81
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Supplementation of Cereal Products with Edible Insects: Nutritional, Techno-Functional, and Sensory Properties

, &

References

  • Cappelli, A.; Lupori, L.; Cini, E. Baking Technology: A Systematic Review of Machines and Plants and Their Effect on Final Products, Including Improvement Strategies. Trends Food Sci. Technol. 2021, 115, 275–284. DOI: 10.1016/j.tifs.2021.06.048.
  • Lee, Y. J.; Song, S.; Song, Y. High-Carbohydrate Diets and Food Patterns and Their Associations with Metabolic Disease in the Korean Population. Yonsei Med. J. 2018, 59(7), 834–842. DOI: 10.3349/ymj.2018.59.7.834.
  • Rawat, N.; Indrani, D. Functional Ingredients of Wheat-Based Bakery, Traditional, Pasta, and Other Food Products. Food Rev. Int. 2015, 31(2), 125–146. DOI: 10.1080/87559129.2014.974267.
  • Tarahi, M.; Mohamadzade Fakhr-Davood, M.; Ghaedrahmati, S.; Roshanak, S.; Shahidi, F. Physicochemical and Sensory Properties of Vegan Gummy Candies Enriched with High-Fiber Jaban Watermelon Exocarp Powder. Foods. 2023, 12(7), 1478. DOI: 10.3390/foods12071478.
  • Tarahi, M.; Tahmouzi, S.; Kianiani, M. R.; Ezzati, S.; Hedayati, S.; Niakousari, M. Current Innovations in the Development of Functional Gummy Candies. Foods. 2023, 13(1), 76. DOI: 10.3390/foods13010076.
  • Sinha, S.; Patro, N.; Patro, I. K. Maternal Protein Malnutrition: Current and Future Perspectives of Spirulina Supplementation in Neuroprotection. Front. Neurosci. 2018, 12, 966. DOI: 10.3389/fnins.2018.00966.
  • Ohanenye, I. C.; Tsopmo, A.; Ejike, C. E.; Udenigwe, C. C. Germination As a Bioprocess for Enhancing the Quality and Nutritional Prospects of Legume Proteins. Trends Food Sci. Technol. 2020, 101, 213–222. DOI: 10.1016/j.tifs.2020.05.003.
  • Tarahi, M.; Abdolalizadeh, L.; Hedayati, S. Mung Bean Protein Isolate: Extraction, Structure, Physicochemical Properties, Modifications, and Food Applications. Food Chem. 2024, 138626. DOI: 10.1016/j.foodchem.2024.138626.
  • Gravel, A.; Doyen, A. The Use of Edible Insect Proteins in Food: Challenges and Issues Related to Their Functional Properties. Innov. Food Sci. Emerg. Tech. 2020, 59, 102272. DOI: 10.1016/j.ifset.2019.102272.
  • Sharma, R.; Sharma, S.; Makroo, H. A.; Dar, B. Role of Pulses to Modulate the Nutritive, Bioactive and Technological Functionality of Cereal‐Based Extruded Snacks: A Review. Int. J. Food Sci. Tech. 2021, 57(7), 3882–3891. DOI: 10.1111/ijfs.15186.
  • Adegboye, A. R. A.; Bawa, M.; Keith, R.; Twefik, S.; Tewfik, I. Edible Insects: Sustainable Nutrient-Rich Foods to Tackle Food Insecurity and Malnutrition. World Nutr. 2021, 12(4), 176–189. DOI: 10.26596/wn.2021124176-189.
  • Weru, J.; Chege, P.; Kinyuru, J. Nutritional Potential of Edible Insects: A Systematic Review of Published Data. Int. J. Tropical Insect Sci. 2021, 41(3), 2015–2037. DOI: 10.1007/s42690-021-00464-0.
  • Yazici, G. N.; Ozer, M. S. Using Edible Insects in the Production of Cookies, Biscuits, and Crackers: A Review. Bio. & Life Sci. Forum. 2021, 6, 80. MDPI. DOI: 10.3390/Foods2021-10974.
  • Borges, M. M.; da Costa, D. V.; Trombete, F. M.; Câmara, A. K. F. I. Edible Insects As a Sustainable Alternative to Food Products: An Insight into Quality Aspects of Reformulated Bakery and Meat Products. Curr. Opin. Food Sci. 2022, 46, 100864. DOI: 10.1016/j.cofs.2022.100864.
  • Chen, X.; Feng, Y.; Chen, Z. Common Edible Insects and Their Utilization in China. Entomological. Res. 2009, 39(5), 299–303. DOI: 10.1111/j.1748-5967.2009.00237.x.
  • Brady, D.; Grapputo, A.; Romoli, O.; Sandrelli, F. Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. Int. J. Mol. Sci. 2019, 20(23), 5862. DOI: 10.3390/ijms20235862.
  • Oghenesuvwe, E. E.; Paul, C. Edible Insects Bio-Actives As Anti-Oxidants: Current Status and Perspectives. J. Complement. Med. Res. 2019, 10(2), 89–102. DOI: 10.5455/jcmr.20190130100319.
  • Park, E.-S.; Kang, M.-H.; Choi, M.-K. Nutritional Composition and Antioxidant Properties of Edible Insects Sold in Korea. J. Insects as Food and Feed. 2023, 9(2), 245–254. DOI: 10.3920/JIFF2022.0036.
  • Pessina, F.; Frosini, M.; Marcolongo, P.; Fusi, F.; Saponara, S.; Gamberucci, A.; Valoti, M.; Giustarini, D.; Fiorenzani, P.; Gorelli, B. Antihypertensive, Cardio-And Neuro-Protective Effects of Tenebrio Molitor (Coleoptera: Tenebrionidae) Defatted Larvae in Spontaneously Hypertensive Rats. PLOS ONE. 2020, 15(5), e0233788. DOI: 10.1371/journal.pone.0233788.
  • Dutta, P.; Sahu, R. K.; Dey, T.; Lahkar, M. D.; Manna, P.; Kalita, J. Beneficial Role of Insect-Derived Bioactive Components Against Inflammation and Its Associated Complications (Colitis and Arthritis) and Cancer. Chem.-Biol. Interact. 2019, 313, 108824. DOI: 10.1016/j.cbi.2019.108824.
  • Cho, H. T.; Sim, K. S.; Kim, Y.; Chang, M. H.; Kim, T.; Lee, S. H.; Lee, D.-H.; Kim, J. H. Anti-Diabetic Activity of Edible Insect Gryllus Bimaculatus Extracts in Insulin-Deficient Diabetic Mice. J. Korean Soc. Food Sci. Nutr. 2019, 48(10), 1165–1171. DOI: 10.3746/jkfn.2019.48.10.1165.
  • Lange, K. W.; Nakamura, Y. Edible Insects and Their Potential Anti-Obesity Effects: A Review. Food Sci. Anim. Prod. 2023, 1(1), 9240008. DOI: 10.26599/FSAP.2023.9240008.
  • Hasnan, F. F. B.; Feng, Y.; Sun, T.; Parraga, K.; Schwarz, M.; Zarei, M. Insects As Valuable Sources of Protein and Peptides: Production, Functional Properties, and Challenges. Foods. 2023, 12(23), 4243. DOI: 10.3390/foods12234243.
  • Aiello, D.; Barbera, M.; Bongiorno, D.; Cammarata, M.; Censi, V.; Indelicato, S.; Mazzotti, F.; Napoli, A.; Piazzese, D.; Saiano, F. Edible Insects an Alternative Nutritional Source of Bioactive Compounds: A Review. Molecules. 2023, 28(2), 699. DOI: 10.3390/molecules28020699.
  • Kim, T.-K.; Cha, J. Y.; Yong, H. I.; Jang, H. W.; Jung, S.; Choi, Y.-S. Application of Edible Insects As Novel Protein Sources and Strategies for Improving Their Processing. Food Sci. Anim. Resour. 2022, 42(3), 372. DOI: 10.5851/kosfa.2022.e10.
  • Villasenor, V. M.; Enriquez-Vara, J. N.; Urias-Silva, J. E.; Mojica, L. Edible Insects: Techno-Functional Properties Food and Feed Applications and Biological Potential. Food Rev. Int. 2022, 38(suppl 1), 866–892. DOI: 10.1080/87559129.2021.1890116.
  • Papastavropoulou, K.; Koupa, A.; Kritikou, E.; Kostakis, M.; Proestos, C. Edible Insects: Benefits and Potential Risk for Consumers and the Food Industry. Biointerface Res. Appl. Chem. 2021, 12, 5131–5149. DOI: 10.33263/BRIAC124.51315149.
  • Kosečková, P.; Zvěřina, O.; Pěchová, M.; Krulíková, M.; Duborská, E.; Borkovcová, M. Mineral Profile of Cricket Powders, Some Edible Insect Species and Their Implication for Gastronomy. J. Food Compost. Anal. 2022, 107, 104340. DOI: 10.1016/j.jfca.2021.104340.
  • Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods. 2021, 10(4), 766. DOI: 10.3390/foods10040766.
  • Hall, F. G.; Liceaga, A. M. Isolation and Proteomic Characterization of Tropomyosin Extracted from Edible Insect Protein. Food Chem. Mole Sci. 2021, 3, 100049. DOI: 10.1016/j.fochms.2021.100049.
  • Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected Species of Edible Insects as a Source of Nutrient Composition. Food Res. Int. 2015, 77, 460–466. DOI: 10.1016/j.foodres.2015.09.008.
  • Ramos-Elorduy, J.; Moreno, J. M. P.; Prado, E. E.; Perez, M. A.; Otero, J. L.; De Guevara, O. L. Nutritional Value of Edible Insects from the State of Oaxaca, Mexico. J. Food Compost. Anal. 1997, 10(2), 142–157. DOI: 10.1006/jfca.1997.0530.
  • Rumpold, B. A.; Schlüter, O. K. Nutritional Composition and Safety Aspects of Edible Insects. Molecular Nutr Food Res. 2013, 57(5), 802–823. DOI: 10.1002/mnfr.201200735.
  • Köhler, R.; Kariuki, L.; Lambert, C.; Biesalski, H. Protein, Amino Acid and Mineral Composition of Some Edible Insects from Thailand. J. Asia-Pacific Entomol. 2019, 22(1), 372–378. DOI: 10.1016/j.aspen.2019.02.002.
  • Mlček, J.; Adámková, A.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Kouřimská, L.; Hlobilová, V. Selected Aspects of Edible Insect Rearing and Consumption–A Review. Czech J. Food Sci. 2021, 39(3), 149–159. DOI: 10.17221/288/2020-CJFS.
  • Wu, Q.; Patočka, J.; Kuča, K. Insect antimicrobial peptides, a mini review. Toxins 2018, 10(11), 461. DOI: 10.3390/toxins10110461.
  • Yi, H.-Y.; Chowdhury, M.; Huang, Y.-D.; Yu, X.-Q. Insect Antimicrobial Peptides and Their Applications. Appl. Microbiol. Biotechnol. 2014, 98(13), 5807–5822. DOI: 10.1007/s00253-014-5792-6.
  • Manniello, M.; Moretta, A.; Salvia, R.; Scieuzo, C.; Lucchetti, D.; Vogel, H.; Sgambato, A.; Falabella, P. Insect Antimicrobial Peptides: Potential Weapons to Counteract the Antibiotic Resistance. Cell. Mol. Life Sci. 2021, 78(9), 4259–4282. DOI: 10.1007/s00018-021-03784-z.
  • Ordoñez-Araque, R.; Egas-Montenegro, E. Edible Insects: A Food Alternative for the Sustainable Development of the Planet. Int. J. Gastronomy Food Sci. 2021, 23, 100304. DOI: 10.1016/j.ijgfs.2021.100304.
  • Baiano, A. Edible Insects: An Overview on Nutritional Characteristics, Safety, Farming, Production Technologies, Regulatory Framework, and Socio-Economic and Ethical Implications. Trends Food Sci. Technol. 2020, 100, 35–50. DOI: 10.1016/j.tifs.2020.03.040.
  • Kelemu, S.; Niassy, S.; Torto, B.; Fiaboe, K.; Affognon, H.; Tonnang, H.; Maniania, N.; Ekesi, S. African Edible Insects for Food and Feed: Inventory, Diversity, Commonalities and Contribution to Food Security. J. Insects As Food Feed. 2015, 1(2), 103–119. DOI: 10.3920/JIFF2014.0016.
  • Mancini, S.; Sogari, G.; Espinosa Diaz, S.; Menozzi, D.; Paci, G.; Moruzzo, R. Exploring the Future of Edible Insects in Europe. Foods. 2022, 11(3), 455. DOI: 10.3390/foods11030455.
  • Guiné, R. P.; Correia, P.; Coelho, C.; Costa, C. A. The Role of Edible Insects to Mitigate Challenges for Sustainability. Open Agri. 2021, 6(1), 24–36. DOI: 10.1515/opag-2020-0206.
  • Lange, K. W.; Nakamura, Y. Edible Insects As Future Food: Chances and Challenges. J. Future Foods. 2021, 1(1), 38–46. DOI: 10.1016/j.jfutfo.2021.10.001.
  • Offenberg, J. Oecophylla Smaragdina Food Conversion Efficiency: Prospects for Ant Farming. J. App.Entomol. 2011, 135(8), 575–581. DOI: 10.1111/j.1439-0418.2010.01588.x.
  • Oonincx, D. G.; Van Itterbeeck, J.; Heetkamp, M. J.; Van Den Brand, H.; Van Loon, J. J.; Van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLOS ONE. 2010, 5(12), e14445. DOI: 10.1371/journal.pone.0014445.
  • Patel, S.; Suleria, H. A. R.; Rauf, A. Edible Insects As Innovative Foods: Nutritional and Functional Assessments. Trends Food Sci. Technol. 2019, 86, 352–359. DOI: 10.1016/j.tifs.2019.02.033.
  • Melgar‐Lalanne, G.; Hernández‐Álvarez, A. J.; Salinas‐Castro, A. Edible Insects Processing: Traditional and Innovative Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18(4), 1166–1191. DOI: 10.1111/1541-4337.12463.
  • Panagiotakopulu, E. Archaeology and Entomology in the Eastern Mediterranean: Research into the History of Insect Synanthropy in Greece and Egypt. Archaeopress. 2000. DOI: 10.30861/9781841711294.
  • Moruzzo, R.; Riccioli, F.; Espinosa Diaz, S.; Secci, C.; Poli, G.; Mancini, S. Mealworm (Tenebrio Molitor): Potential and Challenges to Promote Circular Economy. Animals. 2021, 11(9), 2568. DOI: 10.3390/ani11092568.
  • Grau, T.; Vilcinskas, A.; Joop, G. Sustainable Farming of the Mealworm Tenebrio Molitor for the Production of Food and Feed. Zeitschrift für Naturforschung C. 2017, 72(9–10), 337–349. DOI: 10.1515/znc-2017-0033.
  • Selaledi, L.; Mbajiorgu, C.; Mabelebele, M. The Use of Yellow Mealworm (T. Molitor) As Alternative Source of Protein in Poultry Diets: A Review. Trop. Anim. Health Prod. 2020, 52(1), 7–16. DOI: 10.1007/s11250-019-02033-7.
  • Hong, J.; Han, T.; Kim, Y. Y. Mealworm (Tenebrio Molitor Larvae) As an Alternative Protein Source for Monogastric Animal: A Review. Animals. 2020, 10(11), 2068. DOI: 10.3390/ani10112068.
  • Fernandez-Cassi, X.; Supeanu, A.; Vaga, M.; Jansson, A.; Boqvist, S.; Vagsholm, I. The House Cricket (Acheta Domesticus) As a Novel Food: A Risk Profile. J. Insects as Food and Feed. 2019, 5(2), 137–157. DOI: 10.3920/JIFF2018.0021.
  • Slu, S. U. O. A. S.; Sciences, D. O. B.; Veterinary Public Health, S.; Fernandez‐Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vagsholm, I. Novel Foods: A Risk Profile for the House Cricket (Acheta Domesticus). EFSA J. 2018, 16, e16082. DOI: 10.2903/j.efsa.2018.e16082.
  • Ververis, E.; Boué, G.; Poulsen, M.; Pires, S. M.; Niforou, A.; Thomsen, S. T.; Tesson, V.; Federighi, M.; Naska, A. A Systematic Review of the Nutrient Composition, Microbiological and Toxicological Profile of Acheta Domesticus (House Cricket). J. Food Compost. Anal. 2022, 104859. DOI: 10.1016/j.jfca.2022.104859.
  • Mariod, A. A.; Elwathig, M.; Mirghani, M. E. S.; Hussein, I. H. Schistocerca Gregaria (Desert Locust) and Locusta Migratoria (Migratory Locust). In Unconventional Oilseeds and Oil Sources; Academic Press: Cambridge, MA, USA, 2017; pp. 293–297.
  • Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security. FAO. 2013.
  • Clarkson, C.; Mirosa, M.; Birch, J. Potential of Extracted Locusta Migratoria Protein Fractions As Value-Added Ingredients. Insects. 2018, 9(1), 20. DOI: 10.3390/insects9010020.
  • Mondal, A.; Datta, A. Bread Baking–A Review. J. Food Eng. 2008, 86(4), 465–474. DOI: 10.1016/j.jfoodeng.2007.11.014.
  • Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N. Bread Enriched with Cricket Powder (Acheta Domesticus): A Technological, Microbiological and Nutritional Evaluation. Innovative Food Scie. Emerg. Tech. 2018, 48, 150–163. DOI: 10.1016/j.ifset.2018.06.007.
  • Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, Sensory, and Texture Quality of Bread and Cookie Enriched with House Cricket (Acheta Domesticus) Powder. J. Food Process. Preserv. 2020, 44(8), e14601. DOI: 10.1111/jfpp.14601.
  • Mafu, A.; Ketnawa, S.; Phongthai, S.; Schönlechner, R.; Rawdkuen, S. Whole Wheat Bread Enriched with Cricket Powder as an Alternative Protein. Foods. 2022, 11(14), 2142. DOI: 10.3390/foods11142142.
  • Bresciani, A.; Cardone, G.; Jucker, C.; Savoldelli, S.; Marti, A. Technological Performance of Cricket Powder (Acheta Domesticus L.) in Wheat-Based Formulations. Insects. 2022, 13(6), 546. DOI: 10.3390/insects13060546.
  • Khatun, H.; Van Der Borght, M.; Akhtaruzzaman, M.; Claes, J. Rheological Characterization of Chapatti (Roti) Enriched with Flour or Paste of House Crickets (Acheta Domesticus). Foods. 2021, 10(11), 2750. DOI: 10.3390/foods10112750.
  • Khuenpet, K.; Pakasap, C.; Vatthanakul, S.; Kitthawee, S. Effect of Larval-Stage Mealworm (Tenebrio Molitor) Powder on Qualities of Bread. Int. J. Agric. Technol. 2020, 16, 283–296.
  • Xie, X.; Cai, K.; Yuan, Z.; Shang, L.; Deng, L. Effect of Mealworm Powder Substitution on the Properties of High-Gluten Wheat Dough and Bread Based on Different Baking Methods. Foods. 2022, 11(24), 4057. DOI: 10.3390/foods11244057.
  • Roncolini, A.; Milanović, V.; Cardinali, F.; Osimani, A.; Garofalo, C.; Sabbatini, R.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R., et al. Protein Fortification with Mealworm (Tenebrio Molitor L.) Powder: Effect on Textural, Microbiological, Nutritional and Sensory Features of Bread. PLOS ONE. 2019, 14(2), e0211747. DOI: 10.1371/journal.pone.0211747.
  • Gantner, M.; Król, K.; Piotrowska, A.; Sionek, B.; Sadowska, A.; Kulik, K.; Wiącek, M. Adding Mealworm (Tenebrio Molitor L.) Powder to Wheat Bread: Effects on Physicochemical, Sensory and Microbiological Qualities of the End-Product. Molecules. 2022, 27(19), 6155. DOI: 10.3390/molecules27196155.
  • Cozmuta, A. M.; Nicula, C.; Peter, A.; Cozmuta, L. M.; Nartea, A.; Kuhalskaya, A.; Pacetti, D.; Silvi, S.; Fiorini, D.; Pruteanu, L. Cricket and Yellow Mealworm Powders Promote Higher Bioaccessible Fractions of Mineral Elements in Functional Bread. J. Funct. Foods. 2022, 99, 105310. DOI: 10.1016/j.jff.2022.105310.
  • Cappelli, A.; Oliva, N.; Bonaccorsi, G.; Lorini, C.; Cini, E. Assessment of the Rheological Properties and Bread Characteristics Obtained by Innovative Protein Sources (Cicer Arietinum, Acheta Domesticus, Tenebrio Molitor): Novel Food or Potential Improvers for Wheat Flour? LWT. 2020, 118, 108867. DOI: 10.1016/j.lwt.2019.108867.
  • García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Consumer Acceptance of Bread Enriched with Alternative Proteins. Foods. 2020, 9(7), 933. DOI: 10.3390/foods9070933.
  • Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Amino Acids Release from Enriched Bread with Edible Insect or Pea Protein During in vitro Gastrointestinal Digestion. Int. J. Gastronomy Food Sci. 2021, 24, 100351. DOI: 10.1016/j.ijgfs.2021.100351.
  • González, C. M.; Garzón, R.; Rosell, C. M. Insects as Ingredients for Bakery Goods. A Comparison Study of H. Illucens, A. Domestica and T. Molitor Flours. Innov. Food Sci. Emerg. Tech. 2019, 51, 205–210. DOI: 10.1016/j.ifset.2018.03.021.
  • Gaglio, R.; Barbera, M.; Tesoriere, L.; Osimani, A.; Busetta, G.; Matraxia, M.; Attanzio, A.; Restivo, I.; Aquilanti, L.; Settanni, L. Sourdough “Ciabatta” Bread Enriched with Powdered Insects: Physicochemical, Microbiological, and Simulated Intestinal Digesta Functional Properties. Innov. Food Sci. Emerg. Tech. 2021, 72, 102755. DOI: 10.1016/j.ifset.2021.102755.
  • Kowalski, S.; Mikulec, A.; Mickowska, B.; Skotnicka, M.; Mazurek, A. Wheat Bread Supplementation with Various Edible Insect Flours. Influence of Chemical Composition on Nutritional and Technological Aspects. LWT. 2022, 159, 113220. DOI: 10.1016/j.lwt.2022.113220.
  • Montevecchi, G.; Licciardello, F.; Masino, F.; Miron, L. T.; Antonelli, A. Fortification of Wheat Flour with Black Soldier Fly Prepupae. Evaluation of Technological and Nutritional Parameters of the Intermediate Doughs and Final Baked Products. Innov. Food Sci. Emerg. Tech. 2021, 69, 102666. DOI: 10.1016/j.ifset.2021.102666.
  • de Oliveira, L. M.; da Silva Lucas, A. J.; Cadaval, C. L.; Mellado, M. S. Bread Enriched with Flour from Cinereous Cockroach (Nauphoeta Cinerea). Innov. Food Sci. Emerg. Tech. 2017, 44, 30–35. DOI: 10.1016/j.ifset.2017.08.015.
  • Althwab, S. A.; Alhomaid, R. M.; Ali, R. F.; El-Anany, A. M.; Mousa, H. M. Effect of Migratory Locust (Locusta Migratoria) Powder Incorporation on Nutritional and Sensorial Properties of Wheat Flour Bread. Br. Food J. 2021, 123(11), 3576–3591. DOI: 10.1108/BFJ-11-2020-1052.
  • Haber, M.; Mishyna, M.; Martinez, J. I.; Benjamin, O. The Influence of Grasshopper (Schistocerca Gregaria) Powder Enrichment on Bread Nutritional and Sensorial Properties. LWT. 2019, 115, 108395. DOI: 10.1016/j.lwt.2019.108395.
  • Zielińska, E.; Pankiewicz, U. Nutritional, Physiochemical, and Antioxidative Characteristics of Shortcake Biscuits Enriched with Tenebrio Molitor Flour. Molecules. 2020, 25(23), 5629. DOI: 10.3390/molecules25235629.
  • Xie, X.; Yuan, Z.; Fu, K.; An, J.; Deng, L. Effect of Partial Substitution of Flour with Mealworm (Tenebrio Molitor L.) Powder on Dough and Biscuit Properties. Foods. 2022, 11(14), 2156. DOI: 10.3390/foods11142156.
  • Ortolá, M. D.; Martínez‐Catalá, M.; Yuste Del Carmen, A.; Castelló, M. L. Physicochemical and Sensory Properties of Biscuits Formulated with Tenebrio Molitor and Alphitobius Diaperinus Flours. J. Texture Stud. 2022, 53(4), 540–549. DOI: 10.1111/jtxs.12692.
  • Ayensu, J.; Lutterodt, H.; Annan, R. A.; Edusei, A.; Loh, S. P. Nutritional Composition and Acceptability of Biscuits Fortified with Palm Weevil Larvae (Rhynchophorus Phoenicis Fabricius) and Orange‐Fleshed Sweet Potato Among Pregnant Women. Food Science & Nutrition. 2019, 7(5), 1807–1815. DOI: 10.1002/fsn3.1024.
  • Dewi, T.; Vidiarti, A.; Fitranti, D.; Kurniawati, D.; Anjani, G. Formulation of Baby Biscuits with Substitution of Wood Grasshopper Flour (Melanoplus Cinereus) As an Alternative Complementary Food for Children. Food Res. 2020, 4(S3), 114–122. DOI: 10.26656/fr.2017.4(S3).S25.
  • Ogunlakin, G.; Oni, V.; Olaniyan, S. Quality Evaluation of Biscuit Fortified with Edible Termite (Macrotermes Nigeriensis). Asian J. Biotechnol. Bioresour. Technol. 2018, 4(2), 1–7. DOI: 10.9734/AJB2T/2018/43659.
  • Awobusuyi, T. D.; Pillay, K.; Siwela, M. Consumer Acceptance of Biscuits Supplemented with a Sorghum–Insect Meal. Nutrients. 2020, 12(4), 895. DOI: 10.3390/nu12040895.
  • Mohsen, S. M.; Ashraf, A.; Ahmed, S. S.; Abedelmaksoud, T. G. Biscuits Enriched with the Edible Powder of Angoumois Grain Moth (Sitotroga Cerealella): Optimization, Characterization and Consumer Perception Assessment. Food Systems. 2024, 7(1), 165–178. DOI: 10.21323/2618-9771-2024-7-1-165-178.
  • Chong, H. S.; Kim, S. Y.; Cho, S. R.; Park, H. I.; Baek, J. E.; Kuk, J. S.; Suh, H.-J. Characteristics of Quality and Antioxidant Activation of the Cookies Adding with Mealworm (Tenebrio Molitor) and Black Bean Powder. J. Fd Hyg. Safety. 2017, 32(6), 521–530. DOI: 10.13103/JFHS.2017.32.6.521.
  • Sriprablom, J.; Kitthawee, S.; Suphantharika, M. Functional and Physicochemical Properties of Cookies Enriched with Edible Insect (Tenebrio Molitor and Zophobas Atratus) Powders. J. Food Meas. Charact. 2022, 16(3), 2181–2190. DOI: 10.1007/s11694-022-01324-2.
  • Awobusuyi, T. D.; Siwela, M.; Pillay, K. Sorghum–Insect Composites for Healthier Cookies: Nutritional, Functional, and Technological Evaluation. Foods. 2020, 9(10), 1427. DOI: 10.3390/foods9101427.
  • Castro Delgado, M.; Chambers, E., IV; Carbonell‐Barrachina, A.; Noguera Artiaga, L.; Vidal Quintanar, R.; Burgos Hernandez, A. Consumer Acceptability in the USA, Mexico, and Spain of Chocolate Chip Cookies Made with Partial Insect Powder Replacement. J. Food Sci. 2020, 85(6), 1621–1628. DOI: 10.1111/1750-3841.15175.
  • Djouadi, A.; Sales, J. R.; Carvalho, M. O.; Raymundo, A. Development of Healthy Protein-Rich Crackers Using Tenebrio Molitor Flour. Foods. 2022, 11(5), 702. DOI: 10.3390/foods11050702.
  • Ardoin, R.; Marx, B. D.; Boeneke, C.; Prinyawiwatkul, W. Effects of Cricket Powder on Selected Physical Properties and US Consumer Perceptions of Whole‐Wheat Snack Crackers. Int. J. Food Sci. Tech. 2021, 56(8), 4070–4080. DOI: 10.1111/ijfs.15032.
  • Akullo, J.; Nakimbugwe, D.; Obaa, B.; Okwee-Acai, J.; Agea, J. Development and Quality Evaluation of Crackers Enriched with Edible Insects. Int. Food Res. J. 2018, 25(4), 1592–1599.
  • Hwang, S.-Y.; Choi, S.-K. Quality Characteristics of Muffins Containing Mealworm(Tenebrio Molitor). Culinary Sci. Hospitality Res. 2015, 21(3), 104–115. DOI: 10.20878/cshr.2015.21.3.009009009.
  • Çabuk, B. Influence of Grasshopper (Locusta Migratoria) and Mealworm (Tenebrio Molitor) Powders on the Quality Characteristics of Protein Rich Muffins: Nutritional, Physicochemical, Textural and Sensory Aspects. J. Food Meas. Charact. 2021, 15(4), 3862–3872. DOI: 10.1007/s11694-021-00967-x.
  • Zielińska, E.; Pankiewicz, U.; Sujka, M. Nutritional, Physiochemical, and Biological Value of Muffins Enriched with Edible Insects Flour. Antioxidants. 2021, 10(7), 1122. DOI: 10.3390/antiox10071122.
  • Pauter, P.; Różańska, M.; Wiza, P.; Dworczak, S.; Grobelna, N.; Sarbak, P.; Kowalczewski, P. Effects of the Replacement of Wheat Flour with Cricket Powder on the Characteristics of Muffins. Acta Sci. Pol. Technol. Aliment. 2018, 17(3), 227–233. DOI: 10.17306/J.AFS.0570.
  • Kim, J. H.; Kim, J.; Kim, J. S.; Kim, I.; Nam, I.; Lim, J.-H.; Choe, D.; Moon, K.-D. Quality Characteristics of Muffins Added with Fresh Ginseng and Different Amounts of Gryllus Bimaculatus Powder. Food Sci. Preserv. 2024, 31(1), 80–98. DOI: 10.11002/fsp.2024.31.1.80.
  • Ho, I.; Peterson, A.; Madden, J.; Huang, E.; Amin, S.; Lammert, A. Will it Cricket? Product Development and Evaluation of Cricket (Acheta Domesticus) Powder Replacement in Sausage, Pasta, and Brownies. Foods. 2022, 11(19), 3128. DOI: 10.3390/foods11193128.
  • Çabuk, B.; Yılmaz, B. Fortification of Traditional Egg Pasta (Erişte) with Edible Insects: Nutritional Quality, Cooking Properties and Sensory Characteristics Evaluation. J. Food Sci. Technol. 2020, 57(7), 2750–2757. DOI: 10.1007/s13197-020-04315-7.
  • Biró, B.; Fodor, R.; Szedljak, I.; Pásztor-Huszár, K.; Gere, A. Buckwheat-Pasta Enriched with Silkworm Powder: Technological Analysis and Sensory Evaluation. LWT. 2019, 116, 108542. DOI: 10.1016/j.lwt.2019.108542.
  • Piazza, L.; Ratti, S.; Girotto, F.; Cappellozza, S. Silkworm Pupae Derivatives as Source of High Value Protein Intended for Pasta Fortification. J. Food Sci. 2023, 88(1), 341–355. DOI: 10.1111/1750-3841.16420.
  • Thongkaew, C.; Singthong, J.; Klangsinsirikul, S. Properties of Insect Protein Concentrate and Potential Application in Seasoned Rice Noodles. Food Sci. Technol. Int. 2022, 30(4), 307–316. DOI: 10.1177/10820132221144481.
  • Natasutedja, A. O. Investigation of Cricket Powder and Nutritional Yeast Application in Noodle As Protein-Source or High Protein Food; Indonesia International Institute for Life Sciences: Indonasia, 2021.
  • Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C.; Severini, C. Effects of Formulation and Process Conditions on Microstructure, Texture and Digestibility of Extruded Insect-Riched Snacks. Innovative Food Sci. Emerg. Tech. 2018, 45, 344–353. DOI: 10.1016/j.ifset.2017.11.017.
  • Ruszkowska, M.; Tańska, M.; Kowalczewski, P. Ł. Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability. 2022, 14(24), 16578. DOI: 10.3390/su142416578.
  • Severini, C.; Azzollini, D.; Albenzio, M.; Derossi, A. On Printability, Quality and Nutritional Properties of 3D Printed Cereal Based Snacks Enriched with Edible Insects. Food Res. Int. 2018, 106, 666–676. DOI: 10.1016/j.foodres.2018.01.034.
  • Herdeiro, F. M.; Carvalho, M. O.; Nunes, M. C.; Raymundo, A. Development of Healthy Snacks Incorporating Meal from Tenebrio Molitor and Alphitobius Diaperinus Using 3D Printing Technology. Foods. 2024, 13(2), 179. DOI: 10.3390/foods13020179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.