347
Views
0
CrossRef citations to date
0
Altmetric
Review Article

From Olive Oil Production to By-Products: Emergent Technologies to Extract Bioactive Compounds

, &

References

  • Kapellakis, I. E.; Tsagarakis, K. P.; Crowther, J. C. Olive Oil History, Production and By-Product Management. Rev. Environ. Sci. Biotechnol. 2008, 7(1), 1–26. DOI: 10.1007/s11157-007-9120-9.
  • Elkhateeb, W. A.; Noor, A.; Rashid, A.; Bilal, A.; Musharaf, G.; Akram, M.; Zafar, K.; Daba, G. Current Awareness and Knowledge of Olive Oil. Int. J. Pharm. Chem. Anal. 2022, 9(2), 64–70. DOI: 10.18231/j.ijpca.2022.011.
  • Calvano, C. D.; Tamborrino, A. Valorization of Olive By-Products: Innovative Strategies for Their Production, Treatment and Characterization. Foods. 2022, 11(6), 768. DOI: 10.3390/foods11060768.
  • Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M. A.; Simal-Gandara, J. Valorization of By-Products from Olive Oil Industry and Added-Value Applications for Innovative Functional Foods. Food Res. Int. 2020, 137(September), 109683. DOI: 10.1016/j.foodres.2020.109683.
  • FAO. FAOSTAT - Statistical Database https://www.fao.org/faostat/en/#data/RT (accessed Jul 26, 2023).
  • Selim, S.; Albqmi, M.; Al-Sanea, M. M.; Alnusaire, T. S.; Almuhayawi, M. S.; AbdElgawad, H.; Al Jaouni, S. K.; Elkelish, A.; Hussein, S.; Warrad, M., et al. Valorizing the Usage of Olive Leaves, Bioactive Compounds, Biological Activities, and Food Applications: A Comprehensive Review. Front Nutr. 2022, 9(November), 1008349. DOI: 10.3389/fnut.2022.1008349.
  • International Olive Council. The World of Olive Oil. https://www.internationaloliveoil.org/the-world-of-olive-oil/ (accessed Apr 7, 2023).
  • Manzanares, P.; Ballesteros, I.; Negro, M. J.; González, A.; Oliva, J. M.; Ballesteros, M. Processing of Extracted Olive Oil Pomace Residue by Hydrothermal or Dilute Acid Pretreatment and Enzymatic Hydrolysis in a Biorefinery Context. Renew. Energy. 2020, 145, 1235–1245. DOI: 10.1016/j.renene.2019.06.120.
  • Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive Mill Wastes: Biochemical Characterizations and Valorization Strategies. Process Biochem. 2013, 48(10), 1532–1552. DOI: 10.1016/j.procbio.2013.07.010.
  • Nunes, M. A.; Pimentel, F. B.; Costa, A. S. G.; Alves, R. C.; Oliveira, M. B. P. P. Olive By-Products for Functional and Food Applications: Challenging Opportunities to Face Environmental Constraints. Innovat. Food Sci. Emerg. Technol. 2016, 35, 139–148. DOI: 10.1016/j.ifset.2016.04.016.
  • Goldsmith, C. D.; Vuong, Q. V.; Stathopoulos, C. E.; Roach, P. D.; Scarlett, C. J. Ultrasound Increases the Aqueous Extraction of Phenolic Compounds with High Antioxidant Activity from Olive Pomace. LWT. 2018, 89, 284–290. DOI: 10.1016/j.lwt.2017.10.065.
  • La Scalia, G.; Micale, R.; Cannizzaro, L.; Marra, F. P. A Sustainable Phenolic Compound Extraction System from Olive Oil Mill Wastewater. J. Clean. Prod. 2017, 142, 3782–3788. DOI: 10.1016/j.jclepro.2016.10.086.
  • Tamasi, G.; Baratto, M. C.; Bonechi, C.; Byelyakova, A.; Pardini, A.; Donati, A.; Leone, G.; Consumi, M.; Lamponi, S.; Magnani, A., et al. Chemical Characterization and Antioxidant Properties of Products and By‐Products from Olea Europaea L. Food Sci. Nutr. 2019, 7 (9), 2907–2920. DOI: 10.1002/fsn3.1142.
  • da Rosa, G. S.; Vanga, S. K.; Gariepy, Y.; Raghavan, V. Comparison of Microwave, Ultrasonic and Conventional Techniques for Extraction of Bioactive Compounds from Olive Leaves (Olea Europaea L.). Innovat. Food Sci. Emerg. Technol. 2019, 58, 102234. DOI: 10.1016/j.ifset.2019.102234.
  • Flamminii, F.; Di Mattia, C. D.; Difonzo, G.; Neri, L.; Faieta, M.; Caponio, F.; Pittia, P. From By-Product to Food Ingredient: Evaluation of Compositional and Technological Properties of Olive-Leaf Phenolic Extracts. J. Sci. Food Agric. 2019, 99(14), 6620–6627. DOI: 10.1002/jsfa.9949.
  • Lama-Muñoz, A.; Del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of Oleuropein and Luteolin-7-O-Glucoside from Olive Leaves: Optimization of Technique and Operating Conditions. Food Chem. 2019, 293(January), 161–168. DOI: 10.1016/j.foodchem.2019.04.075.
  • Rodrigues, F.; Pimentel, F. B.; Oliveira, M. B. P. P. Olive By-Products: Challenge Application in Cosmetic Industry. Ind. Crops Prod. 2015, 70, 116–124. DOI: 10.1016/j.indcrop.2015.03.027.
  • Galanakis, C. M.; Aldawoud, T. M. S.; Rizou, M.; Rowan, N. J.; Ibrahim, S. A. Food Ingredients and Active Compounds Against the Coronavirus Disease (COVID-19) Pandemic: A Comprehensive Review. Foods. 2020, 9(11), 1171. DOI: 10.3390/foods9111701.
  • Bursać Kovačević, D.; Barba, F. J.; Granato, D.; Galanakis, C. M.; Herceg, Z.; Dragović-Uzelac, V.; Putnik, P. Pressurized Hot Water Extraction (PHWE) for the Green Recovery of Bioactive Compounds and Steviol Glycosides from Stevia Rebaudiana Bertoni Leaves. Food Chem. 2018, 254, 150–157. DOI: 10.1016/j.foodchem.2018.01.192.
  • Sarfarazi, M.; Jafari, S. M.; Rajabzadeh, G.; Galanakis, C. M. Evaluation of Microwave-Assisted Extraction Technology for Separation of Bioactive Components of Saffron (Crocus Sativus L.). Ind. Crops Prod. 2020, 145, 111978. DOI: 10.1016/j.indcrop.2019.111978.
  • Otero, P.; Quintana, S. E.; Reglero, G.; Fornari, T.; García-Risco, M. R. Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties. Mar. Drugs. 2018, 16(5), 156. DOI: 10.3390/md16050156.
  • Nagarajan, J.; Krishnamurthy, N. P.; Nagasundara Ramanan, R.; Raghunandan, M. E.; Galanakis, C. M.; Ooi, C. W. A Facile Water-Induced Complexation of Lycopene and Pectin from Pink Guava Byproduct: Extraction, Characterization and Kinetic Studies. Food Chem. 2019, 296, 47–55. DOI: 10.1016/j.foodchem.2019.05.135.
  • Obied, H. K.; Prenzler, P. D.; Robards, K. Potent Antioxidant Biophenols from Olive Mill Waste. Food Chem. 2008, 111(1), 171–178. DOI: 10.1016/j.foodchem.2008.03.058.
  • Cioffi, G.; Pesca, M. S.; De Caprariis, P.; Braca, A.; Severino, L.; De Tommasi, N. Phenolic Compounds in Olive Oil and Olive Pomace from Cilento (Campania, Italy) and Their Antioxidant Activity. Food Chem. 2010, 121(1), 105–111. DOI: 10.1016/j.foodchem.2009.12.013.
  • Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R. Z.; Almalki, W. H. Treatment Technologies for Olive Mill Wastewater with Impacts on Plants. Environ. Res. 2023, 216(3), 114399. DOI: 10.1016/j.envres.2022.114399.
  • European Parliament and Council of the European Union. Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. Offic. J. Eur. Comm. 2013, 347, 1–184.
  • International Olive Council. Designations and Definitions of Olive Oils. https://www.internationaloliveoil.org/olive-world/olive-oil/ (accessed Apr 10, 2023).
  • Otero, P.; Garcia-Oliveira, P.; Carpena, M.; Barral-Martinez, M.; Chamorro, F.; Echave, J.; Garcia-Perez, P.; Cao, H.; Xiao, J.; Simal-Gandara, J., et al. Applications of By-Products from the Olive Oil Processing: Revalorization Strategies Based on Target Molecules and Green Extraction Technologies. Trends Food Sci. Technol. 2021, 116, 1084–1104. DOI: 10.1016/j.tifs.2021.09.007.
  • Leone, A. Olive Milling and Pitting. In The Extra-Virgin Olive Oil Handbook, Peri, C., (Ed.); Wiley-Blackwell: New Jersey, 2014; pp. 117–126. DOI: 10.1002/9781118460412.ch11.
  • Tamborrino, A. Olive Paste Malaxation. In The Extra-Virgin Olive Oil Handbook, Peri, C., (Ed.); Wiley-Blackwell: New Jersey, 2014; pp. 127–137. DOI: 10.1002/9781118460412.ch12.
  • Frankel, E.; Bakhouche, A.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Literature Review on Production Process to Obtain Extra Virgin Olive Oil Enriched in Bioactive Compounds. Potential Use of Byproducts as Alternative Sources of Polyphenols. J. Agric. Food. Chem. 2013, 61(22), 5179–5188. DOI: 10.1021/jf400806z.
  • Muniz, F. G. Mapeamento De Resíduos E Subprodutos Derivados Da Extração De Azeites Da Região Do Alentejo. Master thesis, Universidade de Lisboa: Lisboa, 2021.
  • Pavão, F. M. A.; de, S. A.; Reis, C. Avaliação e Sistematização de Subprodutos: Olivicultura; Centro Nacional de Competências dos Frutos Secos, Ed.; Valor +: Bragança, Portugal, 2020.
  • Skaltsounis, A.-L.; Argyropoulou, A.; Aligiannis, N.; Xynos, N. Recovery of High Added Value Compounds from Olive Tree Products and Olive Processing Byproducts. In Olive and Olive Oil Bioactive Constituents, Boskou, D., (Ed.); Academic Press and AOCS Press: Cambridge, 2014; pp. 333–356. DOI: 10.1016/B978-1-63067-041-2.50017-3.
  • Basso, C.; Uliana, G. C.; Richards, N. S. P. S. Compostos Bioativos Presentes No Azeite de Oliva e Seus Subprodutos: Revisão Bibliográfica. Res. Soc. Dev. 2022, 11(10), e196111032580. DOI: 10.33448/rsd-v11i10.32580.
  • Doula, M. K.; Moreno-Ortego, J. L.; Tinivella, F.; Inglezakis, V. J.; Sarris, A.; Komnitsas, K. Olive Mill Waste: Recent Advances for the Sustainable Development of Olive Oil Industry. In Olive Mill Waste: Recent Advances for Sustainable Management, Galanakis, C.M., (Ed.); Elsevier Inc.: Chania, 2017; pp. 29–56. DOI: 10.1016/B978-0-12-805314-0.00002-9.
  • Freitas, L.; Simões, R.; Miranda, I.; Peres, F.; Ferreira-Dias, S. Optimization of Autohydrolysis of Olive Pomaces to Obtain Bioactive Oligosaccharides: The Effect of Cultivar and Fruit Ripening. Catalysts. 2022, 12(7), 788. DOI: 10.3390/catal12070788.
  • Nunes, M. A.; Palmeira, J. D.; Melo, D.; Machado, S.; Lobo, J. C.; Costa, A. S. G.; Alves, R. C.; Ferreira, H.; Oliveira, M. B. P. P. Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals. 2021, 14(9), 923. DOI: 10.3390/ph14090913.
  • Alcazar-Ruiz, A.; Garcia-Carpintero, R.; Dorado, F.; Sanchez- Silva, L. Valorization of Olive Oil Industry Subproducts: Ash and Olive Pomace Fast Pyrolysis. Food Bioprod. Process. 2020, 125, 37–45. DOI: 10.1016/j.fbp.2020.10.011.
  • Nunes, M. A.; Costa, A. S. G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R. C.; Freitas, V.; Oliveira, M. B. P. P. Olive Pomace As a Valuable Source of Bioactive Compounds: A Study Regarding Its Lipid- and Water-Soluble Components. Sci. Total Environ. 2018, 644, 229–236. DOI: 10.1016/j.scitotenv.2018.06.350.
  • Zhao, H.; Kim, Y.; Avena-Bustillos, R. J.; Nitin, N.; Wang, S. C. Characterization of California Olive Pomace Fractions and Their in vitro Antioxidant and Antimicrobial Activities. LWT - Food Sci. Technol. 2023, 180, 114677. DOI: 10.1016/j.lwt.2023.114677.
  • Bilal, R. M.; Liu, C.; Zhao, H.; Wang, Y.; Farag, M. R.; Alagawany, M.; Hassan, F. U.; Elnesr, S. S.; Elwan, H. A. M.; Qiu, H., et al. Olive Oil: Nutritional Applications, Beneficial Health Aspects and Its Prospective Application in Poultry Production. Front. Pharmacol Aug 25, 2021, 12, 723040. DOI: 10.3389/fphar.2021.723040.
  • Gurdeniz, G.; Ozen, B. Detection of Adulteration of Extra-Virgin Olive Oil by Chemometric Analysis of Mid-Infrared Spectral Data. Food Chem. 2009, 116(2), 519–525. DOI: 10.1016/j.foodchem.2009.02.068.
  • Sánchez, R.; Beltrán Sanahuja, A.; Prats Moya, M. S.; Todolí, J.-L. Application of Dispersive Liquid–Liquid Aerosol Phase Extraction to the Analysis of Total and Individual Phenolic Compounds in Fried Extra Virgin Olive Oils. J. Agric. Food. Chem. 2023, 71(28), 10742–10750. DOI: 10.1021/acs.jafc.3c02634.
  • Luque-Muñoz, A.; Tapia, R.; Haidour, A.; Justicia, J.; Cuerva, J. M. Direct Determination of Phenolic Secoiridoids in Olive Oil by Ultra-High Performance Liquid Chromatography-Triple Quadruple Mass Spectrometry Analysis. Sci. Rep. 2019, 9(1), 15545. DOI: 10.1038/s41598-019-52060-5.
  • Abbattista, R.; Ventura, G.; Calvano, C. D.; Cataldi, T. R. I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods. 2021, 10(6), 1236. DOI: 10.3390/foods10061236.
  • Araújo, M.; Pimentel, F. B.; Alves, R. C.; Oliveira, M. B. P. P. Phenolic Compounds from Olive Mill Wastes: Health Effects, Analytical Approach and Application As Food Antioxidants. Trends Food Sci. Technol. 2015, 45(2), 200–211. DOI: 10.1016/j.tifs.2015.06.010.
  • El-Abbassi, A.; Saadaoui, N.; Kiai, H.; Raiti, J.; Hafidi, A. Potential Applications of Olive Mill Wastewater As Biopesticide for Crops Protection. Sci. Total Environ. 2017, 576, 10–21. DOI: 10.1016/j.scitotenv.2016.10.032.
  • Leouifoudi, I.; Zyad, A.; Amechrouq, A.; Oukerrou, M. A.; Mouse, H. A.; Mbarki, M. Identification and Characterisation of Phenolic Compounds Extracted from Moroccan Olive Mill Wastewater. Food Sci. Technol. 2014, 34(2), 249–257. DOI: 10.1590/fst.2014.0051.
  • Kisiriko, M.; Anastasiadi, M.; Terry, L. A.; Yasri, A.; Beale, M. H.; Ward, J. L. Phenolics from Medicinal and Aromatic Plants: Characterisation and Potential as Biostimulants and Bioprotectants. Molecules. 2021, 26(21), 6343. DOI: 10.3390/molecules26216343.
  • Rueda, P.; Comino, M.; Aranda, F.; Domínguez-Vidal, V.; Ayora-Cañada, A.; J, M. Analytical Pyrolysis (Py-GC-MS) for the Assessment of Olive Mill Pomace Composting Efficiency and the Effects of Compost Thermal Treatment. J. Anal. Appl. Pyrolysis. 2022, 168(April), 105711. DOI: 10.1016/j.jaap.2022.105711.
  • Suárez, M.; Romero, M. P.; Ramo, T.; Macià, A.; Motilva, M. J. Methods for Preparing Phenolic Extracts from Olive Cake for Potential Application As Food Antioxidants. J. Agric. Food. Chem. 2009, 57(4), 1463–1472. DOI: 10.1021/jf8032254.
  • Leone, A.; Romaniello, R.; Tamborrino, A.; Beneduce, L.; Gagliardi, A.; Giuliani, M.; Gatta, G. Composting of Olive Mill Pomace, Agro‐Industrial Sewage Sludge and Other Residues: Process Monitoring and Agronomic Use of the Resulting Composts. Foods. 2021, 10(9), 2143. DOI: 10.3390/foods10092143.
  • Orive, M.; Cebri, M.; Amayra, J.; Zufía, J.; Bald, C. Integrated Biorefinery Process for Olive Pomace Valorisation. Biomass Bioenergy. 2021, 149(March 2019), 106079. DOI: 10.1016/j.biombioe.2021.106079.
  • Martínez-Navarro, M. E.; Cebrián-Tarancón, C.; Alonso, G. L.; Salinas, M. R. Determination of the Variability of Bioactive Compounds and Minerals in Olive Leaf Along an Agronomic Cycle. Agronomy. 2021, 11(12), 2447. DOI: 10.3390/agronomy11122447.
  • Talhaoui, N.; Gómez-Caravaca, A. M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of Phenolic Compounds of “Sikitita” Olive Leaves by HPLC-DAD-TOF-MS. Comparison with Its Parents “Arbequina” and “Picual” Olive Leaves. LWT - Food Sci. Technol. 2014, 58(1), 28–34. DOI: 10.1016/j.lwt.2014.03.014.
  • Herrero, M.; Temirzoda, T. N.; Segura-Carretero, A.; Quirantes, R.; Plaza, M.; Ibañez, E. New Possibilities for the Valorization of Olive Oil By-Products. J. Chromatogr. A. 2011, 1218(42), 7511–7520. DOI: 10.1016/j.chroma.2011.04.053.
  • Lama-Muñoz, A.; Del Mar Contreras, M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of Phenolic Compounds and Mannitol in Olive Leaves Extracts from Six Spanish Cultivars: Extraction with the Soxhlet Method and Pressurized Liquids. Food Chem. 2020, 320(September 2019), 126626. DOI: 10.1016/j.foodchem.2020.126626.
  • Abdel-Razek, A. G.; Badr, A. N.; Shehata, M. G. Characterization of Olive Oil By-Products: Antioxidant Activity, Its Ability to Reduce Aflatoxigenic Fungi Hazard and Its Aflatoxins. Annu. Res. Rev. Biol. 2017, 14(5), 1–14. DOI: 10.9734/ARRB/2017/35065.
  • Dias, M. C.; Pinto, D. C. G. A.; Figueiredo, C.; Santos, C.; Silva, A. M. S. Phenolic and Lipophilic Metabolite Adjustments in Olea Europaea (Olive) Trees During Drought Stress and Recovery. Phytochemistry. 2021, 185(January), 112695. DOI: 10.1016/j.phytochem.2021.112695.
  • Taamalli, A.; Arráez-Román, D.; Barrajón-Catalán, E.; Ruiz-Torres, V.; Pérez-Sánchez, A.; Herrero, M.; Ibañez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A., et al. Use of Advanced Techniques for the Extraction of Phenolic Compounds from Tunisian Olive Leaves: Phenolic Composition and Cytotoxicity Against Human Breast Cancer Cells. Food Chem. Toxicol. 2012, 50 (6), 1817–1825. DOI: 10.1016/j.fct.2012.02.090.
  • Lama-Munoz, A.; Romero-García, J. M.; Cara, C.; Moya, M.; Castro, E. Low Energy-Demanding Recovery of Antioxidants and Sugars from Olive Stones as Preliminary Steps in the Biorefinery Context. Ind. Crops Prod. 2014, 60, 30–38. DOI: 10.1016/j.indcrop.2014.05.051.
  • NakilcioğluTaş, E.; Ötleş, S. The Optimization of Solid – Liquid Extraction of Polyphenols from Olive Stone by Response Surface Methodology. J. Food Meas. Charact. 2019, 13(2), 1497–1507. DOI: 10.1007/s11694-019-00065-z.
  • Cifuentes-Cabezas, M.; Galinha, C. F.; Crespo, J. G.; Cinta Vincent-Vela, M.; Antonio Mendoza-Roca, J.; Álvarez-Blanco, S. Nanofiltration of Wastewaters from Olive Oil Production: Study of Operating Conditions and Analysis of Fouling by 2D Fluorescence and FTIR Spectroscopy. Chem. Eng. J. 2023, 454, 140025. DOI: 10.1016/j.cej.2022.140025.
  • Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R. Z.; Almalki, W. H. Treatment Technologies for Olive Mill Wastewater with Impacts on Plants. Environ. Res. 2023, 216, 114399. DOI: 10.1016/j.envres.2022.114399.
  • Bombino, G.; Andiloro, S.; Folino, A.; Lucas-Borja, M. E.; Zema, A. D. Short-Term Effects of Olive Oil Mill Wastewater Application on Soil Water Repellency. Agric. Water Manage. 2021, 244(August 2020), 106563. DOI: 10.1016/j.agwat.2020.106563.
  • Foti, P.; Romeo, F. V.; Russo, N.; Pino, A.; Vaccalluzzo, A.; Caggia, C.; Randazzo, C. L. Olive Mill Wastewater as Renewable Raw Materials to Generate High Added-Value Ingredients for Agro-Food Industries. Appl. Sci. 2021, 11(16), 7511. DOI: 10.3390/app11167511.
  • Azzam, M. O. J.; Hazaimeh, S. A. Olive Mill Wastewater Treatment and Valorization by Extraction/Concentration of Hydroxytyrosol and Other Natural Phenols. Process Saf. Environ. Prot. 2021, 148, 495–523. DOI: 10.1016/j.psep.2020.10.030.
  • Agabo-García, C.; Repetto, G.; Albqmi, M.; Hodaifa, G. Evaluation of the Olive Mill Wastewater Treatment Based on Advanced Oxidation Processes (AOPs), Flocculation, and Filtration. J. Environ. Chem. Eng. 2023, 11(3), 109789. DOI: 10.1016/j.jece.2023.109789.
  • Benincasa, C.; Pellegrino, M.; Romano, E.; Claps, S.; Fallara, C.; Perri, E. Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. Front Nutr. 2022, 8(January), 782693. DOI: 10.3389/fnut.2021.782693.
  • Daâssi, D.; Lozano-Sánchez, J.; Borrás-Linares, I.; Belbahri, L.; Woodward, S.; Zouari-Mechichi, H.; Mechichi, T.; Nasri, M.; Segura-Carretero, A. Olive Oil Mill Wastewaters: Phenolic Content Characterization During Degradation by Coriolopsis Gallica. Chemosphere. 2014, 113, 62–70. DOI: 10.1016/j.chemosphere.2014.04.053.
  • Bavaro, S. L.; D’Antuono, I.; Cozzi, G.; Haidukowski, M.; Cardinali, A.; Logrieco, A. F. Inhibition of Aflatoxin B1 Production by Verbascoside and Other Olive Polyphenols. World Mycotoxin J. 2016, 9(4), 545–553. DOI: 10.3920/WMJ2015.2018.
  • Madureira, J.; Melgar, B.; Santos-Buelga, C.; Margaça, F. M. A.; Ferreira, I. C. F. R.; Barros, L.; Verde, S. C. Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors. 2021, 9(8), 231. DOI: 10.3390/chemosensors9080231.
  • Cravotto, C.; Fabiano-Tixier, A. S.; Claux, O.; Rapinel, V.; Tomao, V.; Stathopoulos, P.; Skaltsounis, A. L.; Tabasso, S.; Jacques, L.; Chemat, F. Higher Yield and Polyphenol Content in Olive Pomace Extracts Using 2-Methyloxolane As Bio-Based Solvent. Foods. 2022, 11(9), 1357. DOI: 10.3390/foods11091357.
  • Böhmer-Maas, B. W.; Otero, D. M.; Zambiazi, R. C.; Aranha, B. C. Optimization of the Extraction of Phenolic Compounds from Olive Pomace Using Response Surface Methodology. Revista. Ceres. 2020, 67(3), 181–190. DOI: 10.1590/0034-737X202067030003.
  • Peralbo-Molina, Á.; Priego-Capote, F.; Luque De Castro, M. D. Tentative Identification of Phenolic Compounds in Olive Pomace Extracts Using Liquid Chromatography-Tandem Mass Spectrometry with a Quadrupole-Quadrupole-Time-Of-Flight Mass Detector. J. Agric. Food. Chem. 2012, 60(46), 11542–11550. DOI: 10.1021/jf302896m.
  • Liu, Y.; McKeever, L. C.; Malik, N. S. A. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens. Front. Microbiol. 2017, 8(FEB), 113. DOI: 10.3389/fmicb.2017.00113.
  • Cappelin, E.; Meneguzzi, D.; Hendges, D. H.; Oldoni, T. L. C.; Daltoé, M. L. M.; Marchioro, M. L. K.; da Cunha, M. A. A. Low-Alcohol Light Beer Enriched with Olive Leaves Extract: Cold Mashing Technique Associated with Interrupted Fermentation in the Brewing Process. Electron. J. Biotechnol. 2024, 68, 81–89. DOI: 10.1016/j.ejbt.2024.01.002.
  • Said, H. H. UV–Visible Spectral Changes of Gamma Irradiated Olive Leaves Extract. Radiat. Phys. Chem. 2024, 217, 111506. DOI: 10.1016/j.radphyschem.2023.111506.
  • Bolek, S. Olive Stone Powder: A Potential Source of Fi Ber and Antioxidant and Its E Ff Ect on the Rheological Characteristics of Biscuit Dough and Quality. Innovat. Food Sci. Emerg. Technol. 2020, 64(June), 102423. DOI: 10.1016/j.ifset.2020.102423.
  • Putinja, I. Researchers Develop Compostable Plastic Packaging from Olive Waste. https://www.oliveoiltimes.com/world/researchers-develop-compostable-plastic-packaging-from-olivewaste/81373 (accessed Apr 4, 2023).
  • Rodríguez, G.; Lama, A.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J. Olive Stone an Attractive Source of Bioactive and Valuable Compounds. Bioresour. Technol. September 2008, 99(13), 5261–5269. DOI: 10.1016/j.biortech.2007.11.027.
  • De Hoces, M. C.; De Castro, F. H. B.; García, G. B.; Rivas, G. T. Equilibrium Modeling of Removal of Cadmium Ions by Olive Stones. Environ. Prog. 2006, 25(3), 261–266. DOI: 10.1002/ep.10151.
  • Montanã, D.; Salvadã, J.; Torras, C.; Farriol, X. High-Temperature Dilute-Acid Hydrolysis of Olive Stones for Furfural Production. Biomass Bioenergy. 2002, 22(4), 295–304. DOI: 10.1016/S0961-9534(02)00007-7.
  • Cayuela, M. L.; Millner, P. D.; Meyer, S. L. F.; Roig, A. Potential of Olive Mill Waste and Compost As Biobased Pesticides Against Weeds, Fungi, and Nematodes. Sci. Total Environ. 2008, 99(1–3), 11–18. DOI: 10.1016/j.scitotenv.2008.03.031.
  • Medeiros, R. M. L.; Villa, F.; Silva, D. F.; Júlio, L. R. C. Destinação e Reaproveitamento de Subprodutos Da Extração Olivícola. Sci. Agrár. Parana. 2016, 15(2), 100–108. DOI: 10.18188/1983-1471/sap.v15n2p100-108.
  • Moreno, A. D.; Ballesteros, M.; Negro, M. J. Biorefineries for the Valorization of Food Processing Waste. In The Interaction of Food Industry and Environment, Galanakis, C., (Ed.); Academic Press: London, 2019; pp. 1–36. DOI: 10.1016/B978-0-12-816449-5.00005-9.
  • Huertas-Alonso, A. J.; Gonzalez-Serrano, D. J.; Hadidi, M.; Salgado-Ramos, M.; Orellana-Palacios, J. C.; Sánchez-Verdú, M. P.; Xia, Q.; Simirgiotis, M. J.; Barba, F. J.; Dar, B. N., et al. Table Olive Wastewater As a Potential Source of Biophenols for Valorization: A Mini Review. Fermentation. 2022, 8 (5), 215. DOI: 10.3390/fermentation8050215.
  • Yangui, T.; Sayadi, S.; Gargoubi, A.; Dhouib, A. Fungicidal Effect of Hydroxytyrosol-Rich Preparations from Olive Mill Wastewater Against Verticillium Dahliae. Crop Prot. 2010, 29(10), 1208–1213. DOI: 10.1016/j.cropro.2010.04.016.
  • García-Serrano, P.; Brenes, M.; Romero, C.; García-García, P. Reuse of KOH Solutions During Black Ripe Olive Processing, Effect on the Quality of the Final Product and Valorization of Wastewaters as Possible Fertilizer Product. Foods. 2022, 11(12), 1749. DOI: 10.3390/foods11121749.
  • Boutaj, H.; Boutasknit, A.; Anli, M.; Ait Ahmed, M.; El Abbassi, A.; Meddich, A. Insecticidal Effect of Olive Mill Wastewaters on Potosia Opaca (Coleoptera: Scarabeidae) Larva. Waste Biomass Valorizat. 2020, 11(7), 3397–3405. DOI: 10.1007/s12649-019-00682-1.
  • Sousa, D. A.; Ferreira, L. F. V.; Fedorov, A. A.; Rego, A. M. B.; Ferraria, A. M.; Cruz, A. B.; Berberan-Santos, M. N.; Prata, J. V. Luminescent Carbon Dots from Wet Olive Pomace: Structural Insights, Photophysical Properties and Cytotoxicity. Molecules. 2022, 27(19), 6768. DOI: 10.3390/molecules27196768.
  • International Olive Oil. 2020/21 Crop Year: Production Down, Consumption Up. https://www.internationaloliveoil.org/2020-21-crop-year-production-down-consumption-up/ (accessed Feb 6, 2023).
  • Duman, A. K.; Özgen, G. Ö.; Üçtuğ, F. G. Environmental Life Cycle Assessment of Olive Pomace Utilization in Turkey. Sustain. Prod. Consum. 2020, 22, 126–137. DOI: 10.1016/j.spc.2020.02.008.
  • Muscolo, A.; Papalia, T.; Settineri, G.; Romeo, F.; Mallamaci, C. Three Different Methods for Turning Olive Pomace in Resource: Benefits of the End Products for Agricultural Purpose. Sci. Total Environ. 2019, 662, 1–7. DOI: 10.1016/j.scitotenv.2019.01.210.
  • Expósito-Díaz, A.; Miho, H.; Ledesma-Escobar, C. A.; Moral, J.; Díez, C. M.; Priego-Capote, F. Influence of Genetic and Interannual Factors on Bioactive Compounds of Olive Pomace Determined Through a Germplasm Survey. Food Chem. 2022, 378, 132107. DOI: 10.1016/j.foodchem.2022.132107.
  • Messad, S.; Bensmail, S.; Salhi, O.; Djouahra-Fahem, D. Effect of Extraction Method on Organoleptic, Physicochemical Properties and Some Biological Activities of Olive Oil from the Algerian Chemlal Variety. Eur. J. Biol. 2022, 81(1), 58–67. DOI: 10.26650/EurJBiol.2022.1109068.
  • Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Bolaños, J. P. Production, Characterization and Isolation of Neutral and Pectic Oligosaccharides with Low Molecular Weights from Olive By-Products Thermally Treated. Food Hydrocoll. 2012, 28(1), 92–104. DOI: 10.1016/j.foodhyd.2011.11.008.
  • de Moraes Crizel, T.; de Oliveira Rios, A.; Alves, V. D.; Bandarra, N.; Moldão-Martins, M.; Hickmann Flôres, S. Active Food Packaging Prepared with Chitosan and Olive Pomace. Food Hydrocoll. 2018, 74, 139–150. DOI: 10.1016/j.foodhyd.2017.08.007.
  • Lammi, S.; Barakat, A.; Mayer-Laigle, C.; Djenane, D.; Gontard, N.; Angellier-Coussy, H. Dry Fractionation of Olive Pomace as a Sustainable Process to Produce Fillers for Biocomposites. Powder Technol. 2018, 326, 44–53. DOI: 10.1016/j.powtec.2017.11.060.
  • Míguez, C.; Cancela, Á.; Álvarez, X.; Sánchez, Á. The Reuse of Bio-Waste from the Invasive Species Tradescantia Fluminensis as a Source of Phenolic Compounds. J. Clean. Prod. 2022, 336, 130293. DOI: 10.1016/j.jclepro.2021.130293.
  • Dolma, S. K.; Singh, P. P.; Reddy, S. G. E. Insecticidal and Enzyme Inhibition Activities of Leaf/Bark Extracts, Fractions, Seed Oil and Isolated Compounds from Triadica Sebifera (L.) Small Against Aphis Craccivora Koch. Molecules. 2022, 27(6), 1967. DOI: 10.3390/molecules27061967.
  • Schnarr, L.; Segatto, M. L.; Olsson, O.; Zuin, V. G.; Kümmerer, K. Flavonoids As Biopesticides – Systematic Assessment of Sources, Structures, Activities and Environmental Fate. Sci. Total Environ. 2022, 824, 153781. DOI: 10.1016/j.scitotenv.2022.153781.
  • Hinchliffe, G. Novel Biopesticides Based on Recombinant Avidin for Protection of Crops Against Insect Pests. Master’s thesis, Durham University: Durham, 2012.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4(December 2020), 200–214. DOI: 10.1016/j.crfs.2021.03.011.
  • Dossou, S. S. K.; Xu, F.; Cui, X.; Sheng, C.; Zhou, R.; You, J.; Tozo, K.; Wang, L. Comparative Metabolomics Analysis of Different Sesame (Sesamum Indicum L.) Tissues Reveals a Tissue-Specific Accumulation of Metabolites. BMC. Plant Biol. 2021, 21(1), 352. DOI: 10.1186/s12870-021-03132-0.
  • Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients. 2010, 2(12), 1231–1246. DOI: 10.3390/nu2121231.
  • İlbay, Z.; Şahin, S.; Büyükkabasakal, K. A Novel Approach for Olive Leaf Extraction Through Ultrasound Technology: Response Surface Methodology versus Artificial Neural Networks. Korean J. Chem. Eng. 2014, 31(9), 1661–1667. DOI: 10.1007/s11814-014-0106-3.
  • Martínez-Patiño, J. C.; Gullón, B.; Romero, I.; Ruiz, E.; Brnčić, M.; Žlabur, J. Š.; Castro, E. Optimization of Ultrasound-Assisted Extraction of Biomass from Olive Trees Using Response Surface Methodology. Ultrason Sonochem. 2019, 51, 487–495. DOI: 10.1016/j.ultsonch.2018.05.031.
  • Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds: Oleuropein, Phenolic Acids, Phenolic Alcohols and Flavonoids from Olive Leaves and Evaluation of Its Antioxidant Activities. Ind. Crops Prod. 2018, 124, 382–388. DOI: 10.1016/j.indcrop.2018.07.070.
  • da Rosa, G. S.; Martiny, T. R.; Dotto, G. L.; Vanga, S. K.; Parrine, D.; Gariepy, Y.; Lefsrud, M.; Raghavan, V. Eco-Friendly Extraction for the Recovery of Bioactive Compounds from Brazilian Olive Leaves. Sus. Mater. Technol. 2021, 28, e00276. DOI: 10.1016/j.susmat.2021.e00276.
  • Macedo, G. A.; Santana, Á. L.; Crawford, L. M.; Wang, S. C.; Dias, F. F. G.; de Mour Bell, J. M. L. N. Integrated Microwave- and Enzyme-Assisted Extraction of Phenolic Compounds from Olive Pomace. LWT. 2021, 138, 110621. DOI: 10.1016/j.lwt.2020.110621.
  • Chanioti, S.; Tzia, C. Extraction of Phenolic Compounds from Olive Pomace by Using Natural Deep Eutectic Solvents and Innovative Extraction Techniques. Innovat. Food Sci. Emerg. Technol. 2018, 48, 228–239. DOI: 10.1016/j.ifset.2018.07.001.
  • Fernandez-Pastor, I.; Fernandez-Hernandez, A.; Perez-Criado, S.; Rivas, F.; Martinez, A.; Garcia-Granados, A.; Parra, A. Microwave-Assisted Extraction versus Soxhlet Extraction to Determine Triterpene Acids in Olive Skins. J. Sep. Sci. 2017, 40(5), 1209–1217. DOI: 10.1002/jssc.201601130.
  • Vásquez-Villanueva, R.; Plaza, M.; García, M. C.; Marina, M. L. Recovery and Determination of Cholesterol-Lowering Compounds from Olea Europaea Seeds Employing Pressurized Liquid Extraction and Gas Chromatography-Mass Spectrometry. Microchem. J. 2020, 156, 104812. DOI: 10.1016/j.microc.2020.104812.
  • Martín-García, B.; Pimentel-Moral, S.; Gómez-Caravaca, A. M.; Arráez-Román, D.; Segura-Carretero, A. Box-Behnken Experimental Design for a Green Extraction Method of Phenolic Compounds from Olive Leaves. Ind. Crops Prod. 2020, 154. DOI: 10.1016/j.indcrop.2020.112741.
  • Caballero, A. S.; Romero-García, J. M.; Castro, E.; Cardona, C. A. Supercritical Fluid Extraction for Enhancing Polyphenolic Compounds Production from Olive Waste Extracts. J. Chem. Technol. Biotechnol. 2020, 95(2), 356–362. DOI: 10.1002/jctb.5907.
  • Schievano, A.; Adani, F.; Buessing, L.; Botto, A.; Casoliba, E. N.; Rossoni, M.; Goldfarb, J. L. An Integrated Biorefinery Concept for Olive Mill Waste Management: Supercritical CO2 Extraction and Energy Recovery. Green Chem. 2015, 17(5), 2874–2887. DOI: 10.1039/c5gc00076a.
  • Ghoreishi, S. M.; Shahrestani, R. G. Subcritical Water Extraction of Mannitol from Olive Leaves. J. Food Eng. 2009, 93(4), 474–481. DOI: 10.1016/j.jfoodeng.2009.02.015.
  • Durante, M.; Ferramosca, A.; Treppiccione, L.; Di Giacomo, M.; Zara, V.; Montefusco, A.; Piro, G.; Mita, G.; Bergamo, P.; Lenucci, M. S. Application of Response Surface Methodology (RSM) for the Optimization of Supercritical CO2 Extraction of Oil from Patè Olive Cake: Yield, Content of Bioactive Molecules and Biological Effects in vivo. Food Chem. 2020, 332, 127405. DOI: 10.1016/j.foodchem.2020.127405.
  • Nunes, M. A.; Alves, R. C.; Costa, A. S. G.; Oliveira, M. B. P. P.; Puga, H. Olive Pomace Phenolics Extraction: Conventional Vs Emergent Methodologies. In WASTES - Solutions, Treatments and Opportunities II; Vilarinho, C., Castro, F. and de L Lopes, M., Eds.; CRC Press, Taylor & Francis Group: Porto, 2018; pp. 395–401.
  • Barp, L.; Višnjevec, A. M.; Moret, S. Pressurized Liquid Extraction: A Powerful Tool to Implement Extraction and Purification of Food Contaminants. Foods. 2023, 12(10), 2017. DOI: 10.3390/foods12102017.
  • Rodríguez De Luna, S. L.; Ramírez-Garza, R. E.; Serna Saldívar, S. O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 1–38. DOI: 10.1155/2020/6792069.
  • Machado, A. P. D. F.; Sumere, B. R.; Mekaru, C.; Martinez, J.; Bezerra, R. M. N.; Rostagno, M. A. Extraction of Polyphenols and Antioxidants from Pomegranate Peel Using Ultrasound: Influence of Temperature, Frequency and Operation Mode. Int. J. Food Sci. Technol. 2019, 54(9), 2792–2801. DOI: 10.1111/ijfs.14194.
  • Alara, O. R.; Abdurahman, N. H. Kinetics Studies on Effects of Extraction Techniques on Bioactive Compounds from Vernonia Cinerea Leaf. J. Food Sci. Technol. 2019, 56(2), 580–588. DOI: 10.1007/s13197-018-3512-4.
  • Sosa-Ferrera, Z.; Mahugo-Santana, C.; Santana-Rodríguez, J. J. Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples. Biomed. Chromatogr. 2013, 7, 23. DOI: 10.1155/2013/674838.
  • Raks, V.; Al-Suod, H.; Buszewski, B. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia. 2018, 81(2), 189–202. DOI: 10.1007/s10337-017-3405-0.
  • Sapkale, G. N.; Patil, S. M.; Surwase, U. S.; Bhatbhage, P. K. Supercritical Fluid Extraction. Int. J. Chem. Sci. 2010, 8(2), 729–743. DOI: 10.1201/b17997-15.
  • Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. DOI: 10.1016/j.foodchem.2021.131918.
  • Dai, J.; Mumper, R. J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010, 15(10), 7313–7352. DOI: 10.3390/molecules15107313.
  • Yu, Q.; Li, C.; Duan, Z.; Liu, B.; Duan, W.; Shang, F. Ultrasonic Microwave-Assisted Extraction of Polyphenols, Flavonoids, Triterpenoids, and Vitamin C from Clinacanthus Nutans. Czech J. Food Sci. 2017, 35(1), 89–94. DOI: 10.17221/82/2016-CJFS.
  • Poveda, J. M.; Loarce, L.; Alarcón, M.; Díaz-Maroto, M. C.; Alañón, M. E. Revalorization of Winery By-Products as Source of Natural Preservatives Obtained by Means of Green Extraction Techniques. Ind. Crops Prod. 2018, 112(January), 617–625. DOI: 10.1016/j.indcrop.2017.12.063.
  • Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy. 2017, 7(3), 47. DOI: 10.3390/agronomy7030047.
  • Chemat, F.; Rombaut, N.; Sicaire, A. G.; Meullemiestre, A.; Fabiano-Tixier, A. S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Cassol, L.; Rodrigues, E.; Zapata Noreña, C. P. Extracting Phenolic Compounds from Hibiscus Sabdariffa L. Calyx Using Microwave Assisted Extraction. Ind. Crops Prod. 2019, 133(March), 168–177. DOI: 10.1016/j.indcrop.2019.03.023.
  • Alara, O. R.; Abdurahman, N. H.; Ukaegbu, C. I.; Azhari, N. H. Vernonia Cinerea Leaves As the Source of Phenolic Compounds, Antioxidants, and Anti-Diabetic Activity Using Microwave-Assisted Extraction Technique. Ind. Crops Prod. 2018, 122(December 2017), 533–544. DOI: 10.1016/j.indcrop.2018.06.034.
  • Chaves, J. O.; de Souza, M. C.; da Silva, L. C.; Lachos-Perez, D.; Torres-Mayanga, P. C.; Machado, A. P.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A. V.; Barbero, G. F., et al. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front. Chem. 2020, 8 (September), 507887. DOI: 10.3389/fchem.2020.507887.
  • Wu, K.; Ju, T.; Deng, Y.; Xi, J. Mechanochemical Assisted Extraction: A Novel, Efficient, Eco-Friendly Technology. Trends Food Sci. Technol. 2017, 66, 166–175. DOI: 10.1016/j.tifs.2017.06.011.
  • Pinela, J.; Prieto, M. A.; Barreiro, M. F.; Carvalho, A. M.; Oliveira, M. B. P. P.; Curran, T. P.; Ferreira, I. C. F. R. Valorisation of Tomato Wastes for Development of Nutrient-Rich Antioxidant Ingredients: A Sustainable Approach Towards the Needs of the Today’s Society. Innovat. Food Sci. Emerg. Technol. 2017, 41, 160–171. DOI: 10.1016/j.ifset.2017.02.004.
  • Xie, X.; Zhu, D.; Zhang, W.; Huai, W.; Wang, K.; Huang, X.; Zhou, L.; Fan, H. Microwave-Assisted Aqueous Two-Phase Extraction Coupled with High Performance Liquid Chromatography for Simultaneous Extraction and Determination of Four Flavonoids in Crotalaria Sessiliflora L. Ind. Crops Prod. 2017, 95, 632–642. DOI: 10.1016/j.indcrop.2016.11.032.
  • Saxena, V.; Arora, N.; Varghese, A.; Shandilya, K. Microwave Assisted Extraction of Moringa Oleifera Leaves and Their Phytochemical Analysis. Int. J. Curr. Res. 2016, 8(3), 27432–27433.
  • Macedo, G. A.; Barbosa, P.; Dias, F. F. G.; Crawford, L. M.; Wang, S. C.; Bell, J. M. L. N. D. M. Optimizing the Integration of Microwave Processing and Enzymatic Extraction to Produce Polyphenol-Rich Extracts from Olive Pomace. Foods. 2023, 12(20), 3754. DOI: 10.3390/foods12203754.
  • Zhang, Q. W.; Lin, L. G.; Ye, W. C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13(1), 20. DOI: 10.1186/s13020-018-0177-x.
  • Tamkutė, L.; Liepuoniūtė, R.; Pukalskienė, M.; Venskutonis, P. R. Recovery of Valuable Lipophilic and Polyphenolic Fractions from Cranberry Pomace by Consecutive Supercritical CO2 and Pressurized Liquid Extraction. J. Supercrit. Fluids. 2020, 159, 104755. DOI: 10.1016/j.supflu.2020.104755.
  • Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. DOI: 10.1016/j.trac.2015.02.022.
  • Arapitsas, P.; Turner, C. Pressurized Solvent Extraction and Monolithic Column-HPLC/DAD Analysis of Anthocyanins in Red Cabbage. Talanta. 2008, 74(5), 1218–1223. DOI: 10.1016/j.talanta.2007.08.029.
  • Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016, 21(7), 901. DOI: 10.3390/molecules21070901.
  • Wang, Y.; Wang, Z.; Xue, Q.; Zhen, L.; Wang, Y.; Cao, J.; Liu, Y.; Khan, A.; Zhao, T.; Cheng, G. Effect of Ultra-High Pressure Pretreatment on the Phenolic Profiles, Antioxidative Activity and Cytoprotective Capacity of Different Phenolic Fractions from Que Zui Tea. Food Chem. 2023, 409(December 2022), 135271. DOI: 10.1016/j.foodchem.2022.135271.
  • Chen, H.; Huang, Y.; Zhou, C.; Xu, T.; Chen, X.; Wu, Q.; Zhang, K.; Li, Y.; Li, D.; Chen, Y. Effects of Ultra-High Pressure Treatment on Structure and Bioactivity of Polysaccharides from Large Leaf Yellow Tea. Food Chem. 2022, 387(March), 132862. DOI: 10.1016/j.foodchem.2022.132862.
  • Zhou, J.; Ma, Y.; Jia, Y.; Pang, M.; Cheng, G.; Cai, S. Phenolic Profiles, Antioxidant Activities and Cytoprotective Effects of Different Phenolic Fractions from Oil Palm (Elaeis Guineensis Jacq.) Fruits Treated by Ultra-High Pressure. Food Chem. 2019, 288(March), 68–77. DOI: 10.1016/j.foodchem.2019.03.002.
  • Šulniūtė, V.; Pukalskas, A.; Venskutonis, P. R. Phytochemical Composition of Fractions Isolated from Ten Salvia Species by Supercritical Carbon Dioxide and Pressurized Liquid Extraction Methods. Food Chem. 2017, 224, 37–47. DOI: 10.1016/j.foodchem.2016.12.047.
  • Torres-Ossandón, M. J.; Vega-Gálvez, A.; López, J.; Stucken, K.; Romero, J.; Di Scala, K. Effects of High Hydrostatic Pressure Processing and Supercritical Fluid Extraction on Bioactive Compounds and Antioxidant Capacity of Cape Gooseberry Pulp (Physalis Peruviana L.). J. Supercrit Fluids. 2018, 138(May), 215–220. DOI: 10.1016/j.supflu.2018.05.005.
  • Salazar, M. A. R.; Costa, J. V.; Urbina, G. R. O.; Cunha, V. M. B.; Silva, M. P.; Bezerra, P. D. N.; Pinheiro, W. B. S.; Gomes-Leal, W.; Lopes, A. S.; Carvalho Junior, R. N. Chemical Composition, Antioxidant Activity, Neuroprotective and Anti-Inflammatory Effects of Cipó-Pucá (Cissus Sicyoides L.) Extracts Obtained from Supercritical Extraction. J. Supercrit. Fluids. 2018, 138(October 2017), 36–45. DOI: 10.1016/j.supflu.2018.03.022.
  • Uwineza, P. A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules. 2020, 25(17), 3847. DOI: 10.3390/molecules25173847.
  • Týskiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules. 2018, 23(10), 2625. DOI: 10.3390/molecules23102625.
  • Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100(6), 1624–1635. DOI: 10.5740/jaoacint.17-0232.
  • Farías-Campomanes, A. M.; Rostagno, M. A.; Coaquira-Quispe, J. J.; Meireles, M. A. A. Supercritical Fluid Extraction of Polyphenols from Lees: Overall Extraction Curve, Kinetic Data and Composition of the Extracts. Bioresour. Bioprocess. 2015, 2(1), 45. DOI: 10.1186/s40643-015-0073-5.
  • Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New Perspective in Extraction of Plant Biologically Active Compounds by Green Solvents. Food Bioprod. Process. 2018, 109, 52–73. DOI: 10.1016/j.fbp.2018.03.001.
  • Benvenutti, L.; Zielinski, A. A. F.; Ferreira, S. R. S. Which Is the Best Food Emerging Solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. DOI: 10.1016/j.tifs.2019.06.003.
  • Mariatti, F.; Gunjević, V.; Boffa, L.; Cravotto, G. Process Intensification Technologies for the Recovery of Valuable Compounds from Cocoa By-Products. Innovat. Food Sci. Emerg. Technol. January, 2021, 68, 102601. DOI: 10.1016/j.ifset.2021.102601.