88
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Comprehensive Review in the Formulation of Nanocurcumin and Its Potential Application in Functional Foods

, , , , , & show all

References

  • Li, W.; Chen, H.; Xu, B.; Wang, Y.; Zhang, C.; Cao, Y.; Xing, X. Research Progress on Classification, Sources and Functions of Dietary Polyphenols for Prevention and Treatment of Chronic Diseases. J. Future Foods 2023, 3(4), 289–305. DOI: 10.1016/j.jfutfo.2023.03.001.
  • Obeid, M. A.; Alsaadi, M.; Aljabali, A. A. Recent Updates in Curcumin Delivery. J. Liposome Res. 2023, 33(1), 53–64. DOI: 10.1080/08982104.2022.2086567.
  • Gayathri, K.; Bhaskaran, M.; Selvam, C.; Thilagavathi, R. Nano Formulation Approaches for Curcumin Delivery- a Review. J. Drug Deliv. Sci. Technol. 2023, 82, 104326. DOI: 10.1016/j.jddst.2023.104326.
  • Saffarionpour, S.; Diosady, L. L. Delivery of Curcumin Through Colloidal Systems and Its Applications in Functional Foods. Curr. Opin. Food Sci. 2022, 43, 155–162. DOI: 10.1016/j.cofs.2021.12.003.
  • Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S. M. Application of Curcumin-Loaded Nanocarriers for Food, Drug and Cosmetic Purposes. Trends Food Sci. Technol. 2019, 88, 445–458. DOI: 10.1016/j.tifs.2019.04.017.
  • Lan, X.; Liu, Y.; Wang, L.; Wang, H.; Hu, Z.; Dong, H.; Yu, Z.; Yuan, Y. A Review of Curcumin in Food Preservation: Delivery System and Photosensitization. Food Chem. 2023, 424, 136464. DOI: 10.1016/j.foodchem.2023.136464.
  • Roy, S.; Priyadarshi, R.; Ezati, P.; Rhim, J.-W. Curcumin and Its Uses in Active and Smart Food Packaging Applications - a Comprehensive Review. Food Chem. 2022, 375, 131885. DOI: 10.1016/j.foodchem.2021.131885.
  • Kharat, M.; Du, Z.; Zhang, G.; McClements, D. J. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. J. Agric. Food. Chem. 2017, 65(8), 1525–1532. DOI: 10.1021/acs.jafc.6b04815.
  • Feng, J. Y.; Liu, Z. Q. Phenolic and Enolic Hydroxyl Groups in Curcumin: Which Plays the Major Role in Scavenging Radicals? J. Agric. Food. Chem. 2009, 57(22), 11041–11046. DOI: 10.1021/jf902244g.
  • Khadem Sadigh, M.; Zakerhamidi, M. S.; Shamkhali, A. N.; Babaei, E. Photo-Physical Behaviors of Various Active Forms of Curcumin in Polar and Low Polar Environments. J. Photochem. Photobiol. A. 2017, 348, 188–198. DOI: 10.1016/j.jphotochem.2017.08.050.
  • Bernabé-Pineda, M.; Ramı́rez-Silva, M. A. T.; Romero-Romo, M.; González-Vergara, E.; Rojas-Hernández, A. Determination of Acidity Constants of Curcumin in Aqueous Solution and Apparent Rate Constant of Its Decomposition. Spectrochim. Acta a Mol. Biomol. Spectrosc 2004, 60(5), 1091–1097. DOI: 10.1016/S1386-1425(03)00342-1.
  • Priyadarsini, K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules. 2014, 19(12), 20091–20112. DOI: 10.3390/molecules191220091.
  • Ahmed, K.; Li, Y.; McClements, D. J.; Xiao, H. Nanoemulsion- and Emulsion-Based Delivery Systems for Curcumin: Encapsulation and Release Properties. Food Chem. 2012, 132(2), 799–807. DOI: 10.1016/j.foodchem.2011.11.039.
  • Wang, Y.; Yang, Q.; Jiang, Y.; Chen, H. Enhanced Solubility, Thermal Stability and Antioxidant Activity of Resveratrol by Complexation with Ovalbumin Amyloid-Like Fibrils: Effect of pH. Food Hydrocoll. 2024, 148, 109463. DOI: 10.1016/j.foodhyd.2023.109463.
  • Li, T.; Guo, Q.; Qu, Y.; Li, Y.; Liu, H.; Liu, L.; Zhang, Y.; Jiang, Y.; Wang, Q. Solubility and Physicochemical Properties of Resveratrol in Peanut Oil. Food Chem. 2022, 368, 130687. DOI: 10.1016/j.foodchem.2021.130687.
  • Mondal, S.; Ghosh, S.; Moulik, S. P. Stability of Curcumin in Different Solvent and Solution Media: UV–Visible and Steady-State Fluorescence Spectral Study. J. Photochem. Photobiol. B Biol. 2016, 158, 212–218. DOI: 10.1016/j.jphotobiol.2016.03.004.
  • Chen, X.; Zou, L. Q.; Niu, J.; Liu, W.; Peng, S. F.; Liu, C. M. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. Molecules. 2015, 20(8), 14293–14311. DOI: 10.3390/molecules200814293.
  • Naksuriya, O.; van Steenbergen, M. J.; Torano, J. S.; Okonogi, S.; Hennink, W. E. A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles. Aaps J. 2016, 18(3), 777–787. DOI: 10.1208/s12248-015-9863-0.
  • Li, J.; Zhai, J.; Chang, C.; Yang, Y.; Drummond, C. J.; Conn, C. E. Protective Effect of Surfactant Modified Phytosterol Oleogels on Loaded Curcumin. J. Sci. Food Agric. 2023, 103(1), 135–142. DOI: 10.1002/jsfa.12122.
  • Zhang, Z.; Li, X.; Sang, S.; Julian McClements, D.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Preparation, Properties and Interaction of Curcumin Loaded Zein/hp-β-CD Nanoparticles Based on Electrostatic Interactions by Antisolvent Co-Precipitation. Food Chem. 2023, 403, 134344. DOI: 10.1016/j.foodchem.2022.134344.
  • Taghavi Kevij, H.; Mohammadian, M.; Salami, M. Complexation of Curcumin with Whey Protein Isolate for Enhancing Its Aqueous Solubility Through a Solvent-Free pH-Driven Approach. J. Food Process Preserv. 2019, 43(12), e14227. DOI: 10.1111/jfpp.14227.
  • Chen, S.; Ma, Y.; Dai, L.; Liao, W.; Zhang, L.; Liu, J.; Gao, Y. Fabrication, Characterization, Stability and Re-Dispersibility of Curcumin-Loaded Gliadin-Rhamnolipid Composite Nanoparticles Using pH-Driven Method. Food Hydrocoll. 2021, 118, 106758. DOI: 10.1016/j.foodhyd.2021.106758.
  • Wang, Y.; Sun, R.; Xu, X.; Du, M.; Zhu, B.; Wu, C. Structural Interplay Between Curcumin and Soy Protein to Improve the Water-Solubility and Stability of Curcumin. Int J Biol Macromol. 2021, 193, 1471–1480. DOI: 10.1016/j.ijbiomac.2021.10.210.
  • Ji, F.; Xu, J.; Liu, H.; Shao, D.; Wang, C.; Zhao, Y.; Luo, S.; Zhong, X.; Zheng, Z. Improved Water Solubility, Antioxidant, and Sustained-Release Properties of Curcumin Through the Complexation with Soy Protein Fibrils. LWT. 2023, 180, 114723. DOI: 10.1016/j.lwt.2023.114723.
  • He, W.; Wang, P.; Tian, H.; Zhan, P. Self-Assembled Zein Hydrolysate Glycosylation with Dextran for Encapsulation and Delivery of Curcumin. Food Biosci. 2023, 51, 102364. DOI: 10.1016/j.fbio.2023.102364.
  • Liang, S.; Du, J.; Hong, Y.; Cheng, L.; Gu, Z.; Li, Z.; Li, C. Octenyl Succinate Anhydride Debranched Starch-Based Nanocarriers for Curcumin with Improved Stability and Antioxidant Activity. Food Hydrocoll. 2023, 135, 108118. DOI: 10.1016/j.foodhyd.2022.108118.
  • Li, X.; Wang, S.; Zhong, J.; Li, T.; Fan, G.; Zhou, D.; Wu, C. Preparation and Characterization of Fine and Stable Short Amylose Nanocarriers for Curcumin Using a Highly Efficient and Convenient Method. Int. J. Biol. Macromol. 2024, 257, 128738. DOI: 10.1016/j.ijbiomac.2023.128738.
  • Wu, C.; Zhang, H.; Gao, Z.; Qu, J.; Zhu, L.; Zhan, X. Enhanced Solubility of Curcumin by Complexation with Fermented Cyclic β-1,2-Glucans. J. Pharm. Biomed. Anal. 2022, 211, 114613. DOI: 10.1016/j.jpba.2022.114613.
  • Ai, C.; Zhao, C.; Xiang, C.; Zheng, Y.; Zhong, S.; Teng, H.; Chen, L. Gum Arabic As a Sole Wall Material for Constructing Nanoparticle to Enhance the Stability and Bioavailability of Curcumin. Food Chem. X. 2023, 18, 100724. DOI: 10.1016/j.fochx.2023.100724.
  • Li, J.; Zhai, J.; Dyett, B.; Yang, Y.; Drummond, C. J.; Conn, C. E. Effect of Gum Arabic or Sodium Alginate Incorporation on the Physicochemical and Curcumin Retention Properties of Liposomes. LWT. 2021, 139, 110571. DOI: 10.1016/j.lwt.2020.110571.
  • Won, J. H.; Jin, M.; Na, Y. G.; Song, B.; Yun, T. S.; Hwang, Y. R.; Lee, S. R.; Je, S.; Kim, J. Y.; Lee, H. K., et al. The Combinative Strategy for Improving the Intestinal Stability and Cellular Absorption of Curcumin by Enteric Coating of the Optimized Nanostructured Lipid Carriers. J. Drug Deliv. Sci. Technol. 2023, 89, 105108. DOI: 10.1016/j.jddst.2023.105108.
  • Ye, S.; Cheng, Y.; Guo, Z.; Wang, X.; Wei, W. A Lipid Toolbox of Sugar Alcohol Fatty Acid Monoesters for Single-Component Lipid Nanoparticles with Temperature-Controlled Release. Colloids Surf. B Biointerfaces. 2023, 228, 113426. DOI: 10.1016/j.colsurfb.2023.113426.
  • Xi, Z.; Fei, Y.; Wang, Y.; Lin, Q.; Ke, Q.; Feng, G.; Xu, L. Solubility Improvement of Curcumin by Crystallization Inhibition from Polymeric Surfactants in Amorphous Solid Dispersions. J. Drug Deliv. Sci. Technol. 2023, 83, 104351. DOI: 10.1016/j.jddst.2023.104351.
  • Chen, Y.; Wang, J.; Rao, Z.; Hu, J.; Wang, Q.; Sun, Y.; Lei, X.; Zhao, J.; Zeng, K.; Xu, Z., et al. Study on the Stability and Oral Bioavailability of Curcumin Loaded (-)-Epigallocatechin-3-Gallate/poly(n-Vinylpyrrolidone) Nanoparticles Based on Hydrogen Bonding-Driven Self-Assembly. Food Chem. 2022, 378, 132091. DOI: 10.1016/j.foodchem.2022.132091.
  • Wu, J.; Chen, J.; Wei, Z.; Zhu, P.; Li, B.; Qing, Q.; Chen, H.; Lin, W.; Lin, J.; Hong, X., et al. Fabrication, Evaluation, and Antioxidant Properties of Carrier-Free Curcumin Nanoparticles. Molecules. 2023, 28(3), 1298. DOI: 10.3390/molecules28031298.
  • Liu, Y.; Cai, Y.; Ying, D.; Fu, Y.; Xiong, Y.; Le, X. Ovalbumin as a Carrier to Significantly Enhance the Aqueous Solubility and Photostability of Curcumin: Interaction and Binding Mechanism Study. Int. J. Biol. Macromol. 2018, 116, 893–900. DOI: 10.1016/j.ijbiomac.2018.05.089.
  • Chang, C.; Meikle, T. G.; Su, Y.; Wang, X.; Dekiwadia, C.; Drummond, C. J.; Conn, C. E.; Yang, Y. Encapsulation in Egg White Protein Nanoparticles Protects Anti-Oxidant Activity of Curcumin. Food Chem. 2019, 280, 65–72. DOI: 10.1016/j.foodchem.2018.11.124.
  • Li, T.; Su, H.; Zhu, J.; McClements, D. J.; Fu, Y. Modulating the Assembly of Egg Yolk Granule-Based Delivery Systems Using NaCl: Physicochemical Properties and Curcumin Bioactivity. Food Biophys. 2023, 18(3), 326–337. DOI: 10.1007/s11483-023-09775-w.
  • Ma, Z.; Zhao, J.; Zou, Y.; Mao, X. The Enhanced Affinity of Moderately Hydrolyzed Whey Protein to EGCG Promotes the Isoelectric Separation and Unlocks the Protective Effects on Polyphenols. Food Chem. 2024, 450, 138833. DOI: 10.1016/j.foodchem.2024.138833.
  • Kannamangalam Vijayan, U.; Shah, N. N.; Muley, A. B.; Singhal, R. S. Complexation of Curcumin Using Proteins to Enhance Aqueous Solubility and Bioaccessibility: Pea Protein Vis-à-Vis Whey Protein. J. Food Eng. 2021, 292, 110258. DOI: 10.1016/j.jfoodeng.2020.110258.
  • Mm, A.; Ms, A.; Sm, A.; Fa, A.; Ed, A.; Mm, B. Enhancing the Aqueous Solubility of Curcumin at Acidic Condition Through the Complexation with Whey Protein Nanofibrils - ScienceDirect. Food Hydrocoll 2019, 87, 902–914. DOI: 10.1016/j.foodhyd.2018.09.001.
  • Baba, W. N.; Abdelrahman, R.; Maqsood, S. Production and Utilization of Non-Covalent Dairy-Based Proteins Complexed with Date Palm Leave Polyphenols for Improving Curcumin Stability. Food Biosci. 2023, 53, 102690. DOI: 10.1016/j.fbio.2023.102690.
  • Yi, J.; Peng, G.; Zheng, S.; Wen, Z.; Gan, C.; Fan, Y. Fabrication of Whey Protein Isolate-Sodium Alginate Nanocomplex for Curcumin Solubilization and Stabilization in a Model Fat-Free Beverage. Food Chem. 2021, 348, 129102. DOI: 10.1016/j.foodchem.2021.129102.
  • Zhong, W.; Li, J.; Wang, C.; Zhang, T. Formation, Stability and in vitro Digestion of Curcumin Loaded Whey Protein/Hyaluronic Acid Nanoparticles: Ethanol Desolvation Vs. pH-Shifting Method. Food Chem. 2023, 414, 135684. DOI: 10.1016/j.foodchem.2023.135684.
  • Li, X.; He, Y.; Zhang, S.; Gu, Q.; McClements, D. J.; Chen, S.; Liu, X.; Liu, F. Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery. ACS Appl. Mater. Interfaces. 2023, 15(14), 18166–18181. DOI: 10.1021/acsami.2c20816.
  • Xie, Y.; Cai, L.; Zhao, D.; Liu, H.; Xu, X.; Zhou, G.; Li, C. Real Meat and Plant-Based Meat Analogues Have Different in vitro Protein Digestibility Properties. Food Chem. 2022, 387, 132917. DOI: 10.1016/j.foodchem.2022.132917.
  • Li, J.; Chen, Z. Fabrication of Heat-Treated Soybean Protein Isolate-EGCG Complex Nanoparticle as a Functional Carrier for Curcumin. LWT. 2022, 159, 113059. DOI: 10.1016/j.lwt.2021.113059.
  • Kavinila, S.; Nimbkar, S.; Moses, J. A.; Anandharamakrishnan, C. Emerging Applications of Microfluidization in the Food Industry. J. Agr. Food Res 2023, 12, 100537. DOI: 10.1016/j.jafr.2023.100537.
  • Zhang, H.; Wang, T.; He, F.; Chen, G. Fabrication of Pea Protein-Curcumin Nanocomplexes via Microfluidization for Improved Solubility, Nano-Dispersibility and Heat Stability of Curcumin: Insight on Interaction Mechanisms. Int. J. Biol. Macromol. 2021, 168, 686–694. DOI: 10.1016/j.ijbiomac.2020.11.125.
  • Li, Z.; Xiao, Z.; Jiang, M.; Zhang, Y. A Comparison on the Binding Mechanisms of Zein and Gliadin with Curcumin to Guide the Self-Assembly of Nanoparticles for Delivery Purpose. J. Agr. Food Res. 2023, 13, 100660. DOI: 10.1016/j.jafr.2023.100660.
  • Albogamy, N. T. S.; Aboushoushah, S. F.; Aljoud, F.; Organji, H.; Elbialy, N. S. Preparation and Characterization of Dextran-Zein-Curcumin Nanoconjugate for Enhancement of Curcumin Bioactivity. J. Biomater. Sci. Polym. Ed. 2023, 34(14), 1891–1910. DOI: 10.1080/09205063.2023.2198389.
  • Shi, Y.; Rong, S.; Guo, T.; Zhang, R.; Xu, D.; Han, Y.; Liu, F.; Su, J.; Xu, H.; Chen, S. Fabrication of Compact Zein-Chondroitin Sulfate Nanocomplex by Anti-Solvent Co-Precipitation: Prevent Degradation and Regulate Release of Curcumin. Food Chem. 2024, 430, 137110. DOI: 10.1016/j.foodchem.2023.137110.
  • Huang, Y.; Zhan, Y.; Luo, G.; Zeng, Y.; McClements, D. J.; Hu, K. Curcumin Encapsulated Zein/caseinate-Alginate Nanoparticles: Release and Antioxidant Activity Under in vitro Simulated Gastrointestinal Digestion. Curr. Res. Food Sci. 2023, 6, 100463. DOI: 10.1016/j.crfs.2023.100463.
  • Jiang, Z.; Gan, J.; Wang, L.; Lv, C. Binding of Curcumin to Barley Protein Z Improves Its Solubility, Stability and Bioavailability. Food Chem. 2023, 399, 133952. DOI: 10.1016/j.foodchem.2022.133952.
  • Lv, J.; Zhou, X.; Wang, W.; Cheng, Y.; Wang, F. Solubilization Mechanism of Self-Assembled Walnut Protein Nanoparticles and Curcumin Encapsulation. J. Sci. Food Agric. 2023, 103(10), 4908–4918. DOI: 10.1002/jsfa.12559.
  • Ling, M.; Yan, C.; Huang, X.; Xu, Y.; He, C.; Zhou, Z. Phosphorylated Walnut Protein Isolate as a Nanocarrier for Enhanced Water Solubility and Stability of Curcumin. J. Sci. Food Agric. 2022, 102(13), 5700–5710. DOI: 10.1002/jsfa.11917.
  • Wang, Y.; Jiang, W.; Jiang, Y.; Julian McClements, D.; Liu, F.; Liu, X. Self-Assembled Nano-Micelles of Lactoferrin Peptides: Structure, Physicochemical Properties, and Application for Encapsulating and Delivering Curcumin. Food Chem. 2022, 387, 132790. DOI: 10.1016/j.foodchem.2022.132790.
  • Chen, H.; Zhang, T.; Tian, Y.; You, L.; Huang, Y.; Wang, S. Novel Self-Assembling Peptide Hydrogel with pH-Tunable Assembly Microstructure, Gel Mechanics and the Entrapment of Curcumin. Food Hydrocoll. 2022, 124, 107338. DOI: 10.1016/j.foodhyd.2021.107338.
  • Sun, C.; Wei, Z.; Xue, C.; Yang, L. Development, Application and Future Trends of Starch-Based Delivery Systems for Nutraceuticals: A Review. Carbohydr. Polym. 2023, 308, 120675. DOI: 10.1016/j.carbpol.2023.120675.
  • Li, J.; Shin, G. H.; Lee, I. W.; Chen, X.; Park, H. J. Soluble Starch Formulated Nanocomposite Increases Water Solubility and Stability of Curcumin. Food Hydrocoll. 2016, 56, 41–49. DOI: 10.1016/j.foodhyd.2015.11.024.
  • Iqbal, R.; Mehmood, Z.; Baig, A.; Khalid, N. Formulation and Characterization of Food Grade O/W Nanoemulsions Encapsulating Quercetin and Curcumin: Insights on Enhancing Solubility Characteristics. Food Bioprod. Process. 2020, 123, 304–311. DOI: 10.1016/j.fbp.2020.07.013.
  • Ma, L.; Gao, H.; Cheng, C.; Cao, M.; Zou, L.; Liu, W. Fabrication of Emulsions Using High Loaded Curcumin Nanosuspension Stabilizers: Enhancement of Antioxidant Activity and Concentration of Curcumin in Micelles. J. Funct. Foods 2023, 110, 105858. DOI: 10.1016/j.jff.2023.105858.
  • Park, H. R.; Rho, S. J.; Kim, Y. R. Solubility, Stability, and Bioaccessibility Improvement of Curcumin Encapsulated Using 4-α-Glucanotransferase-Modified Rice Starch with Reversible pH-Induced Aggregation Property. Food Hydrocoll. 2019, 95, 19–32. DOI: 10.1016/j.foodhyd.2019.04.012.
  • Liu, Q.; Li, F.; Ji, N.; Dai, L.; Xiong, L.; Sun, Q. Acetylated Debranched Starch Micelles as a Promising Nanocarrier for Curcumin. Food Hydrocoll. 2021, 111, 106253. DOI: 10.1016/j.foodhyd.2020.106253.
  • Han, X.; Ma, P.; Shen, M.; Wen, H.; Xie, J. Modified Porous Starches Loading Curcumin and Improving the Free Radical Scavenging Ability and Release Properties of Curcumin. Food Res. Int. 2023, 168, 112770. DOI: 10.1016/j.foodres.2023.112770.
  • Rodriguez-Rosales, R. J.; Yao, Y. Phytoglycogen, a Natural Dendrimer-Like Glucan, Improves the Soluble Amount and Caco-2 Monolayer Permeation of Curcumin and Enhances Its Efficacy to Reduce HeLa Cell Viability. Food Hydrocoll. 2020, 100, 105442. DOI: 10.1016/j.foodhyd.2019.105442.
  • Xie, Y.; Yao, Y. Preparation and Characterization of a Solid Dispersion Containing Curcumin and Octenylsuccinate Hydroxypropyl Phytoglycogen for Improved Curcumin Solubility. Eur. J. Pharm. Sci. 2020, 153, 105462. DOI: 10.1016/j.ejps.2020.105462.
  • Xue, J.; Li, Z.; Duan, H.; He, J.; Luo, Y. Chemically Modified Phytoglycogen: Physicochemical Characterizations and Applications to Encapsulate Curcumin. Colloids Surf. B Biointerfaces. 2021, 205, 111829. DOI: 10.1016/j.colsurfb.2021.111829.
  • Lang, W.; Tagami, T.; Kang, H. J.; Okuyama, M.; Sakairi, N.; Kimura, A. Partial Depolymerization of Tamarind Seed Xyloglucan and Its Functionality Toward Enhancing the Solubility of Curcumin. Carbohydr. Polym. 2023, 307, 120629. DOI: 10.1016/j.carbpol.2023.120629.
  • Celebioglu, A.; Uyar, T. Fast-Dissolving Antioxidant Curcumin/Cyclodextrin Inclusion Complex Electrospun Nanofibrous Webs. Food Chem. 2020, 317, 126397. DOI: 10.1016/j.foodchem.2020.126397.
  • Reddy, N. K. D.; Huang, F. Y.; Wang, S. P.; Kumar, R. Synergistic Antioxidant and Antibacterial Activity of Curcumin-C3 Encapsulated Chitosan Nanoparticles. Curr. Pharm. Des. 2020, 26(39), 5021–5029. DOI: 10.2174/1381612826666200609164830.
  • Yang, M.; Liu, J.; Li, Y.; Yang, Q.; Liu, C.; Liu, X.; Zhang, B.; Zhang, H.; Zhang, T.; Du, Z. Co-Encapsulation of Egg-White-Derived Peptides (EWDP) and Curcumin within the Polysaccharide-Based Amphiphilic Nanoparticles for Promising Oral Bioavailability Enhancement: Role of EWDP. J. Agric. Food Chem. 2022, 70(16), 5126–5136. DOI: 10.1021/acs.jafc.1c08186.
  • Ding, X.; Cheng, D.; Zhao, L.; Luo, X.; Yue, L.; Zhang, Y.; Wang, Z. Carboxymethyl Chitosan Modified with Curcumin: A Photodynamic Antibacterial Agent with Good Solubility and Stability. Food Biosci. 2024, 57, 103525. DOI: 10.1016/j.fbio.2023.103525.
  • Kumar, R.; Dkhar, D. S.; Kumari, R.; Mahapatra, S.; Dubey, V. K.; Chandra, P. Lipid Based Nanocarriers: Production Techniques, Concepts, and Commercialization Aspect. J. Drug Deliv. Sci. Technol. 2022, 74, 103526. DOI: 10.1016/j.jddst.2022.103526.
  • Pu, C.; Tang, W.; Li, X.; Li, M.; Sun, Q. Stability Enhancement Efficiency of Surface Decoration on Curcumin-Loaded Liposomes: Comparison of Guar Gum and Its Cationic Counterpart. Food Hydrocoll. 2019, 87, 29–37. DOI: 10.1016/j.foodhyd.2018.07.039.
  • Sharma, N.; Kaur, G.; Khatkar, S. K. Optimization of Emulsification Conditions for Designing Ultrasound Assisted Curcumin Loaded Nanoemulsion: Characterization, Antioxidant Assay and Release Kinetics. LWT. 2021, 141, 110962. DOI: 10.1016/j.lwt.2021.110962.
  • Jafari, M.; Parastouei, K.; Abbaszadeh, S. Development of Curcumin-Loaded Nanoemulsion Stabilized with Texturized Whey Protein Concentrate: Characterization, Stability and in vitro Digestibility. Food Sci. Nutr. 2023, 12(3), 1–18. DOI: 10.1002/fsn3.3860.
  • Li, C.; Liu, D.; Huang, M.; Huang, W.; Li, Y.; Feng, J. Interfacial Engineering Strategy to Improve the Stabilizing Effect of Curcumin-Loaded Nanostructured Lipid Carriers. Food Hydrocoll. 2022, 127, 107552. DOI: 10.1016/j.foodhyd.2022.107552.
  • Song, H. Y.; McClements, D. J.; Choi, S. J. Solubilization of α-Tocopherol and Curcumin by Polyoxyethylene Alkyl Ether Surfactants: Effect of Alkyl Chain Structure. Food Chem. 2023, 408, 135170. DOI: 10.1016/j.foodchem.2022.135170.
  • Yadav, H.; Rout, D.; Upadhyaya, A. K.; Agarwala, P.; Sharma, A.; Sasmal, D. K. Carbon Quantum Dots for Efficient Delivery of Curcumin in Live Cell. Chem. Phys. Imp. 2023, 7, 100279. DOI: 10.1016/j.chphi.2023.100279.
  • Wen, F.; Li, P.; Zhang, Y.; Zhong, H.; Yan, H.; Su, W. Preparation, Characterization of Green Tea Carbon Quantum Dots/Curcumin Antioxidant and Antibacterial Nanocomposites. J. Mol. Struct. 2023, 1273, 134247. DOI: 10.1016/j.molstruc.2022.134247.
  • Pantwalawalkar, J.; More, H.; Bhange, D.; Patil, U.; Jadhav, N. Novel Curcumin Ascorbic Acid Cocrystal for Improved Solubility. J. Drug Deliv. Sci. Technol. 2021, 61, 102233. DOI: 10.1016/j.jddst.2020.102233.
  • Mei, H.; Cai, S.; Huang, D.; Gao, H.; Cao, J.; He, B. Carrier-Free Nanodrugs with Efficient Drug Delivery and Release for Cancer Therapy: From Intrinsic Physicochemical Properties to External Modification. Bioact. Mater. 2022, 8, 220–240. DOI: 10.1016/j.bioactmat.2021.06.035.
  • Zou, L.; Zheng, B.; Zhang, R.; Zhang, Z.; Liu, W.; Liu, C.; Xiao, H.; Mcclements, D. J. Food-Grade Nanoparticles for Encapsulation, Protection and Delivery of Curcumin: Comparison of Lipid, Protein, and Phospholipid Nanoparticles Under Simulated Gastrointestinal Conditions. Rsc. Adv. 2016, 6(4), 3126–3136. DOI: 10.1039/C5RA22834D.
  • Gao, H.; Cheng, C.; Fang, S.; McClements, D. J.; Ma, L.; Chen, X.; Zou, L.; Liang, R.; Liu, W. Study on Curcumin Encapsulated in Whole Nutritional Food Model Milk: Effect of Fat Content, and Partitioning Situation. J. Funct. Foods. 2022, 90, 104990. DOI: 10.1016/j.jff.2022.104990.
  • Gonçalves, R. F. S.; Rodrigues, R.; Vicente, A. A.; Pinheiro, A. C. Incorporation of Solid Lipid Nanoparticles into Stirred Yogurt: Effects in Physicochemical and Rheological Properties During Shelf-Life. Nanomaterials 2023, 13(1), 93. DOI: 10.3390/nano13010093.
  • Zheng, B.; Zhou, H.; McClements, D. J. Nutraceutical-Fortified Plant-Based Milk Analogs: Bioaccessibility of Curcumin-Loaded Almond, Cashew, Coconut, and Oat Milks. LWT. 2021, 147, 111517. DOI: 10.1016/j.lwt.2021.111517.
  • Zagury, Y.; David, S.; Edelman, R.; Hazan Brill, R.; Livney, Y. D. Sugar Beet Pectin as a Natural Carrier for Curcumin, a Water-Insoluble Bioactive for Food and Beverage Enrichment: Formation and Characterization. Innovat. Food Sci. Emerg. Technol. 2021, 74, 102858. DOI: 10.1016/j.ifset.2021.102858.
  • Gonçalves, R. F. S.; Vicente, A. A.; Pinheiro, A. C. Incorporation of Curcumin-Loaded Lipid-Based Nano Delivery Systems into Food: Release Behavior in Food Simulants and a Case Study of Application in a Beverage. Food Chem. 2023, 405, 134740. DOI: 10.1016/j.foodchem.2022.134740.
  • Wu, C.; Dong, H.; Wang, P.; Han, M.; Xu, X. Sequential Changes in Antioxidant Activity and Structure of Curcumin-Myofibrillar Protein Nanocomplex During in vitro Digestion. Food Chem. 2022, 382, 132331. DOI: 10.1016/j.foodchem.2022.132331.
  • Hu, L.; Shi, L.; Liu, S.; Xiao, Z.; Sun, J.; Shao, J.-H. Regulation Mechanism of Curcumin-Loaded Oil on the Emulsification and Gelation Properties of Myofibrillar Protein: Emphasizing the Dose–Response of Curcumin. Food Chem. 2023, 428, 136687. DOI: 10.1016/j.foodchem.2023.136687.
  • Song, H. Y.; McClements, D. J. Nano-Enabled-Fortification of Salad Dressings with Curcumin: Impact of Nanoemulsion-Based Delivery Systems on Physicochemical Properties. LWT. 2021, 145, 111299. DOI: 10.1016/j.lwt.2021.111299.
  • Ghirro, L. C.; Rezende, S.; Ribeiro, A. S.; Rodrigues, N.; Carocho, M.; Pereira, J. A.; Barros, L.; Demczuk, B.; Barreiro, M.-F.; Santamaria-Echart, A. Pickering Emulsions Stabilized with Curcumin-Based Solid Dispersion Particles as Mayonnaise-Like Food Sauce Alternatives. Molecules. 2022, 27(4), 1250. DOI: 10.3390/molecules27041250.
  • Sardiñsardiñas-Valdés, M.; Hernández-Becerra, J. A.; García-Galindo, H. S.; Chay-Canul, A. J.; Velázquez-Martínez, J. R.; Ochoa-Flores, A. A. Physicochemical and Sensory Properties of Manchego-Type Cheese Fortified with Nanoemulsified Curcumin. Int. Food Res. J. 2021, 28(2), 326–336. DOI: 10.47836/ifrj.28.2.13.
  • Gupta, A.; Sanwal, N.; Bareen, M. A.; Barua, S.; Sharma, N.; Joshua Olatunji, O.; Prakash Nirmal, N.; Sahu, J. K. Trends in Functional Beverages: Functional Ingredients, Processing Technologies, Stability, Health Benefits, and Consumer Perspective. Food. Res. Int. 2023, 170, 113046. DOI: 10.1016/j.foodres.2023.113046.
  • Aw, Y. Z.; Lim, H. P.; Low, L. E.; Goh, B.-H.; Chan, E. S.; Tey, B. T. Pickering Emulsion Hydrogel Beads for Curcumin Encapsulation and Food Application. J. Food Eng. 2023, 350, 111501. DOI: 10.1016/j.jfoodeng.2023.111501.
  • Gibson, M.; Newsham, P.; Food Science and the Culinary Arts; M. Gibson and P. Newsham, Eds.; Academic Press, 2018, pp. 169–223. DOI: 10.1016/B978-0-12-811816-0.00012-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.