33
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Comprehensive Review on Exploring the Nutraceutical Potential and Industrial Applications of Peach Waste

, , , , , & show all

References

  • Leite, P.; Silva, C.; Salgado, J. M.; Belo, I. Simultaneous Production of Lignocellulolytic Enzymes and Extraction of Antioxidant Compounds by Solid-State Fermentation of Agro-Industrial Wastes. Ind. Crops Prod. 2019, 137(2019), 315–322. DOI: 10.1016/j.indcrop.2019.04.044.
  • Mihaylova, D.; Popova, A.; Desseva, I.; Petkova, N.; Stoyanova, M.; Vrancheva, R.; Slavov, A.; Slavchev, A.; Lante, A. Comparative Study of Early- and Mid-Ripening Peach (Prunus persica L.) Varieties: Biological Activity, Macro-, and Micro- Nutrient Profile. Foods 2021, 10(1), 164. DOI: 10.3390/foods10010164.
  • Palwasha; Siraj-Ud-Din; Fahim, M.; Palwasha, P.; Din, S.-U. Significance and Implications of Farming Practices, Knowledge and Methods of Disease Management in Developing Countries: A Case Study of Peach Farmers in Pakistan. Sarhad J. Agric. 2022, 38(2), 595–610. DOI: 10.17582/JOURNAL.SJA/2022/38.2.595.610.
  • Tan, Q.; Li, S.; Zhang, Y.; Chen, M.; Wen, B.; Jiang, S.; Chen, X.; Fu, X.; Li, D.; Wu, H., et al. Chromosome-Level Genome Assemblies of Five Prunus Species and Genome-Wide Association Studies for Key Agronomic Traits in Peach. Hortic. Res. 2021, 8(1), 213. DOI: 10.1038/s41438-021-00648-2.
  • Li, Y.; Wang, L. Genetic Resources, Breeding Programs in China, and Gene Mining of Peach: A Review. Hortic. Plant. J. 2020, 6(4), 205–215. DOI: 10.1016/j.hpj.2020.06.001.
  • USDA (U.S. Department of Agriculture). Fresh Peaches and Cherries: World Markets and Trade. United States Dep. Agric. Foreign Agric. Serv. 2022. https://public.govdelivery.com/accounts/USDAFAS/subscriber/new. (accessed May 23, 2023).
  • Arshad, R. N.; Abdul-Malek, Z.; Roobab, U. Effective Valorization of Food Wastes and By-Products Through Pulsed Electric Field: A Systematic Review. J. Food Proc. Eng. 2021, 44(3), e13629. DOI: 10.1111/jfpe.13629.
  • Fitzgerald, C.; Hossain, M.; Rai, D. K. Waste/by-Product Utilisations. Innov. Technol. Bever. Proc. 2017, 297–309. DOI: 10.1002/9781118929346.ch11.
  • Featherstone, S. A Complete Course in Canning and Related Processes: Fourteenth Edition. 2015, 1, 1–357. DOI: 10.1016/C2013-0-16338-6.
  • Sousa, S. D. F.; da Silva, F. B.; de Araújo, A. C.; Gomes, J. P. Determination of Physical and Physicochemical Properties of Peach Cultivar Rubimel. Rev. Bras. Tecnol. Agroindustrial. 2018, 12(2), 2627–2644. DOI: 10.3895/rbta.v12n2.7166.
  • Nowicka, P.; Wojdyło, A. Content of Bioactive Compounds in the Peach Kernels and Their Antioxidant, Anti-Hyperglycemic, Anti-Aging Properties. Eur. Food Res. Technol. 2019, 245(5), 1123–1136. DOI: 10.1007/s00217-018-3214-1.
  • Uysal, T.; Duman, G.; Onal, Y.; Yasa, I.; Yanik, J. Production of Activated Carbon and Fungicidal Oil from Peach Stone by Two-Stage Process. J. Anal. Appl. Pyrolysis. 2014, 108(2014), 47–55. DOI: 10.1016/j.jaap.2014.05.017.
  • Bisht, T. S.; Sharma, S. K.; Rawat, L.; Chakraborty, B.; Yadav, V. Novel Approach Towards the Fruit Specific Waste Minimization and Utilization: A Review. J. Pharmacogn. Phytochem. 2020, 9(1), 712–722.
  • Dao, S.; Turanbaev, M.; Argun, H. Dark Fermentative Hydrogen Gas Production from Waste Peach Pulp by Intermittent Feeding: Effects of Hydraulic Residence Time and Substrate Loading Rate. Int. J. Hydrogen. Energy 2023, 48(60), 22889–22896. DOI: 10.1016/j.ijhydene.2023.01.122.
  • Argun, H.; Dao, S. Bio-Hydrogen Production from Waste Peach Pulp by Dark Fermentation: Effect of Inoculum Addition. Int. J. Hydrogen. Energy 2017, 42(4), 2569–2574. DOI: 10.1016/j.ijhydene.2016.06.225.
  • Imran, M.; Khan, M. K.; Ahmad, M. H. Valorization of Peach (Prunus persica) Fruit Waste. Mediterranean Fruits Bio-Wastes: Chem. Functional. Technol. Appl. 2022, 589–604. DOI: 10.1007/978-3-030-84436-3_25.
  • Hong, Y.; Wang, Z.; Barrow, C. J.; Dunshea, F. R.; Suleria, H. A. R. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by Lc-Esi-Qtof-Ms/ms and Their Potential Antioxidant Activities. Antioxidants. 2021, 10(2), 234. DOI: 10.3390/antiox10020234.
  • Patra, J. K.; Baek, K. H. Comparative Study of Proteasome Inhibitory, Synergistic Antibacterial, Synergistic Anticandidal, and Antioxidant Activities of Gold Nanoparticles Biosynthesized Using Fruit Waste Materials. Int. J. Nanomed. 2016, 11, 4691–4705. DOI: 10.2147/IJN.S108920.
  • Rudke, C. R. M.; Zielinski, A. A. F.; Ferreira, S. R. S. From Biorefinery to Food Product Design: Peach (Prunus persica) By-Products Deserve Attention. Food Bioprocess Technol. 2022, 16(2023), 1197–1215. DOI: 10.1007/s11947-022-02951-9.
  • Nowicka, P.; Wojdyło, A.; Laskowski, P. Inhibitory Potential Against Digestive Enzymes Linked to Obesity and Type 2 Diabetes and Content of Bioactive Compounds in 20 Cultivars of the Peach Fruit Grown in Poland. Plant Foods Hum. Nutr. 2018, 73(4), 314–320. DOI: 10.1007/s11130-018-0688-8.
  • Şahin, S.; Bilgin, M. Valorization of Peach (Prunus persica L.) Waste into Speciality Products via Green Methods. Biomass Conv. Bioref. 2022, 12(Suppl 1), S123–S132. DOI: 10.1007/s13399-021-01947-3.
  • Manzoor, M.; Anwar, F.; Mahmood, Z.; Rashid, U.; Ashraf, M. Variation in Minerals, Phenolics and Antioxidant Activity of Peel and Pulp of Different Varieties of Peach (Prunus persica L.) Fruit from Pakistan. Molecules. 2012, 17(6), 6491–6506. DOI: 10.3390/molecules17066491.
  • Saidani, F.; Giménez, R.; Aubert, C.; Chalot, G.; Betrán, J. A.; Gogorcena, Y. Phenolic, Sugar and Acid Profiles and the Antioxidant Composition in the Peel and Pulp of Peach Fruits. J. Food Compos. Anal. 2017, 62(2017), 126–133. DOI: 10.1016/j.jfca.2017.04.015.
  • Kurtulbaş, E.; Şahin, S. Phytochemical Properties in the Waste By-Products of Peach: Optimization and Storage Stability Studies. Biomass Convers. Biorefinery. 2022, 4(2022), 1–10. DOI: 10.1007/s13399-022-03150-4.
  • Zhivkova, V. Evaluation of Nutritional and Mineral Composition of Apricot, Peach and Nectarine Wasted Peels. Calitatea. 2020, 21(179), 144–146.
  • Fotiou, D.; Argyropoulos, K.; Kolompourda, P.; Goula, A. M. Valorization of Peach Peels: Preservation with an Optimized Drying Process Based on Ultrasounds Pretreatment with Ethanol. Biomass Conv. Bioref. 2023, 13(18), 1–13. DOI: 10.1007/s13399-023-03753-5.
  • Kowalczyk, R.; Piwnicki, K. Fruit Seeds As a Valuable Secondary Raw Material in the Food Industry. Adv. Food Process. Technol. 2007, 17/31(2), 62–66.
  • Statista Search Department. Stone Fruit Production Worldwide from 2000 to 2021. Stat. Search Dep. 2021. https://www.statista.com/statistics/577598/world-stone-fruit-production/. (accessed Aug 27, 2023).
  • Monteiro, E.; Ismail, T. M.; Ramos, A.; Abd El-Salam, M.; Brito, P.; Rouboa, A. Experimental and Modeling Studies of Portuguese Peach Stone Gasification on an Autothermal Bubbling Fluidized Bed Pilot Plant. Energy 2018, 142, 862–877. DOI: 10.1016/j.energy.2017.10.100.
  • Parlayıcı, Ş. Modified Peach Stone Shell Powder for the Removal of Cr (Vi) from Aqueous Solution: Synthesis, Kinetic, Thermodynamic, and Modeling Study. Int. J. Phytoremediation. 2019, 21(6), 590–599. DOI: 10.1080/15226514.2018.1540541.
  • Lan, G.; Zhang, Y.; Liu, Y. Modified Peach Stones by Ethylenediamine As a New Adsorbent for Removal of Cr (VI) from Wastewater. Sep. Sci. Technol. 2019, 54(13), 2126–2137. DOI: 10.1080/01496395.2019.1604752.
  • Demiral, İ.; Samdan, C.; Demiral, H. Enrichment of the Surface Functional Groups of Activated Carbon by Modification Method. Surf. Interfaces. 2021, 22, 100873. DOI: 10.1016/j.surfin.2020.100873.
  • D’avila, R. F.; Zambiazi, R. C.; Sá Ps, D. E.; Toralles, R. P. β-Glucosidase Activity in Enzyme Extract Obtained from Peach Kernel. Rev. Bras. Frutic. 2015, 37(3), 541–549. DOI: 10.1590/0100-2945-182/14.
  • Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Achillea millefolium L. Extract Mediated Green Synthesis of Waste Peach Kernel Shell Supported Silver Nanoparticles: Application of the Nanoparticles for Catalytic Reduction of a Variety of Dyes in Water. J. Colloid. Interface. Sci. 2017, 493(2017), 85–93. DOI: 10.1016/j.jcis.2017.01.012.
  • Kurtulbaş, E.; Sevgen, S.; Samli, R.; Şahin, S. Microwave-Assisted Extraction of Bioactive Components from Peach Waste: Describing the Bioactivity Degradation by Polynomial Regression. Biomass Convers. Biorefinery. 2022, 14(8), 1–11. DOI: 10.1007/s13399-022-02909-z.
  • Cvetković, D. D.; Ranitović, A. S.; Šeregelj, V. N.; Sovljanski, O.; Vulic, J.; Jovic, B.; Pavlovic, V. Encapsulation of Peach Waste Extract in Saccharomyces Cerevisiae Cells. J. Serb. Chem. Soc. 2021, 86(4), 367–380. DOI: 10.2298/JSC201201001c.
  • Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Modelling the Recovery of Biocompounds from Peach Waste Assisted by Pulsed Electric Fields or Thermal Treatment. J. Food Eng. 2021, 290, 110196. DOI: 10.1016/j.jfoodeng.2020.110196.
  • Redondo, D.; Gimeno, D.; Calvo, H.; Venturini, M. E.; Oria, R.; Arias, E. Antioxidant Activity and Phenol Content in Different Tissues of Stone Fruits at Thinning and at Commercial Maturity Stages. Waste Biomass Valorization. 2021, 12(4), 1861–1875. DOI: 10.1007/s12649-020-01133-y.
  • Mármol, I.; Quero, J.; Ibarz, R.; Ferreira-Santos, P.; Teixeira, J. A.; Rocha, C. M. R.; Pérez-Fernández, M.; García-Juiz, S.; Osada, J.; Martín-Belloso, O., et al. Valorization of Agro-Food By-Products and Their Potential Therapeutic Applications. Food Bioprod. Process. 2021, 128(2021), 247–258. DOI: 10.1016/j.fbp.2021.06.003.
  • Gettens, C. S.; Heberle, T.; Carbonera, N.; Gandra, E. A.; Gularte, M. A. Antimicrobial Potential and Chemical and Bioactive Compounds in Agro-Industrial By-Products from Peach. Braz. J. Dev. 2021, 7(2), 18221–18234. DOI: 10.34117/bjdv7n2-454.
  • Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Optimizing the Antioxidant Biocompound Recovery from Peach Waste Extraction Assisted by Ultrasounds or Microwaves. Ultrason. Sonochem. 2020, 63, 104954. DOI: 10.1016/j.ultsonch.2019.104954.
  • Alexandri, M.; Psaki, O.; Papapostolou, H.; Koutinas, A. Simultaneous Production of Carotenoids and Microbial Lipids Using Fruit Wastes from Open Markets. 2020, 4, 6–7.
  • Lalas, S.; Alibade, A.; Bozinou, E.; Makris, D. P. Drying Optimisation to Obtain Carotenoid-Enriched Extracts from Industrial Peach Processing Waste (Pomace). Beverages. 2019, 5(3), 43. DOI: 10.3390/beverages5030043.
  • El Darra, N.; Rajha, H. N.; Debs, E.; Saleh, F.; El-Ghazzawi, I.; Louka, N.; Maroun, R. G. Comparative Study Between Ethanolic and β -Cyclodextrin Assisted Extraction of Polyphenols from Peach Pomace. Int. J. Food Sci. 2018, 2018, 1–9. DOI: 10.1155/2018/9491681.
  • Liu, H.; Jiang, W.; Cao, J.; Ma, L. Evaluation of Antioxidant Properties of Extractable and Nonextractable Polyphenols in Peel and Flesh Tissue of Different Peach Varieties. J. Food Process Preserv. 2018, 42(6), e13624. DOI: 10.1111/jfpp.13624.
  • Vargas, E. F. D.; Jablonski, A.; Flôres, S. H.; Rios, A. D. O. Waste from Peach (Prunus persica) Processing Used for Optimisation of Carotenoids Ethanolic Extraction. Int. J. Food Sci. Tech. 2017, 52(3), 757–762. DOI: 10.1111/ijfs.13332.
  • Stojanovic, B. T.; Mitic, S. S.; Stojanovic, G. S.; Mitic, M. N.; Kostic, D. A.; Paunovic, D. D.; Arsic, B. B. Phenolic Profile and Antioxidant Activity of Pulp and Peel from Peach and Nectarine Fruits. Not. Bot. Horti. Agrobo. 2016, 44(1), 175–182. DOI: 10.15835/nbha44110192.
  • Loizzo, M. R.; Pacetti, D.; Lucci, P.; Núñez, O.; Menichini, F.; Frega, N. G.; Tundis, R. Prunus persica Var. Platycarpa (Tabacchiera Peach): Bioactive Compounds and Antioxidant Activity of Pulp, Peel and Seed Ethanolic Extracts. Plant Foods Hum. Nutr. 2015, 70(3), 331–337. DOI: 10.1007/s11130-015-0498-1.
  • Liu, H.; Cao, J.; Jiang, W. Evaluation and Comparison of Vitamin C, Phenolic Compounds, Antioxidant Properties and Metal Chelating Activity of Pulp and Peel from Selected Peach Cultivars. LWT - Food Sci. Technol. 2015, 63(2), 1042–1048. DOI: 10.1016/j.lwt.2015.04.052.
  • Wu, H.; Shi, J.; Xue, S.; Kakuda, Y.; Wang, D.; Jiang, Y.; Ye, X.; Li, Y.; Subramanian, J. Essential Oil Extracted from Peach (Prunus persica) Kernel and Its Physicochemical and Antioxidant Properties. LWT - Food Sci. Technol. 2011, 44(10), 2032–2039. DOI: 10.1016/j.lwt.2011.05.012.
  • Lara, M. V.; Bonghi, C.; Famiani, F.; Vizzotto, G.; Walker, R. P.; Drincovich, M. F. Stone Fruit As Biofactories of Phytochemicals with Potential Roles in Human Nutrition and Health. Front Plant Sci. 2020, 11, 562252. DOI: 10.3389/fpls.2020.562252.
  • Dini, I. Bio Discarded from Waste to Resource. Foods. 2021, 10(11), 2652. DOI: 10.3390/foods10112652.
  • González-García, E.; Marina, M. L.; García, M. C.; Righetti, P. G.; Fasoli, E. Identification of Plum and Peach Seed Proteins by Nlc-Ms/ms via Combinatorial Peptide Ligand Libraries. J. Proteomics 2016, 148(2016), 105–112. DOI: 10.1016/j.jprot.2016.07.024.
  • De Medina-Salas, L.; Castillo-González, E.; Giraldi-Díaz, M. R.; Blanco-Pérez, B. Reaction Kinetics in the Vermicomposting Process of Peach Waste. Life. 2022, 12(9), 1290. DOI: 10.3390/life12091290.
  • Nirmal, N. P.; Khanashyam, A. C.; Mundanat, A. S.; Shah, K.; Babu, K.; Thorakkattu, P.; Al-Asmari, F.; Pandiselvam, R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023, 12(3), 556. DOI: 10.3390/foods12030556.
  • Redondo, D.; Venturini, M. E.; Luengo, E.; Raso, J.; Arias, E. Pulsed Electric Fields As a Green Technology for the Extraction of Bioactive Compounds from Thinned Peach By-Products. Innov. Food Sci. Emerg. Technol. 2018, 45, 335–343. DOI: 10.1016/j.ifset.2017.12.004.
  • Giovanoudis, I.; Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Bozinou, E.; Gortzi, O.; Nanos, G. D.; Lalas, S. I. Isolation of Polyphenols from Two Waste Streams of Clingstone Peach Canneries Utilizing the Cloud Point Extraction Method. Biomass (Switzerland). 2023, 3(3), 291–305. DOI: 10.3390/biomass3030018.
  • Karadimou, C. C.; Koletti, A. E.; Moschona, A.; Gika, H. G.; Vlachos, D.; Assimopoulou, A. N. P36: Peach Kernel: A Potential Source for Cosmeceuticals. 3rd IMEKOFOODS Metrol. Promot. Harmon. Stand. Food Nutr. 1st -4th Oct 2017, KEDEA Build AUTH Thessaloniki, Greece. 2017, 317–320.
  • Paraskevopoulou, C.; Vlachos, D.; Bechtsis, D.; Tsolakis, N. An Assessment of Circular Economy Interventions in the Peach Canning Industry. Int. J. Prod. Econ. 2022, 249(2022), 108533. DOI: 10.1016/j.ijpe.2022.108533.
  • Sánchez-Vicente, Y.; CabañCabañAs, A.; Renuncio, J. A. R.; Pando, C. Supercritical Fluid Extraction of Peach (Prunus persica) Seed Oil Using Carbon Dioxide and Ethanol. J. Supercrit Fluids 2009, 49(2), 167–173. DOI: 10.1016/j.supflu.2009.01.001.
  • Zannikos, F. E.; Anastopoulos, G.; Karonis, D. Converting Apricot Seed Oil (Prunus armeniaca) and Peach Seed Oil (Prunus persica) into Biodiesel. J. Biofuel Bioenergitcs. 2017, 1(1), 1000001.
  • Abdel, M.; Mustafa, M.; Abdel, M.; Sorour, H.; Hamd, A.; Sayed, E. Amino Acid Profile, Physico ‑ Chemical Properties and Fatty Acids Composition of Some Fruit Seed Kernels After Detoxification. Chem. Biol. Technol. Agric. 2023, 10(37), 1–11. DOI: 10.1186/s40538-023-00412-9.
  • Pelentir, N.; Block, J. M.; Monteiro Fritz, A. R.; Reginatto, V.; Amante, E. R. Production and Chemical Characterization of Peach (Prunus persica) Kernel Flour. J. Food Proc. Eng. 2011, 34(4), 1253–1265. DOI: 10.1111/j.1745-4530.2009.00519.x.
  • Koprivica, M.; Milojković, D.; Milica, O.; Akšić, F.; Dramićanin, A. Fatty Acids Composition and Physical Properties of Stones and Kernels from Different Peach Cultivars As Biomarker of Origin and Ripening Time. Eur. Food Res. Technol. 2022, 248(10), 2471–2482. DOI: 10.1007/s00217-022-04062-3.
  • Farooq, A.; Bhatti, K. H.; Siddiqi, E. H.; Hussain, T.; Hussain, K. Biodiesel Production Through Base Catalyzed Transesterification of Peach (Prunus persica L.) Kernel Oil. Gu. J. Phytosci. 2023, 3(2), 73–80. DOI: 10.5281/zenodo.7891475%0agu.
  • Wang, H.; Chao, Y.; Li, D.; Hu, B. Comparative Study on Microwave-Assisted and Ultrasonic-Assisted Extraction of Peach Kernel Oil. Chem. Ind. For. Prod. 2019, 39(6), 44–52. DOI: 10.3969/j.issn.0253-2417.2019.06.006.
  • Ekinci, M. S.; Gürü, M. Extraction of Oil and β-Sitosterol from Peach (Prunus persica) Seeds Using Supercritical Carbon Dioxide. J. Supercrit Fluids. 2014, 92, 319–323. DOI: 10.1016/j.supflu.2014.06.004.
  • Kahla, N. E.; Akbar, A.; Kordi, S. Evaluation of Temperature and Solvent Effect on Peach Kernel Oil Extraction and Determination & Quantification of Its Fatty. J. Nat. Sci. Res. 2012, 2(2), 2224–3186.
  • Mezzomo, N.; Mileo, B. R.; Friedrich, M. T.; Martínez, J.; Ferreira, S. R. S. Supercritical Fluid Extraction of Peach (Prunus persica) Almond Oil: Process Yield and Extract Composition. Bioresources Technol. 2010, 101(14), 5622–5632. DOI: 10.1016/j.biortech.2010.02.020.
  • Mezzomo, N.; Martínez, J.; Ferreira, S. R. S. Supercritical Fluid Extraction of Peach (Prunus persica) Almond Oil: Kinetics, Mathematical Modeling and Scale-Up. J. Supercrit Fluids. 2009, 51(1), 10–16. DOI: 10.1016/j.supflu.2009.07.008.
  • Faravash, R. S.; Ashtiani, F. Z. The Effect of pH, Ethanol Volume and Acid Washing Time on the Yield of Pectin Extraction from Peach Pomace. Int. J. Food Sci. Technol. 2007, 42(10), 1177–1187. DOI: 10.1111/j.1365-2621.2006.01324.x.
  • Faravash, R. S.; Ashtiani, F. Z. The Influence of Acid Volume, Ethanol-To-Extract Ratio and Acid-Washing Time on the Yield of Pectic Substances Extraction from Peach Pomace. Food Hydrocoll. 2008, 22(1), 196–202. DOI: 10.1016/j.foodhyd.2007.04.003.
  • Hao, E.; Pang, G.; Du, Z.; Lai, Y.-H.; Chen, J.-R.; Xie, J.; Zhou, K.; Hou, X.; Hsiao, C.-D.; Deng, J., et al. Peach Kernel Oil Down Regulates Expression of Tissue Factor and Reduces Atherosclerosis in ApoE Knockout Mice. Int. J. Mol. Sci. 2019, 20(2), 405. DOI: 10.3390/ijms20020405.
  • Chen, H. J.; Huang, J. Y.; Ko, C. Y. Peach Kernel Extracts Inhibit Lipopolysaccharide-Induced Activation of HSC-T6 Hepatic Stellate Cells. Int. J. Clin. Pract. 2022, 2022, 4869973. DOI: 10.1155/2022/4869973.
  • Vulić, J.; Bibovski, K.; Šeregelj, V.; Kovačević, S.; Karadžić Banjac, M.; Čanadanović-Brunet, J.; Ćetković, G.; Četojević-Simin, D.; Tumbas Šaponjac, V.; Podunavac-Kuzmanović, S., et al. Chemical and Biological Properties of Peach Pomace Encapsulates: Chemometric Modeling. Processes. 2022, 10(4), 642. DOI: 10.3390/pr10040642.
  • Murphy, M. P.; Bayir, H.; Belousov, V.; Chang, C. J.; Davies, K. J. A.; Davies, M. J.; Dick, T. P.; Finkel, T.; Forman, H. J.; Janssen-Heininger, Y., et al. Guidelines for Measuring Reactive Oxygen Species and Oxidative Damage in Cells and in vivo. Nat. Metab. 2022, 4(6), 651–662. DOI: 10.1038/s42255-022-00591-z.
  • Kuciel-Lewandowska, J. M.; Pawlik-Sobecka, L.; Płaczkowska, S.; Kokot, I.; Paprocka-Borowicz, M. The Assessment of the Integrated Antioxidant System of the Body and the Phenomenon of Spa Reaction in the Course of Radon Therapy: A Pilot Study. Adv. Clin. Exp. Med. 2018, 27(10), 1341–1346. DOI: 10.17219/acem/69450.
  • Guo, C.; Yang, J.; Wei, J.; Li, Y.; Xu, J.; Jiang, Y. Antioxidant Activities of Peel, Pulp and Seed Fractions of Common Fruits As Determined by FRAP Assay. Nutr. Res. 2003, 23(12), 1719–1726. DOI: 10.1016/j.nutres.2003.08.005.
  • Taha, S. H.; Elshaghabee, F. M.; Ameen, M. A. M. Nutritional Value, Antioxidant and Anticancer Activities of Some Nano Fruit Wastes. Egypt. J. Chem. 2024. DOI: 10.21608/ejchem.2024.256873.9008.
  • Cassiem, W.; de Kock, M. The Anti-Proliferative Effect of Apricot and Peach Kernel Extracts on Human Colon Cancer Cells in vitro. BMC Complement. Altern. Med. 2019, 19(32), 1–12. DOI: 10.1186/s12906-019-2437-4.
  • Granato, D.; Barba, F. J.; Bursać Kovačević, D.; Lorenzo, J. M.; Cruz, A. G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11(1), 93–118. DOI: 10.1146/annurev-food-032519-051708.
  • Martirosyan, D. M.; Singh, J. A New Definition of Functional Food by FFC: What Makes a New Definition Unique? Funct. Foods Heal. Dis. 2015, 5(6), 209–223. DOI: 10.31989/ffhd.v5i6.183.
  • Sorour, M.; Mehanni, A. H.; Hussein, S. M.; Mustafa, M. A. Utilization of Treated Seed Kernel Flours of Some Fruits in Biscuit Manufacture. Eur. J. Nutr. Food Saf. 2022, 14(3), 1–13. DOI: 10.9734/ejnfs/2022/v14i330481.
  • Avila, T. L.; Toralles, R. P.; Jansen, E. T.; Ferreira, M. V.; Kuhn, C. R.; Ruiz, R. W. A. Extraction, Purification and Characterization of Invertase from Candida Guilliermondii Isolated from Peach Solid Wastes. Rev. Bras. Frutic. 2022, 44(2), 1–11. DOI: 10.1590/0100-29452022849.
  • Batista, R. D.; Melo, F. G.; Cristina, C.; Coutinho de Paula-Elias, F.; Firmani Perna, R.; Cunha Abreu Xavier, M.; Villalba Morales, S. A.; de Almeida, A. F. Optimization of β-Fructofuranosidase Production from Agrowaste by Aspergillus Carbonarius and Its Application in the Production of Inverted Sugar. Food Technol. Biotechnol. 2021, 59(3), 306–313. DOI: 10.17113/ftb.59.03.21.6934.
  • Akpinar, M.; Ozturk Urek, R. Direct Utilization of Peach Wastes for Enhancements of Lignocellulolytic Enzymes Productions by Pleurotus Eryngii Under Solid-State Fermentation Conditions. Chem. Pap. 2022, 76(2022), 6699–6712. DOI: 10.1007/s11696-022-02356-0.
  • Yang, Y.; Li, A.; Zhong, Z.; Xie, M. Angiotensin Converting Enzyme Inhibitory Peptide Fractions from Tibet Wild Peach Kernel Protein Hydrolysates. Acta Aliment. 2019, 48(4), 495–506. DOI: 10.1556/066.2019.48.4.11.
  • Akpinar, M.; Ozturk Urek, R. Induction of Fungal Laccase Production Under Solid State Bioprocessing of New Agroindustrial Waste and Its Application on Dye Decolorization. 3 Biotech. 2017, 7(2), 1–10. DOI: 10.1007/s13205-017-0742-5.
  • Akpinar, M.; Ozturk Urek, R. Peach and Cherry Agroindustrial Wastes: New and Economic Sources for the Production of Lignocellulolytic Enzymes. Acta. Chim. Slov. 2017, 64(2), 422–430. DOI: 10.17344/acsi.2017.3265.
  • Fratebianchi, D.; Crespo, J. M.; Tari, C.; Cavalitto, S. Control of Agitation Rate and Aeration for Enhanced Polygalacturonase Production in Submerged Fermentation by Aspergillus Sojae Using Agro-Industrial Wastes. J. Chem. Technol. Biotechnol. 2017, 92(2), 305–310. DOI: 10.1002/jctb.5006.
  • de Escalada Pla, M. F.; González, P.; Sette, P.; Portillo, F.; Rojas, A. M.; Gerschenson, L. N. Effect of Processing on Physico-Chemical Characteristics of Dietary Fibre Concentrates Obtained from Peach (Prunus persica L.) Peel and Pulp. Food. Res. Int. 2012, 49(1), 184–192. DOI: 10.1016/j.foodres.2012.07.060.
  • Nieto Calvache, J. E.; Fissore, E. N.; Latorre, M. E.; Soria, M.; De Escalada Pla, M. F.; Gerschenson, L. N. Obtention of Dietary Fibre Enriched Fractions from Peach Bagasse Using Ethanol Pre-Treatment and Microwave Drying. LWT-Food Sci. Technol. 2015, 62(2), 1169–1176. DOI: 10.1016/j.lwt.2015.01.045.
  • Ruiz, S. V.; Silva, H. S. Synthesis of Magnetic Activated Carbons from Industrial Waste. Lat. Am. Appl. Res. 2019, 49(2), 77–81. DOI: 10.52292/j.laar.2019.363.
  • Wadhwa, M.; Bakshi, M. P. S.; Makkar, H. P. S. Wastes to Worth: Value Added Products from Fruit and Vegetable Wastes. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2015, 10, 1–25. DOI: 10.1079/pavsnnr201510043.
  • García-Aparicio, M. D. P.; Castro, F.; Marina, M. L. Unlocking Peach Juice Byproduct Potential in Food Waste Biorefineries: Phenolic Compounds Profile, Antioxidant Capacity and Fermentable Sugars. Bioresources Technol. 2024, 396(2024), 130441. DOI: 10.1016/j.biortech.2024.130441.
  • Mihaylova, D.; Popova, A.; Desseva, I.; Dincheva, I.; Tumbarski, Y. Valorization of Peels of Eight Peach Varieties: GC–MS Profile, Free and Bound Phenolics and Corresponding Biological Activities. Antioxidants. 2023, 12(1), 205. DOI: 10.3390/antiox12010205.
  • Skiba, M.; Vorobyova, V. Green Synthesis and Characterization of Silver Nanoparticles Using Prunus persica L. (Peach Pomace) with Natural Deep Eutectic Solvent and Plasma-Liquid Process. Chem. Pap. 2022, 76(9), 5789–5806. DOI: 10.1007/s11696-022-02274-1.
  • El-Dougdoug, W. I.; Abo-Riya, M.; Azab, M. M.; El-Sawy, A. A.; Elnaggar, M. A. Synthesis and Evaluation of Surface Properties of Anionic Surfactants Based on Fatty Matter of Egyptian Peach Kernel. Int. J. Appl. Chem. 2020, 7(2), 13–23. DOI: 10.14445/23939133/ijac-v7i2p103.
  • Núñez-Decap, M.; Wechsler-Pizarro, A.; Vidal-Vega, M. Mechanical, Physical, Thermal and Morphological Properties of Polypropylene Composite Materials Developed with Particles of Peach and Cherry Stones. Sustain. Mater. Technol. 2021, 29(2021), e00300. DOI: 10.1016/j.susmat.2021.e00300.
  • Wu, F.; Liu, C.; Sun, W.; Ma, Y.; Zhang, L. Effect of Peach Shell As Lightweight Aggregate on Mechanics and Creep Properties of Concrete. Eur. J. Environ. Civ. Eng. 2020, 24(14), 2534–2552. DOI: 10.1080/19648189.2018.1515667.
  • Wu, F.; Liu, C.; Sun, W.; Zhang, L. Mechanical Properties of Bio-Based Concrete Containing Blended Peach Shell and Apricot Shell Waste. Mater. Tehnol. 2018, 52(5), 645–651. DOI: 10.17222/mit.2018.065.
  • Liu, J.; Ganesan, S. P.; Li, X.; Garg, A.; Singhal, A.; Dosetti, K. D.; Feng, H. Dynamics of Biochar-Silty Clay Interaction Using In-House Fabricated Cyclic Loading Apparatus: A Case Study of Coastal Clay and Novel Peach Biochar from the Qingdao Region of China. Sustainability. 2020, 12(7), 2599. DOI: 10.3390/su12072599.
  • Altantzis, A. I.; Kallistridis, N. C.; Stavropoulos, G.; Zabaniotou, A. Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: An Experimental Study. Circ. Econ. Sustain. 2022, 2(1), 351–382. DOI: 10.1007/s43615-021-00078-1.
  • Gündüz, F.; Olam, M.; Karaca, H. Direct Liquefaction of Low Rank Lignite with Peach Seed Kernel and Waste Polypropylene for Alternative Fuel Production. Process Saf. Environ. Prot. 2023, 170(2023), 1208–1216. DOI: 10.1016/j.psep.2022.12.048.
  • Hameed, A.; Naqvi, S. R.; Sikandar, U.; Chen, W. H. One-Step Biodiesel Production from Waste Cooking Oil Using CaO Promoted Activated Carbon Catalyst from Prunus persica Seeds. Catalysts 2022, 12(6), 592. DOI: 10.3390/catal12060592.
  • Mohammad, S. G.; El-Sayed, M. M. H. Removal of Imidacloprid Pesticide Using Nanoporous Activated Carbons Produced via Pyrolysis of Peach Stone Agricultural Wastes. Chem. Eng. Commun. 2021, 208(8), 1069–1080. DOI: 10.1080/00986445.2020.1743695.
  • Kim, D. S. Activated Carbon from Peach Stones Using Phosphoric Acid Activation at Medium Temperatures. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 2004, 39(5), 1301–1318. DOI: 10.1081/ESE-120030333.
  • Ziati, M.; Khemmari, F.; Kecir, M.; Hazourli, S. Removal of Chromium from Tannery Wastewater by Electrosorption on Carbon Prepared from Peach Stones: Effect of Applied Potential. Carbon. Lett. 2017, 21(1), 81–85. DOI: 10.5714/CL.2017.21.081.
  • Colombo, R.; Papetti, A. An Outlook on the Role of Decaffeinated Coffee in Neurodegenerative Diseases. Crit. Rev. Food Sci. Nutr. 2020, 60(5). DOI: 10.1080/10408398.2018.1550384.
  • Januário, E. F. D.; Vidovix, T. B.; Ribeiro, A. C.; da Costa Neves Fernandes de Almeida Duarte, E.; Bergamasco, R.; Vieira, A. M. S. Evaluation of Hydrochar from Peach Stones for Caffeine Removal from Aqueous Medium and Treatment of a Synthetic Mixture. Environ. Technol. 2022, 45(6), 1–14. DOI: 10.1080/09593330.2022.2138786.
  • Marković, S.; Stanković, A.; Lopičić, Z.; Lazarević, S.; Stojanović, M.; Uskoković, D. Application of Raw Peach Shell Particles for Removal of Methylene Blue. J. Environ. Chem. Eng. 2015, 3(2), 716–724. DOI: 10.1016/j.jece.2015.04.002.
  • Khemmari, F.; Benrachedi, K. Application of Raw Peach Stones for Hexavalent Chromium Removal from Aqueous Solution Using Column System. J. Fundam. Appl. Sci. 2021, 13(3), 1206–1223. DOI: 10.4314/jfas.v13i3.4.
  • Yan, J.; Lan, G.; Qiu, H.; Chen, C.; Liu, Y.; Du, G.; Zhang, J. Adsorption of Heavy Metals and Methylene Blue from Aqueous Solution with Citric Acid Modified Peach Stone. Sep. Sci. Technol. 2018, 53(11), 1678–1688. DOI: 10.1080/01496395.2018.1439064.
  • Abd El-Rahman, A. A.; El-Hadary, A. E.; Abd El-Aleem, M. I. Detexofication and Nutritional Evaluation of Peach and Apricot Meal. J. Biol. Chem. Environ. Sci. 2015, 10(3), 597–622.
  • Sorour, M.; Mehanni, A. H.; Hussien, S.; Mustafa Hassan, M. Chemical Composition and Functional Properties of Some Fruit Seed Kernel Flours. J. Sohag. Agrisci. 2021, 6(2), 184–191. DOI: 10.21608/jsasj.2021.222733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.