322/caac.21492.
  • Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71(3), 209–249. DOI: 10.3322/caac.21660.
  • Perz, J. F.; Armstrong, G. L.; Farrington, L. A.; Hutin, Y. J.; Bell, B. P. The Contributions of Hepatitis B Virus and Hepatitis C Virus Infections to Cirrhosis and Primary Liver Cancer Worldwide. J. Hepatol. 2006, 45(4), 529–538. DOI: 10.1016/j.jhep.2006.05.013.
  • Stuver, S. O. Towards Global Control of Liver Cancer? Semin. Cancer Biol. 1998, 8(4), 299–306. DOI: 10.1006/scbi.1998.0079.
  • Hussain, S. A.; Ferry, D. R.; El-Gazzaz, G.; Mirza, D. F.; James, N. D.; McMaster, P.; Kerr, D. J. Hepatocellular Carcinoma. Ann. Oncol. 2001, 12(2), 161–172. DOI: 10.1023/a:1008370324827.
  • Aravalli, R. N.; Cressman, E. N.; Steer, C. J. Cellular and Molecular Mechanisms of Hepatocellular Carcinoma: An Update. Arch. Toxicol. 2013, 87(2), 227–247. DOI: 10.1007/s00204-012-0931-2.
  • Forner, A.; Reig, M.; Bruix, J. Hepatocellular Carcinoma. Lancet. 2018, 391(10127), 1301–1314. DOI: 10.1016/s0140-6736(18)30010-2.
  • Villanueva, A.; Longo, D. L. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380(15), 1450–1462. DOI: 10.1056/NEJMra1713263.
  • Anwanwan, D.; Singh, S. K.; Singh, S.; Saikam, V.; Singh, R. Challenges in Liver Cancer and Possible Treatment Approaches. Biochim. Biophys. Acta. Rev. Cancer. 2020, 1873(1), 188314. DOI: 10.1016/j.bbcan.2019.188314.
  • Liang, C.; Jiang, Y.; Sun, L. Vitexin Suppresses the Proliferation, Angiogenesis and Stemness of Endometrial Cancer Through the PI3K/AKT Pathway. Pharm. Biol. 2023, 61(1), 581–589. DOI: 10.1080/13880209.2023.2190774.
  • Chen, Y.; Wang, B.; Yuan, X.; Lu, Y.; Hu, J.; Gao, J.; Lin, J.; Liang, J.; Hou, S.; Chen, S. Vitexin Prevents Colitis-Associated Carcinogenesis in Mice Through Regulating Macrophage Polarization. Phytomedicine. 2021, 83, 153489. DOI: 10.1016/j.phymed.2021.153489.
  • Sousa AP, F. M.; Fernandes, D. A.; Fernandes, D. A.; Cordeiro, L. V.; Souza, M. D. F. V. D.; Pessoa, H. D. L. F.; Oliveira, A. A. D.; Sá, R. D. C. D. S. E. In Silico, in vitro and ex-Vivo Toxicological Profiling of 5,7,4’-Trihydroxyflavone-8 -C-ß-Glucopyranoside - Vitexin. Rev. Ciênc. Farm Básica. Apl. 2021, 42(42), e709. DOI: 10.4322/2179-443X.0709.
  • Choo, C. Y.; Sulong, N. Y.; Man, F.; Wong, T. W. Vitexin and Isovitexin from the Leaves of Ficus Deltoidea with in-Vivo α-Glucosidase Inhibition. J. Ethnopharmacol. 2012, 142(3), 776–781. DOI: 10.1016/j.jep.2012.05.062.
  • Li, X. L.; Shao, X.; Niu, H. J.; Xu, L.; Li, G. H. Beagle犬牡荆素急性毒性实验研究. J. Clin. Ration. Drug Use. 2017, 10(22), 56–57.
  • Niu, H. J.; Li, X. L.; Li, G. H. 注射用牡荆素Beagle犬长期毒性试验研究. China Pharm. 2019, 28(12), 4–10.
  • Rosa, S. I.; Rios-Santos, F.; Balogun, S. O.; Martins, D. T. Vitexin Reduces Neutrophil Migration to Inflammatory Focus by Down-Regulating Pro-Inflammatory Mediators via Inhibition of p38, ERK1/2 and JNK Pathway. Phytomedicine. 2016, 23(1), 9–17. DOI: 10.1016/j.phymed.2015.11.003.
  • Pires, V. A.; Cardozo-Junior, E. L.; Ortmann, C. F.; Maraschin, J. C.; Favreto, W. A. J.; Donaduzzi, C. M.; Reginatto, F. H.; Assreuy, J. Lipid-Lowering and Antiatherogenic Effects of Vitex Megapotamica (Spreng.) Moldenke in a Mice Experimental Model. J. Ethnopharmacol. 2018, 215, 14–20. DOI: 10.1016/j.jep.2017.12.030.
  • Hassan, I.; Wan Ibrahim, W. N.; Yusuf, F. M.; Ahmad, S. A.; Ahmad, S. Biochemical Constituent of Ginkgo Biloba (Seed) 80% Methanol Extract Inhibits Cholinesterase Enzymes in Javanese Medaka (Oryzias Javanicus) Model. J. Toxicol. 2020, 2020, 8815313. DOI: 10.1155/2020/8815313.
  • Kim, J.; Lee, I.; Seo, J.; Jung, M.; Kim, Y.; Yim, N.; Bae, K. Vitexin, Orientin and Other Flavonoids from Spirodela Polyrhiza Inhibit Adipogenesis in 3T3-L1 Cells. Phytother. Res. 2010, 24(10), 1543–1548. DOI: 10.1002/ptr.3186.
  • Farsi, E.; Shafaei, A.; Hor, S. Y.; Ahamed, M. B.; Yam, M. F.; Asmawi, M. Z.; Ismail, Z. Genotoxicity and Acute and Subchronic Toxicity Studies of a Standardized Methanolic Extract of Ficus Deltoidea Leaves. Clin. (Sao Paulo). 2013, 68(6), 865–875. DOI: 10.6061/clinics/2013(06)23.
  • Yang, S. H.; Liao, P. H.; Pan, Y. F.; Chen, S. L.; Chou, S. S.; Chou, M. Y. The Novel p53-Dependent Metastatic and Apoptotic Pathway Induced by Vitexin in Human Oral Cancer OC2 Cells. Phytother. Res. 2013, 27(8), 1154–1161. DOI: 10.1002/ptr.4841.
  • Ganesan, K.; Xu, B. Molecular Targets of Vitexin and Isovitexin in Cancer Therapy: A Critical Review. Ann. N Y Acad. Sci. 2017, 1401(1), 102–113. DOI: 10.1111/nyas.13446.
  • Chen, D.; Chen, Y.; Huang, F.; Zhang, X.; Zhou, Y.; Xu, L. The Underlying Regulatory Mechanisms of Colorectal Carcinoma by Combining Vitexin and Aspirin: Based on Systems Biology, Molecular Docking, Molecular Dynamics Simulation, and in vitro Study. Front. Endocrinol. (Lausanne). 2023, 14, 1147132. DOI: 10.3389/fendo.2023.1147132.
  • Abdel-Rahman, S. M.; Kauffman, R. E. The Integration of Pharmacokinetics and Pharmacodynamics: Understanding Dose-Response. Annu. Rev. Pharmacol. Toxicol. 2004, 44(1), 111–136. DOI: 10.1146/annurev.pharmtox.44.101802.121347.
  • Fan, J.; de Lannoy, I. A. Pharmacokinetics. Biochem Pharmacol. 2014, 87(1), 93–120. DOI: 10.1016/j.bcp.2013.09.007.
  • Cui, S. M.; Wei, X. F.; Zhang, J.; Ye, Z. Z.; Liao, H. W. HPLC-MS/MS测定血浆中的牡荆素及其大鼠体内药动学研究. Zhong Yao Cai. 2012, 35(7), 1120–1123.
  • Huang, Y.; He, F.; Zhang, Z. R.; Zheng, L.; Lan, Y. Y.; Wang, Y. L. HPLC-MS-MS同时检测大鼠血浆中荭草素、牡荆素和槲皮苷. Chin. J. Exp. Traditional Med. Formulae. 2012, 18(1), 80–84.
  • Yan, C.; Liu, H.; Lin, L. Simultaneous Determination of Vitexin and Isovitexin in Rat Plasma After Oral Administration of Santalum Album L. Leaves Extract by Liquid Chromatography Tandem Mass Spectrometry. Biomed. Chromatogr. 2013, 27(2), 228–232. DOI: 10.1002/bmc.2780.
  • Zhang, S.; Xie, Y.; Wang, J.; Geng, Y.; Zhou, Y.; Sun, C.; Wang, G. Development of an LC-MS/MS Method for Quantification of Two Pairs of Isomeric Flavonoid Glycosides and Other Ones in Rat Plasma: Application to Pharmacokinetic Studies. Biomed. Chromatogr. 2017, 31(10). DOI: 10.1002/bmc.3972.
  • Luo, L.; Kang, J.; Zhao, W.; Qi, Y.; Liang, S. Validated LC-MS/MS Method for Simultaneous Quantification of Seven Components of Naodesheng in Rat Serum After Oral Administration and Its Application to a Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2019, 174, 1–7. DOI: 10.1016/j.jpba.2019.05.036.
  • Bai, Y.; Zhang, Q.; Wang, B.; Zhang, M.; Xu, Y.; Li, S.; Zhao, Y.; Yu, Z. Plasma Pharmacokinetics, Bioavailability, and Tissue Distribution of Four C-Glycosyl Flavones from Mung Bean (Vigna Radiata L.) Seed Extracts in Rat by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food. Chem. 2017, 65(27), 5570–5580. DOI: 10.1021/acs.jafc.7b02053.
  • Zhu, S.; Yan, H.; Niu, K.; Zhang, S. Simultaneous Determination of Seven Components from Hawthorn Leaves Flavonoids in Rat Plasma by LC-MS/MS. J. Chromatogr. Sci. 2015, 53(6), 909–914. DOI: 10.1093/chromsci/bmu143.
  • Wang, S. Y.; Chai, J. Y.; Zhang, W. J.; Liu, X.; Du, Y.; Cheng, Z. Z.; Ying, X. X.; Kang, T. G. HPLC Determination of Five Polyphenols in Rat Plasma After Intravenous Administration of Hawthorn Leaves Extract and Its Application to Pharmacokinetic Study. Yakugaku Zasshi. 2010, 130(11), 1603–1613. DOI: 10.1248/yakushi.130.1603.
  • Wang, Y. J.; Qu, G. L.; Zhang, W. J.; Xue, H. F.; Chen, Y. H.; Yin, J. J.; Lu, D. R.; Ying, X. X. Pharmacokinetics Tissue Distribution and Excretion of Vitexin in Mice. Latin Am. J. Pharm. 2012, 31(6), 844–851.
  • Tan, D. P.; Li, G.; Lv, W. Y.; Shao, X.; Li, X. L.; Niu, H. J.; Xu, Y. Q.; Zhang, J. Y.; Qin, L.; He, Y. Q., et al. Distribution, Metabolism, Excretion and Toxicokinetics of Vitexin in Rats and Dogs. Curr. Pharm. Anal. 2022, 18(5), 553–564.
  • Zhang, W.; Xu, M.; Yu, C.; Zhang, G.; Tang, X. Simultaneous Determination of Vitexin-4’’-O-Glucoside, Vitexin-2’’-O-Rhamnoside, Rutin and Vitexin from Hawthorn Leaves Flavonoids in Rat Plasma by UPLC-ESI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878(21), 1837–1844. DOI: 10.1016/j.jchromb.2010.05.023.
  • Sun, F.; Zeng, L.; Li, J.; Zhong, Y.; Wu, X.; Wang, K.; Wang, S.; Liang, S. Developing the Liquid Chromatography-Mass Spectrometry Method for Simultaneously Quantifying Five Components in Rat Serums After Oral Administration of Hawthorn Aqueous Extracts and Its Application to a Pharmacokinetic Study. J. Sep. Sci. 2022, 45(11), 1839–1846. DOI: 10.1002/jssc.202100906.
  • Li, D.; Wang, Q.; Xu, L.; Li, M.; Jing, X.; Zhang, L. Pharmacokinetic Study of Three Active Flavonoid Glycosides in Rat After Intravenous Administration of Trollius Ledebourii Extract by Liquid Chromatography. Biomed. Chromatogr. 2008, 22(10), 1130–1136. DOI: 10.1002/bmc.1035.
  • Lu, Y.; Li, N.; Lyu, T.; Wang, Y. L.; Pan, J.; Sun, J.; Li, Y. J.; Liu, C. H. UPLC-MS/MS研究荭草提取物的H9c2细胞药代动力学. Zhongguo Zhong Yao Za Zhi. 2021, 46(18), 4833–4840. DOI: 10.19540/j.cnki.cjcmm.20210618.202.
  • Xue, H. F.; Ying, Z. M.; Zhang, W. J.; Meng, Y. H.; Ying, X. X.; Kang, T. G. Hepatic, Gastric, and Intestinal First-Pass Effects of Vitexin in Rats. Pharm. Biol. 2014, 52(8), 967–971. DOI: 10.3109/13880209.2013.874464.
  • Guo, L.; Qiao, S.; Hu, J.; Li, D.; Zheng, S.; Shi, D.; Liu, J.; Wang, R. Investigation of the Effective Components of the Flowers of Trollius Chinensis from the Perspectives of Intestinal Bacterial Transformation and Intestinal Absorption. Pharm. Biol. 2017, 55(1), 1747–1758. DOI: 10.1080/13880209.2017.1321023.
  • Liu, L.; Guo, L.; Zhao, C.; Wu, X.; Wang, R.; Liu, C.; Blachier, F. Characterization of the Intestinal Absorption of Seven Flavonoids from the Flowers of Trollius Chinensis Using the Caco-2 Cell Monolayer Model. PLoS One. 2015, 10(3), e0119263. DOI: 10.1371/journal.pone.0119263.
  • Yang, B.; Liu, H. L.; Yang, J. L.; Gupta, V. K.; Jiang, Y. M. New Insights on Bioactivities and Biosynthesis of Flavonoid Glycosides. Trends Food Sci. Technol. 2018, 79, 116–124. DOI: 10.1016/j.tifs.2018.07.006.
  • Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021, 26(19), 5905. DOI: 10.3390/molecules26195905.
  • Liu, C. H.; Wang, M. J.; Yang, S. T.; Li, N.; Lu, Y.; Pan, J.; Li, Y. J.; Wang, Y. L.; Sun, J. 基于外翻肠囊模型研究荭草提取物在正常和心肌缺血模型大鼠中的肠吸收特征. Zhongguo Zhong Yao Za Zhi. 2021, 46(1), 196–205. DOI: 10.19540/j.cnki.cjcmm.20201010.201.
  • Zhang, S. X.; Xie, Y.; Wang, J.; Geng, Y. M.; Zhou, Y.; Sun, C. X.; Wang, G. S. Simultaneous Determination of Six Bioactive Components of Total Flavonoids of Scorzonera Austriaca in Rat Tissues by LC-MS/MS: Application to a Tissue Distribution Study. Rev. bras. de farmacogn.-Braz. Pharmacogn. 2018, 28(2), 156–164. DOI: 10.1016/j.bjp.2018.01.004.
  • Tremmel, M.; Paetz, C.; Heilmann, J. In vitro Liver Metabolism of Six Flavonoid C-Glycosides. Molecules. 2021, 26(21), 6632. DOI: 10.3390/molecules26216632.
  • Liao, M.; Cheng, X.; Diao, X.; Sun, Y.; Zhang, L. Metabolites Identificaion of Two Bioactive Constituents in Trollius Ledebourii in Rats Using Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole Time-Of-Flight Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1068-1069, 297–312. DOI: 10.1016/j.jchromb.2017.10.061.
  • Dong, P.; Shi, L.; Wang, S.; Jiang, S.; Li, H.; Dong, F.; Xu, J.; Dai, L.; Zhang, J. Rapid Profiling and Identification of Vitexin Metabolites in Rat Urine, Plasma and Faeces After Oral Administration Using a UHPLC-Q-Exactive Orbitrap Mass Spectrometer Coupled with Multiple Data-Mining Methods. Curr. Drug Metab. 2021, 22(3), 185–197. DOI: 10.2174/1389200221999210101232841.
  • Wang, X. S.; Hu, X. C.; Chen, G. L.; Yuan, X.; Yang, R. N.; Liang, S.; Ren, J.; Sun, J. C.; Kong, G. Q.; Gao, S. G., et al. Effects of Vitexin on the Pharmacokinetics and mRNA Expression of CYP Isozymes in Rats. Phytother. Res. 2015, 29 (3), 366–372. DOI: 10.1002/ptr.5260.
  • de Oliveira, N. K. S.; Almeida, M. R. S.; Pontes, F. M. M.; Barcelos, M. P.; Silva, G. M.; de Paula da Silva, C. H. T.; Cruz, R. A. S.; da Silva Hage-Melim, L. I. Molecular Docking, Physicochemical Properties, Pharmacokinetics and Toxicity of Flavonoids Present in Euterpe Oleracea Martius. Curr. Comput.-Aided Drug Des. 2021, 17(4), 589–617. DOI: 10.2174/1573409916666200619122803.
  • Shaedi, N.; Naharudin, I.; Choo, C. Y.; Wong, T. W. Design of Oral Intestinal-Specific Alginate-Vitexin Nanoparticulate System to Modulate Blood Glucose Level of Diabetic Rats. Carbohydr. Polym. 2021, 254, 117312. DOI: 10.1016/j.carbpol.2020.117312.
  • Li, S.; Lv, H.; Chen, Y.; Song, H.; Zhang, Y.; Wang, S.; Luo, L.; Guan, X. N-Trimethyl Chitosan Coated Targeting Nanoparticles Improve the Oral Bioavailability and Antioxidant Activity of Vitexin. Carbohydr. Polym. 2022, 286, 119273. DOI: 10.1016/j.carbpol.2022.119273.
  • Szejtli, J. Medicinal Applications of Cyclodextrins. Med. Res. Rev. 1994, 14(3), 353–386. DOI: 10.1002/med.2610140304.
  • Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin Drug Carrier Systems. Chem. Rev. 1998, 98(5), 2045–2076. DOI: 10.1021/cr970025p.
  • Costa, E. C.; Menezes, P. M. N.; de Almeida, R. L.; Silva, F. S.; de Araújo Ribeiro, L. A.; da Silva, J. A.; de Oliveira, A. P.; da Cruz Araújo, E. C.; Rolim, L. A.; Nunes, X. P. Inclusion of Vitexin in β-Cyclodextrin: Preparation, Characterization and Expectorant/Antitussive Activities. Heliyon. 2020, 6(12), e05461. DOI: 10.1016/j.heliyon.2020.e05461.
  • Singh, R.; Lillard, J. W., Jr. Nanoparticle-Based Targeted Drug Delivery. Exp. Mol. Pathol. 2009, 86(3), 215–223. DOI: 10.1016/j.yexmp.2008.12.004.
  • Gu, C.; Liu, Z.; Yuan, X.; Li, W.; Zu, Y.; Fu, Y. Preparation of Vitexin Nanoparticles by Combining the Antisolvent Precipitation and High Pressure Homogenization Approaches Followed by Lyophilization for Dissolution Rate Enhancement. Molecules. 2017, 22(11), 2038. DOI: 10.3390/molecules22112038.
  • Rovoli, M.; Gortzi, O.; Lalas, S.; Kontopidis, G. β-Lactoglobulin Improves liposome’s Encapsulation Properties for Vitamin E Delivery. J. Liposome Res. 2014, 24(1), 74–81. DOI: 10.3109/08982104.2013.839701.
  • Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of Liposomes As Drug Delivery System for Therapeutic Applications. Int. J. Pharm. 2021, 601, 120571. DOI: 10.1016/j.ijpharm.2021.120571.
  • Farooq, A.; Iqbal, A.; Rana, N. F.; Fatima, M.; Maryam, T.; Batool, F.; Rehman, Z.; Menaa, F.; Azhar, S.; Nawaz, A., et al. A Novel Sprague-Dawley Rat Model Presents Improved NASH/NAFLD Symptoms with PEG Coated Vitexin Liposomes. Int. J. Mol. Sci. 2022, 23(6), 3131.
  • Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic Polyethyleneglycols Effectively Prolong the Circulation Time of Liposomes. FEBS Lett. 1990, 268(1), 235–237. DOI: 10.1016/0014-5793(90)81016-h.
  • Mura, P. Advantages of the Combined Use of Cyclodextrins and Nanocarriers in Drug Delivery: A Review. Int. J. Pharm. 2020, 579, 119181. DOI: 10.1016/j.ijpharm.2020.119181.
  • Bergström, C. A. Computational Models to Predict Aqueous Drug Solubility, Permeability and Intestinal Absorption. Expert. Opin. Drug. Metab. Toxicol. 2005, 1(4), 613–627. DOI: 10.1517/17425255.1.4.613.
  • Stenberg, P.; Bergström, C. A.; Luthman, K.; Artursson, P. Theoretical Predictions of Drug Absorption in Drug Discovery and Development. Clin. Pharmacokinet. 2002, 41(11), 877–899. DOI: 10.2165/00003088-200241110-00005.
  • Yamashita, F.; Hashida, M. Pharmacokinetic Considerations for Targeted Drug Delivery. Adv. Drug Deliv. Rev. 2013, 65(1), 139–147. DOI: 10.1016/j.addr.2012.11.006.
  • Yang, B.; Liu, H.; Yang, J.; Gupta, V. K.; Jiang, Y. New Insights on Bioactivities and Biosynthesis of Flavonoid Glycosides. Trends Food Sci. Technol. 2018, 79, 116–124. DOI: 10.1016/j.tifs.2018.07.006.
  • Huang, Y.; He, F.; Zhang, Z.-R.; Zheng, L.; Lan, Y.-Y.; Wang, Y.-L. Simultaneous Determination of Orientin,vitexin and Quercitrin in Rat Plasma by UPLC-MS-MS. Chin. J. Exp. Traditional Med. Formulae. 2012, 18(1), 80–84. DOI: 10.13422/j.cnki.syfjx.2012.01.033.
  • Yin, J.; Qu, J.; Zhang, W.; Lu, D.; Gao, Y.; Ying, X.; Kang, T. Tissue Distribution Comparison Between Healthy and Fatty Liver Rats After Oral Administration of Hawthorn Leaf Extract. Biomed. Chromatogr. 2014, 28(5), 637–647. DOI: 10.1002/bmc.3082.
  • Liu, Y.; Tang, L.; Cao, X.; Zheng, L.; Wang, A. M.; Huang, Y. 荭草提取物的肠外翻吸收研究. Zhongguo Zhong Yao Za Zhi. 2014, 39(11), 2121–2125.
  • Lu, Y.; Li, N.; Zhu, X.; Pan, J.; Wang, Y.; Lan, Y.; Li, Y.; Wang, A.; Sun, J.; Liu, C. Comparative Analysis of Excretion of Six Major Compounds of Polygonum Orientale L. Extract in Urine, Feces and Bile Under Physiological and Myocardial Ischemia Conditions in Rats Using UPLC-MS/MS. Biomed. Chromatogr. 2021, 35(10), e5174. DOI: 10.1002/bmc.5174.
  • Bhambhani, S.; Kondhare, K. R.; Giri, A. P. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules. 2021, 26(11), 3374. DOI: 10.3390/molecules26113374.
  • Isika, D. K.; Sadik, O. A. Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties. Molecules. 2022, 27(23), 8133. DOI: 10.3390/molecules27238133.
  • Wu, J. Y.; Wang, T. Y.; Ding, H. Y.; Zhang, Y. R.; Lin, S. Y.; Chang, T. S. Enzymatic Synthesis of Novel Vitexin Glucosides. Molecules. 2021, 26(20), 6274. DOI: 10.3390/molecules26206274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.