49
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Interaction-Induced Characterization of Animal-Based Protein-Polysaccharide Composite Hydrogels: A Review

ORCID Icon & ORCID Icon

References

  • Kazemi-Taskooh, Z.; Varidi, M. Food-Based Iron Delivery Systems: A Review. Trends Food Sci. Technol. 2021, 116, 75–89. DOI: 10.1016/j.tifs.2021.07.005.
  • Yang, X.; Li, A.; Li, D.; Guo, Y.; Sun, L. Applications of Mixed Polysaccharide-Protein Systems in Fabricating Multi-Structures of Binary Food Gels—A Review. Trends Food Sci. Technol. 2021, 109(January), 197–210. DOI: 10.1016/j.tifs.2021.01.002.
  • Niu, Y.; Xia, Q.; Li, N.; Wang, Z.; (Lucy) Yu, L. Gelling and Bile Acid Binding Properties of Gelatin-Alginate Gels with Interpenetrating Polymer Networks by Double Cross-Linking. Food Chem. 2019, 270(April 2018), 223–228. DOI: 10.1016/j.foodchem.2018.07.105.
  • Zhuang, X.; Han, M.; Bai, Y.; Liu, Y.; Xing, L.; Xu, X. L.; Zhou, G. H. Insight into the Mechanism of Myofibrillar Protein Gel Improved by Insoluble Dietary Fiber. Food Hydrocoll. 2018, 74, 219–226. DOI: 10.1016/j.foodhyd.2017.08.015.
  • Damodaran, S.; Parkin, K. L. Fennema’s Food Chemistry, Fifth Edition; 2017. DOI: 10.1201/9781315372914.
  • Tang, Y.; Wang, H.; Liu, S.; Pu, L.; Hu, X.; Ding, J.; Xu, G.; Xu, W.; Xiang, S.; Yuan, Z. A Review of Protein Hydrogels: Protein Assembly Mechanisms, Properties, and Biological Applications. Colloids Surf. B Biointerfaces 2022, 220(October). DOI: 10.1016/j.colsurfb.2022.112973.
  • Warnakulasuriya, S. N.; Nickerson, M. T. Review on Plant Protein–Polysaccharide Complex Coacervation, and the Functionality and Applicability of Formed Complexes. J. Sci. Food Agric. 2018, 98(15), 5559–5571. DOI: 10.1002/jsfa.9228.
  • Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From Controlled Release to PH-Responsive Drug Delivery. Drug Discov. Today 2002, 7(10), 569–579. DOI: 10.1016/S1359-6446(02)02255-9.
  • Kazemi-Taskooh, Z.; Varidi, M. How Can Plant-Based Protein–Polysaccharide Interactions Affect the Properties of Binary Hydrogels? A Review. Food Funct. 2023, 14(13), 5891–5909. DOI: 10.1039/d3fo00611e.
  • Lai, R.; Liu, Y.; Liu, J. Properties of the Konjac Glucomannan and Zein Composite Gel with or without Freeze-Thaw Treatment. Food Hydrocoll. 2021, 117(February), 106700. DOI: 10.1016/j.foodhyd.2021.106700.
  • Zhu, N.; Zang, M.; Wang, S.; Zhang, S.; Zhao, B.; Liu, M.; Li, S.; Wu, Q.; Liu, B.; Zhao, Y., et al. Modulating the Structure of Lamb Myofibrillar Protein Gel Influenced by Psyllium Husk Powder at Different NaCl Concentrations: Effect of Intermolecular Interactions. Food Chem. 2022, 397(March), 133852. DOI: 10.1016/j.foodchem.2022.133852.
  • Zhang, K.; Tian, X.; Shen, R.; Zhao, K.; Wang, Y.; Zhang, Y.; Wang, W. Delaying in vitro Gastric Digestion of Myofibrillar Protein Gel Using Carboxymethylated Cellulose Nanofibrils: Forming a Compact and Uniform Microstructure. Food Hydrocoll 2023, 140(August 2022), 108661. DOI: 10.1016/j.foodhyd.2023.108661.
  • Jiang, L.; Ren, Y.; Xiao, Y.; Liu, S.; Zhang, J.; Yu, Q.; Chen, Y.; Xie, J. Effects of Mesona Chinensis Polysaccharide on the Thermostability, Gelling Properties, and Molecular Forces of Whey Protein Isolate Gels. Carbohydr. Polym. 2020, 242(235), 116424. DOI: 10.1016/j.carbpol.2020.116424.
  • Zhang, J.; Jiang, L.; Yang, J.; Chen, X.; Shen, M.; Yu, Q.; Chen, Y.; Xie, J. Effect of Calcium Chloride on Heat-Induced Mesona Chinensis Polysaccharide-Whey Protein Isolation Gels: Gel Properties and Interactions. LWT. 2022, 155, 112907. DOI: 10.1016/j.lwt.2021.112907.
  • Liu, K.; Li, Q. M.; Pan, L. H.; Qian, X. P.; Zhang, H. L.; Zha, X. Q.; Luo, J. P. The Effects of Lotus Root Amylopectin on the Formation of Whey Protein Isolate Gels. Carbohydr. Polym. 2017, 175, 721–727. DOI: 10.1016/j.carbpol.2017.08.041.
  • Xiao, Y.; Liu, Y.; Wang, Y.; Jin, Y.; Guo, X.; Liu, Y.; Qi, X.; Lei, H.; Xu, H. Heat-Induced Whey Protein Isolate Gels Improved by Cellulose Nanocrystals: Gelling Properties and Microstructure. Carbohydr. Polym. 2020, 231(September 2019), 115749. DOI: 10.1016/j.carbpol.2019.115749.
  • Li, Y.; Cai, M.; Liu, H.; Liu, X. Properties of Whey Protein Isolation/Konjac Glucomannan Composite Gels: Effects of Deacetylation Degrees. Int. J. Biol. Macromol. 2023, 238(2), 124138. DOI: 10.1016/j.ijbiomac.2023.124138.
  • Bora, A. F. M.; Kouame, K. J. E. P.; Li, X.; Liu, L.; Sun, Y.; Ma, Q.; Liu, Y. Development, Characterization and Probiotic Encapsulating Ability of Novel Momordica Charantia Bioactive Polysaccharides/Whey Protein Isolate Composite Gels. Int J Biol Macromol 2023, 225(600), 454–466. DOI: 10.1016/j.ijbiomac.2022.11.097.
  • Li, X.; Fan, M.; Huang, Q.; Zhao, S.; Xiong, S.; Yin, T.; Zhang, B. Effect of Micro- and Nano-Starch on the Gel Properties, Microstructure and Water Mobility of Myofibrillar Protein from Grass Carp. Food Chem. 2022, 366(March 2021), 130579. DOI: 10.1016/j.foodchem.2021.130579.
  • Zand-Rajabi, H.; Madadlou, A. Caffeine-Loaded Whey Protein Hydrogels Reinforced with Gellan and Enriched with Calcium Chloride. Int. Dairy. J. 2016, 56, 38–44. DOI: 10.1016/j.idairyj.2015.12.011.
  • Li, Y.; Cai, M.; Ma, S.; Lu, H.; Liu, X. Heat-Induced Gel Formation by Whey Protein Isolate-Deacetylated Konjac Glucomannan at Varying PH Conditions. Food Hydrocoll. 2023, 145(2), 109076. DOI: 10.1016/j.foodhyd.2023.109076.
  • Wu, S.; Wang, L.; Zhao, Y.; Chen, B.; Qiu, D.; Sun, P.; Shao, P.; Feng, S. Fabrication of High Strength Cold-Set Sodium Alginate/Whey Protein Nanofiber Double Network Hydrogels and Their Interaction with Curcumin. Food. Res. Int. 2023, 165(January), 112490. DOI: 10.1016/j.foodres.2023.112490.
  • Kazemi-Taskooh, Z.; Varidi, M. Designation and Characterization of Cold-Set Whey Protein-Gellan Gum Hydrogel for Iron Entrapment. Food Hydrocoll. 2021, 111(May 2020), 106205. DOI: 10.1016/j.foodhyd.2020.106205.
  • Alavi, F.; Emam-Djomeh, Z.; Yarmand, M. S.; Salami, M.; Momen, S.; Moosavi-Movahedi, A. A. Cold Gelation of Curcumin Loaded Whey Protein Aggregates Mixed with K-Carrageenan: Impact of Gel Microstructure on the Gastrointestinal Fate of Curcumin. Food Hydrocoll. 2018, 85, 267–280. DOI: 10.1016/j.foodhyd.2018.07.012.
  • Li, X.; He, X.; Mao, L.; Gao, Y.; Yuan, F. Modification of the Structural and Rheological Properties of β-Lactoglobulin/κ-Carrageenan Mixed Gels Induced by High Pressure Processing. J. Food Eng. 2020, 274, 109851. DOI: 10.1016/j.jfoodeng.2019.109851.
  • Su, J.; Cai, Y.; Zhi, Z.; Guo, Q.; Mao, L.; Gao, Y.; Yuan, F.; Van der Meeren, P. Assembly of Propylene Glycol Alginate/β-Lactoglobulin Composite Hydrogels Induced by Ethanol for Co-Delivery of Probiotics and Curcumin. Carbohydr. Polym. 2021, 254(17), 117446. DOI: 10.1016/j.carbpol.2020.117446.
  • Zhang, M.; Sun, H.; Wang, Y.; Piao, C.; Cai, D.; Wang, Y.; Liu, J.; Cheng, Z. Preparation and Characterization of a Novel Porous Whey Protein Concentrate/Pullulan Gel Induced by Heating for Cu2+ Absorption. Food Chem. 2020, 322(April), 126772. DOI: 10.1016/j.foodchem.2020.126772.
  • Durán, E.; Churio, O.; Arias, J. L.; Neira-Carrillo, A.; Valenzuela, C. Food Hydrocolloids Preparation and Characterization of Novel Edible Matrices Based on Alginate and Whey for Oral Delivery of Iron. Food Hydrocoll. 2020, 98(May 2019), 105277. DOI: 10.1016/j.foodhyd.2019.105277.
  • Hellebois, T.; Gaiani, C.; Cambier, S.; Noo, A.; Soukoulis, C. Exploration of the Co-Structuring and Stabilising Role of Flaxseed Gum in Whey Protein Isolate Based Cryo-Hydrogels. Carbohydr. Polym. 2022, 289(March). DOI: 10.1016/j.carbpol.2022.119424.
  • Sinthusamran, S.; Benjakul, S.; Swedlund, P. J.; Hemar, Y. Physical and Rheological Properties of Fish Gelatin Gel as Influenced by κ-Carrageenan. Food Biosci. 2017, 20, 88–95. DOI: 10.1016/j.fbio.2017.09.001.
  • Derkach, S. R.; Voron’ko, N. G.; Kuchina, Y. A.; Kolotova, D. S.; Gordeeva, A. M.; Faizullin, D. A.; Gusev, Y. A.; Zuev, Y. F.; Makshakova, O. N. Molecular Structure and Properties of κ-Carrageenan-Gelatin Gels. Carbohydr. Polym. 2018, 197, 66–74. DOI: 10.1016/j.carbpol.2018.05.063.
  • Roshanghias, S.; Madadlou, A. Functional and Gel Properties of Whey Protein Nanofibrils as Influenced by Partial Substitution with Cellulose Nanocrystal and Alginate. Int. Dairy. J. 2018, 81, 53–61. DOI: 10.1016/j.idairyj.2018.02.004.
  • Cai, L.; Feng, J.; Regenstein, J.; Lv, Y.; Li, J. Confectionery Gels: Effects of Low Calorie Sweeteners on the Rheological Properties and Microstructure of Fish Gelatin. Food Hydrocoll. 2017, 67, 157–165. DOI: 10.1016/j.foodhyd.2016.12.031.
  • Yao, J.; Zhou, Y.; Chen, X.; Ma, F.; Li, P.; Chen, C. Effect of Sodium Alginate with Three Molecular Weight Forms on the Water Holding Capacity of Chicken Breast Myosin Gel. Food Chem. 2018, 239(July), 1134–1142. DOI: 10.1016/j.foodchem.2017.07.027.
  • Zhao, Y.; Zhou, G.; Zhang, W. Effects of Regenerated Cellulose Fiber on the Characteristics of Myofibrillar Protein Gels. Carbohydr. Polym. 2019, 209(October 2018), 276–281. DOI: 10.1016/j.carbpol.2019.01.042.
  • Zhuang, X.; Jiang, X.; Han, M.; Kang, Z. L.; Zhao, L.; Xu, X. L.; Zhou, G. H. Influence of Sugarcane Dietary Fiber on Water States and Microstructure of Myofibrillar Protein Gels. Food Hydrocoll. 2016, 57, 253–261. DOI: 10.1016/j.foodhyd.2016.01.029.
  • Zhuang, X.; Wang, L.; Jiang, X.; Chen, Y.; Zhou, G. Insight into the Mechanism of Myofibrillar Protein Gel Influenced by Konjac Glucomannan: Moisture Stability and Phase Separation Behavior. Food Chem. 2021, 339(June 2020), 127941. DOI: 10.1016/j.foodchem.2020.127941.
  • Gao, Y.; Wang, S.; Liu, H.; Gu, Y.; Zhu, J. Design and Characterization of Low Salt Myofibrillar Protein-Sugar Beet Pectin Double-Crosslinked Gels Pretreated by Ultrasound and Konjac Glucomannan: Conformational and Gelling Properties. Food Hydrocoll. 2023, 141(January), 108717. DOI: 10.1016/j.foodhyd.2023.108717.
  • Gao, Y.; Luo, C.; Zhang, J.; Wei, H.; Zan, L.; Zhu, J. Konjac Glucomannan Improves the Gel Properties of Low Salt Myofibrillar Protein Through Modifying Protein Conformation. Food Chem. 2022, 393(January), 133400. DOI: 10.1016/j.foodchem.2022.133400.
  • Pereira, J.; Sathuvan, M.; Lorenzo, J. M.; Boateng, E. F.; Brohi, S. A.; Zhang, W. Insight into the Effects of Coconut Kernel Fiber on the Functional and Microstructural Properties of Myofibrillar Protein Gel System. LWT 2021, 138(December 2020), 1–8. DOI: 10.1016/j.lwt.2020.110745.
  • Feng, J.; Bai, X.; Li, Y.; Kong, B.; Nuerjiang, M.; Wu, K.; Li, Z.; Xia, X. Improvement on Gel Properties of Myofibrillar Protein from Chicken Patty with Potato Dietary Fiber: Based on the Change in Myofibrillar Protein Structure and Water State. Int. J. Biol. Macromol. 2023, 230(December 2022), 123228. DOI: 10.1016/j.ijbiomac.2023.123228.
  • Mi, H.; Li, Y.; Wang, C.; Yi, S.; Li, X.; Li, J. The Interaction of Starch-Gums and Their Effect on Gel Properties and Protein Conformation of Silver Carp Surimi. Food Hydrocoll. 2021, 112(August 2020), 106290. DOI: 10.1016/j.foodhyd.2020.106290.
  • Chen, J.; Deng, T.; Wang, C.; Mi, H.; Yi, S.; Li, X.; Li, J. Effect of Hydrocolloids on Gel Properties and Protein Secondary Structure of Silver Carp Surimi. J. Sci. Food Agric. 2020, 100(5), 2252–2260. DOI: 10.1002/jsfa.10254.
  • Peng, H.; Chen, S.; Luo, M.; Ning, F.; Zhu, X.; Xiong, H. Preparation and Self-Assembly Mechanism of Bovine Serum Albumin-Citrus Peel Pectin Conjugated Hydrogel: A Potential Delivery System for Vitamin C. J. Agric. Food. Chem. 2016, 64(39), 7377–7384. DOI: 10.1021/acs.jafc.6b02966.
  • Tang, H.; Tan, L.; Chen, Y.; Zhang, J.; Li, H.; Chen, L. Effect of κ-Carrageenan Addition on Protein Structure and Gel Properties of Salted Duck Egg White. J. Sci. Food Agric. 2021, 101(4), 1389–1395. DOI: 10.1002/jsfa.10751.
  • Ge, S.; Li, M.; Ji, N.; Liu, J.; Mu, H.; Xiong, L.; Sun, Q. Preparation of a Strong Gelatin-Short Linear Glucan Nanocomposite Hydrogel by an in situ Self-Assembly Process. J. Agric. Food. Chem. 2018, 66(1), 177–186. DOI: 10.1021/acs.jafc.7b04684.
  • Badawy, M. E. I.; Taktak, N. E. M.; Awad, O. M.; Elfiki, S. A.; El-Ela, N. E. A. Preparation and Characterization of Biopolymers Chitosan/Alginate/Gelatin Gel Spheres Crosslinked by Glutaraldehyde. J. Macromol. Sci. Part B Phys. 2017, 56(6), 359–372. DOI: 10.1080/00222348.2017.1316640.
  • Binsi, P. K.; Nayak, N.; Sarkar, P. C.; Joshy, C. G.; Ninan, G.; Ravishankar, C. N. Gelation and Thermal Characteristics of Microwave Extracted Fish Gelatin–Natural Gum Composite Gels. J. Food Sci. Technol. 2017, 54(2), 518–530. DOI: 10.1007/s13197-017-2496-9.
  • Gao, Y.; Luo, C.; Zhang, J.; Wei, H.; Zan, L.; Zhu, J. Konjac Glucomannan Improves the Gel Properties of Low Salt Myofibrillar Protein Through Modifying Protein Conformation. Food Chem. 2022, 393(May), 133400. DOI: 10.1016/j.foodchem.2022.133400.
  • Chen, Z.; Luo, C.; Wang, K.; Chen, Y.; Zhuang, X. Insight into the Mechanism of Porcine Myofibrillar Protein Gel Properties Modulated by κ-Carrageenan. Foods 2023, 12(7), 7. DOI: 10.3390/foods12071444.
  • Zhang, X.; Wang, W.; Wang, Y.; Wang, Y.; Wang, X.; Gao, G.; Chen, G.; Liu, A. Effects of Nanofiber Cellulose on Functional Properties of Heat-Induced Chicken Salt-Soluble Meat Protein Gel Enhanced with Microbial Transglutaminase. Food Hydrocoll. 2018, 84, 1–8. DOI: 10.1016/j.foodhyd.2018.05.046.
  • Fan, M.; Hu, T.; Zhao, S.; Xiong, S.; Xie, J.; Huang, Q. Gel Characteristics and Microstructure of Fish Myofibrillar Protein/Cassava Starch Composites. Food Chem. 2017, 218, 221–230. DOI: 10.1016/j.foodchem.2016.09.068.
  • Zhu, N.; Zang, M.; Wang, S.; Zhang, S.; Zhao, B.; Liu, M.; Li, S.; Wu, Q.; Liu, B.; Zhao, Y., et al. Modulating the Structure of Lamb Myofibrillar Protein Gel Influenced by Psyllium Husk Powder at Different NaCl Concentrations: Effect of Intermolecular Interactions. Food Chem. 2022, 397(July), 133852. DOI: 10.1016/j.foodchem.2022.133852.
  • Gao, Y.; Wang, S.; Liu, H.; Gu, Y.; Zhu, J. Design and Characterization of Low Salt Myofibrillar Protein-Sugar Beet Pectin Double-Crosslinked Gels Pretreated by Ultrasound and Konjac Glucomannan: Conformational and Gelling Properties. Food Hydrocoll. 2023, 141(March), 108717. DOI: 10.1016/j.foodhyd.2023.108717.
  • Weska, R. F.; Achilli, M.; Beppu, M. M.; Mantovani, D. Improvement of Collagen Hydrogel Scaffolds Properties by the Addition of Konjac Glucomannan. Adv. Mater. Res. 2012, 409, 187–192. DOI: 10.4028/www.scientific.net/AMR.409.187.
  • Sarabi-Aghdam, V.; Hosseini-Parvar, S. H.; Motamedzadegan, A.; Razi, S. M. Phase Behavior and Rheological Properties of Basil Seed Gum/Whey Protein Isolate Mixed Dispersions and Gels. Food Sci. Nutr. 2021, 9(4), 1881–1895. DOI: 10.1002/fsn3.2148.
  • Chen, D.; Fang, F.; Federici, E.; Campanella, O.; Jones, O. G. Rheology, Microstructure and Phase Behavior of Potato Starch-Protein Fibril Mixed Gel. Carbohydr. Polym. 2020, 239(April). DOI: 10.1016/j.carbpol.2020.116247.
  • Meydani, B.; Vahedifar, A.; Askari, G.; Madadlou, A. Influence of the Maillard Reaction on the Properties of Cold-Set Whey Protein and Maltodextrin Binary Gels. Int. Dairy. J. 2019, 90, 79–87. DOI: 10.1016/j.idairyj.2018.11.009.
  • Li, X.; Ji, N.; Li, M.; Zhang, S.; Xiong, L.; Sun, Q. Morphology and Structural Properties of Novel Short Linear Glucan/Protein Hybrid Nanoparticles and Their Influence on the Rheological Properties of Starch Gel. J. Agric. Food. Chem. 2017, 65(36), 7955–7965. DOI: 10.1021/acs.jafc.7b02800.
  • Munialo, C. D.; van der Linden, E.; Ako, K.; Nieuwland, M.; Van as, H.; de Jongh, H. H. J. The Effect of Polysaccharides on the Ability of Whey Protein Gels to Either Store or Dissipate Energy Upon Mechanical Deformation. Food Hydrocoll. 2016, 52, 707–720. DOI: 10.1016/j.foodhyd.2015.08.013.
  • Wu, S.; Wang, L.; Zhao, Y.; Chen, B.; Qiu, D.; Sun, P.; Shao, P.; Feng, S. Fabrication of High Strength Cold-Set Sodium Alginate/Whey Protein Nanofiber Double Network Hydrogels and Their Interaction with Curcumin. Food. Res. Int. 2023, 165(October 2022), 112490. DOI: 10.1016/j.foodres.2023.112490.
  • Rodriguez, A. C.; Torrez Irigoyen, M. R.; Navarro, A. S.; Yamul, D. K. Obtention and Characterization of Dried Gels Prepared with Whey Proteins, Honey and Hydrocolloids Mixture. J. Sci. Food Agric. 2017, 97(14), 4969–4977. DOI: 10.1002/jsfa.8375.
  • Ahmadi, M.; Madadlou, A.; Saboury, A. A. Whey Protein Aerogel as Blended with Cellulose Crystalline Particles or Loaded with Fish Oil. Food Chem. 2016, 196, 1016–1022. DOI: 10.1016/j.foodchem.2015.10.031.
  • Peng, J.; Calabrese, V.; Geurtz, J.; Velikov, K. P.; Venema, P.; van der Linden, E. Composite Gels Containing Whey Protein Fibrils and Bacterial Cellulose Microfibrils. J. Food Sci. 2019, 84(5), 1094–1103. DOI: 10.1111/1750-3841.14509.
  • Zhang, Y.; Zhang, Z.; Fu, Y.; Gao, Y.; Guo, W.; Hu, R.; Liu, X. Effects of Different Ph on Properties of Heat-Induced Auricularia Auricula-Judae Polysaccharide-Whey Protein Isolate Composite Gels. Food Struct. 2023, 36(November 2022), 100317. DOI: 10.1016/j.foostr.2023.100317.
  • He, Z.; Ma, T.; Zhang, W.; Su, E.; Cao, F.; Huang, M.; Wang, Y. Heat-Induced Gel Formation by Whey Protein Isolate-Lycium Barbarum Polysaccharides at Varying PHs. Food Hydrocoll. 2021, 115(November 2020), 106607. DOI: 10.1016/j.foodhyd.2021.106607.
  • Liu, Z.; Liu, C.; Sun, X.; Zhang, S.; Yuan, Y.; Wang, D.; Xu, Y. Fabrication and Characterization of Cold-Gelation Whey Protein-Chitosan Complex Hydrogels for the Controlled Release of Curcumin. Food Hydrocoll. 2020, 103(May 2019), 105619. DOI: 10.1016/j.foodhyd.2019.105619.
  • Yu, B.; Zheng, L.; Cui, B.; Zhao, H.; Liu, P. The Effects of Acetylated Distarch Phosphate from Tapioca Starch on Rheological Properties and Microstructure of Acid-Induced Casein Gel. Int. J. Biol. Macromol. 2020, 159, 1132–1139. DOI: 10.1016/j.ijbiomac.2020.05.049.
  • Giri, T. K.; Thakur, A.; Tripathi, D. K. Biodegradable Hydrogel Bead of Casein and Modified Xanthan Gum for Controlled Delivery of Theophylline. Curr. Drug. Ther. 2016, 11(2), 150–162. DOI: 10.2174/1574885511666160830123807.
  • Ge, S.; Liu, Q.; Li, M.; Liu, J.; Lu, H.; Li, F.; Zhang, S.; Sun, Q.; Xiong, L. Enhanced Mechanical Properties and Gelling Ability of Gelatin Hydrogels Reinforced with Chitin Whiskers. Food Hydrocoll. 2018, 75, 1–12. DOI: 10.1016/j.foodhyd.2017.09.023.
  • Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and Characterization of Chitosan/Gelatin/PVA Hydrogel for Wound Dressings. Carbohydr. Polym. 2016, 146, 427–434. DOI: 10.1016/j.carbpol.2016.03.002.
  • Baldino, L.; Cardea, S.; Reverchon, E. Nanostructured Chitosan–Gelatin Hybrid Aerogels Produced by Supercritical Gel Drying. Polym. Eng. Sci. 2018, 58(9), 1494–1499. DOI: 10.1002/pen.24719.
  • Sinthusamran, S.; Benjakul, S. P. Physical, Rheological and Antioxidant Properties of Gelatin Gel as Affected by the Incorporation of β-Glucan. Food Hydrocoll. 2018, 79, 409–415. DOI: 10.1016/j.foodhyd.2018.01.018.
  • Zhang, K.; Tian, X.; Shen, R.; Zhao, K.; Wang, Y.; Zhang, Y.; Wang, W. Delaying in vitro Gastric Digestion of Myofibrillar Protein Gel Using Carboxymethylated Cellulose Nanofibrils: Forming a Compact and Uniform Microstructure. Food Hydrocoll. 2023, 140(February), 108661. DOI: 10.1016/j.foodhyd.2023.108661.
  • Zhang, T.; Chen, S.; Xu, X.; Zhuang, X.; Chen, Y.; Xue, Y.; Xue, C.; Jiang, N. Effects of Konjac Glucomannan on Physical Properties and Microstructure of Fish Myofibrillar Protein Gel: Phase Behaviours Involved. Food Hydrocoll. 2023, 134(July 2022), 108034. DOI: 10.1016/j.foodhyd.2022.108034.
  • Fan, M.; Huang, Q.; Zhong, S.; Li, X.; Xiong, S.; Xie, J.; Yin, T.; Zhang, B.; Zhao, S. Gel Properties of Myofibrillar Protein As Affected by Gelatinization and Retrogradation Behaviors of Modified Starches with Different Crosslinking and Acetylation Degrees. Food Hydrocoll. 2019, 96(December 2018), 604–616. DOI: 10.1016/j.foodhyd.2019.05.045.
  • Li, X.; Fan, M.; Huang, Q.; Zhao, S.; Xiong, S.; Yin, T.; Zhang, B. Effect of Micro- and Nano-Starch on the Gel Properties, Microstructure and Water Mobility of Myofibrillar Protein from Grass Carp. Food Chem. 2022, 366(July 2021), 130579. DOI: 10.1016/j.foodchem.2021.130579.
  • Yuan, H.; Zheng, X.; Liu, W.; Zhang, H.; Shao, J.; Yao, J.; Mao, C.; Hui, J.; Fan, D. A Novel Bovine Serum Albumin and Sodium Alginate Hydrogel Scaffold Doped with Hydroxyapatite Nanowires for Cartilage Defects Repair. Colloids Surf. B. 2020, 192(February), 111041. DOI: 10.1016/j.colsurfb.2020.111041.
  • Zheng, H.; Beamer, S. K.; Matak, K. E.; Jaczynski, J. Effect of κ-Carrageenan on Gelation and Gel Characteristics of Antarctic Krill (Euphausia Superba) Protein Isolated with Isoelectric Solubilization/Precipitation. Food Chem. 2019, 278, 644–652. DOI: 10.1016/j.foodchem.2018.11.080.
  • Ji, S.; Xu, T.; Liu, Y.; Li, H.; Luo, J.; Zou, Y.; Zhong, Y.; Li, Y.; Lu, B. Investigation of the Mechanism of Casein Protein to Enhance 3D Printing Accuracy of Cassava Starch Gel. Carbohydr. Polym. 2022, 295(866), 119827. DOI: 10.1016/j.carbpol.2022.119827.
  • Fu, W.; Nakamura, T. Explaining the Texture Properties of Whey Protein Isolate/Starch Co-Gels from Fracture Structures. Biosci. Biotechnol. Biochem. 2017, 81(4), 839–847. DOI: 10.1080/09168451.2017.1282812.
  • Ren, F.; Yu, B.; Dong, D.; Hou, Z. H.; Cui, B. Rheological, Thermal and Microstructural Properties of Whey Protein Isolate-Modified Cassava Starch Mixed Gels at Different PH Values. Int. J. Food. Sci. Tech. 2017, 52(11), 2445–2454. DOI: 10.1111/ijfs.13529.
  • Ren, F.; Dong, D.; Yu, B.; Hou, Z.; Cui, B. Rheology, Thermal Properties, and Microstructure of Heat-Induced Gel of Whey Protein–Acetylated Potato Starch. Starch - Stärke 2017, 69(9–10), 1600344. DOI: 10.1002/star.201600344.
  • Wang, X. X.; Zhou, Z. K.; Chen, C. G. In vitro Digestion of a Mixed Gel of Pork Muscle and Resistant Starch: Salt-Soluble Protein Perspective. Food Chem. 2022, 394(May). DOI: 10.1016/j.foodchem.2022.133478.
  • Ang, C. L.; Matia-Merino, L.; Lim, K.; Goh, K. K. T. Influence of De-Structured Starch on Fine-Stranded Polymeric and Coarse-Stranded Particulate Whey Protein Gels. Food Hydrocoll. 2023, 135(October 2022), 108201. DOI: 10.1016/j.foodhyd.2022.108201.
  • Lv, X.; Huang, X.; Ma, B.; Chen, Y.; Batool, Z.; Fu, X.; Jin, Y. Modification Methods and Applications of Egg Protein Gel Properties: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21(3), 2233–2252. DOI: 10.1111/1541-4337.12907.
  • Brink, J.; Langton, M.; Stading, M.; Hermansson, A.-M. Simultaneous Analysis of the Structural and Mechanical Changes During Large Deformation of Whey Protein Isolate/Gelatin Gels at the Macro and Micro Levels. Food Hydrocoll. 2007, 21(3), 409–419. DOI: 10.1016/j.foodhyd.2006.04.012.
  • Yang, N.; Ashton, J.; Kasapis, S. The Influence of Chitosan on the Structural Properties of Whey Protein and Wheat Starch Composite Systems. Food Chem. 2015, 179, 60–67. DOI: 10.1016/j.foodchem.2015.01.121.
  • Petcharat, T.; Benjakul, S. Property of Fish Gelatin Gel as Affected by the Incorporation of Gellan and Calcium Chloride. Food Biophys. 2017, 12(3), 339–347. DOI: 10.1007/s11483-017-9489-0.
  • Petcharat, T.; Benjakul, S.; Hemar, Y. Improvement of Gel Properties of Fish Gelatin Using Gellan. Int. J. Food Eng. 2017, 13(8), 1–10. DOI: 10.1515/ijfe-2016-0410.
  • Li, X.; Liu, X.; Lai, K.; Fan, Y.; Liu, Y.; Huang, Y. Effects of Sucrose, Glucose and Fructose on the Large Deformation Behaviors of Fish Skin Gelatin Gels. Food Hydrocoll. 2020, 101, 101. DOI: 10.1016/j.foodhyd.2019.105537.
  • Wu, M.; Wang, J.; Xiong, Y. L.; Ge, Q.; Yu, H. Rheology and Microstructure of Myofibrillar Protein–Starch Composite Gels: Comparison of Native and Modified Starches. Int. J. Biol. Macromol. 2018, 118, 988–996. DOI: 10.1016/j.ijbiomac.2018.06.173.
  • Rodrigues, L. B. O.; Veloso, C. M.; Bonomo, R. C. F.; Rodrigues, L. B.; Minim, L. A.; Costa, R. A. S. Rheological and Textural Studies of Arrowroot (Maranta Arundinacea) Starch–Sucrose–Whey Protein Concentrate Gels. J. Food Sci. Technol. 2018, 55(8), 2974–2984. DOI: 10.1007/s13197-018-3215-x.
  • Tezel, G. B.; Uzuner, S.; Evrendilek, G. A. Gel Strength Estimation and Optimizing Textural Behavior of Mixed Gelatin–Carboxymethylcellulose Hydrogel. J. Food Proc. Eng. 2019, 42(2), 1–8. DOI: 10.1111/jfpe.12986.
  • Di Giuseppe, M.; Law, N.; Webb, B.; Macrae, R. A.; Liew, L. J.; Sercombe, T. B.; Dilley, R. J.; Doyle, B. J. Mechanical Behaviour of Alginate-Gelatin Hydrogels for 3D Bioprinting. J. Mech. Behav. Biomed. Mater. 2018, 79, 150–157. DOI: 10.1016/j.jmbbm.2017.12.018.
  • Zhang, Y.; Zhang, Z.; Fu, Y.; Gao, Y.; Guo, W.; Hu, R.; Liu, X. Effects of Different Ph on Properties of Heat-Induced Auricularia Auricula-Judae Polysaccharide-Whey Protein Isolate Composite Gels. Food Struct. 2023, 36(February), 100317. DOI: 10.1016/j.foostr.2023.100317.
  • Soukoulis, C.; Cambier, S.; Serchi, T.; Tsevdou, M.; Gaiani, C.; Ferrer, P.; Taoukis, P. S.; Hoffmann, L. Rheological and Structural Characterisation of Whey Protein Acid Gels Co-Structured with Chia (Salvia Hispanica L.) or Flax Seed (Linum Usitatissimum L.) Mucilage. Food Hydrocoll. 2019, 89, 542–553. DOI: 10.1016/j.foodhyd.2018.11.002.
  • Liu, K.; Kong, X. L.; Li, Q. M.; Zhang, H. L.; Zha, X. Q.; Luo, J. P. Stability and Bioavailability of Vitamin D3 Encapsulated in Composite Gels of Whey Protein Isolate and Lotus Root Amylopectin. Carbohydr. Polym. 2020, 227(September 2019), 115337. DOI: 10.1016/j.carbpol.2019.115337.
  • Taylor, T.; Chouljenko, A.; Bonilla, F.; Scott, R.; Bueno, F.; Reyes, V.; Lanclos, C.; Calumba, K. F.; Sathivel, S. A Pectin-Gelatin Gel Containing Oral Rehydration Solution and the Release of Sodium Chloride Under Simulated Gastric Conditions. Int. J. Biol. Macromol. 2019, 136, 1112–1118. DOI: 10.1016/j.ijbiomac.2019.06.146.
  • Ikeda, S.; Henry, K. Effects of Partial Replacement of Gelatin in High Sugar Gels with Gellan on Their Textural, Rheological, and Thermal Properties. Food Biophys. 2016, 11(4), 400–409. DOI: 10.1007/s11483-016-9454-3.
  • Zhou, L.; Xu, T.; Yan, J.; Li, X.; Xie, Y.; Chen, H. Fabrication and Characterization of Matrine-Loaded Konjac Glucomannan/Fish Gelatin Composite Hydrogel As Antimicrobial Wound Dressing. Food Hydrocoll. 2020, 104(September 2019), 105702. DOI: 10.1016/j.foodhyd.2020.105702.
  • Zhang, T.; Xu, X.; Ji, L.; Li, Z.; Wang, Y.; Xue, Y.; Xue, C. Phase Behaviors Involved in Surimi Gel System: Effects of Phase Separation on Gelation of Myofibrillar Protein and Kappa-Carrageenan. Food. Res. Int. 2017, 100, 361–368. DOI: 10.1016/j.foodres.2017.07.025.
  • Carvalho, C. W. P.; Onwulata, C. I.; Tomasula, P. M. Rheological Properties of Starch and Whey Protein Isolate Gels. Food Sci. Technol. Int. 2007, 13(3), 207–216. DOI: 10.1177/1082013207079897.
  • Ravindra, P.; Genovese, D. B.; Foegeding, E. A.; Rao, M. A. Rheology of Heated Mixed Whey Protein Isolate/cross-Linked Waxy Maize Starch Dispersions. Food Hydrocoll. 2004, 18(5), 775–781. DOI: 10.1016/j.foodhyd.2003.12.004.
  • Anvari, M.; Chung, D. Effect of Cooling-Heating Rate on Sol-Gel Transformation of Fish Gelatin-Gum Arabic Complex Coacervate Phase. Int. J. Biol. Macromol. 2016, 91, 450–456. DOI: 10.1016/j.ijbiomac.2016.05.096.
  • Zhang, T.; Chen, S.; Xu, X.; Zhuang, X.; Chen, Y.; Xue, Y.; Xue, C.; Jiang, N. Effects of Konjac Glucomannan on Physical Properties and Microstructure of Fish Myofibrillar Protein Gel: Phase Behaviours Involved. Food Hydrocoll. 2023, 134(August 2022), 108034. DOI: 10.1016/j.foodhyd.2022.108034.
  • Pérez-Benito, Á.; Huerta-López, C.; Alegre-Cebollada, J.; García-Aznar, J. M.; Hervas-Raluy, S. Computational Modelling of the Mechanical Behaviour of Protein-Based Hydrogels. J. Mech. Behav. Biomed. Mater. 2023, 138(January), 105661. DOI: 10.1016/j.jmbbm.2023.105661.
  • Babaei, J.; Khodaiyan, F.; Mohammadian, M.; Sheikhi, M. In vitro Digestibility and Functional Attributes of the Whey Protein Heat-Induced Hydrogels Reinforced by Various Polysaccharides and CaCl2. J. Food Meas. Charact. 2022, 16(1), 19–28. DOI: 10.1007/s11694-021-01142-y.
  • Wee, M. S. M.; Yusoff, R.; Lin, L.; Xu, Y. Y. Effect of Polysaccharide Concentration and Charge Density on Acid-Induced Soy Protein Isolate-Polysaccharide Gels Using HCl. Food Struct. 2017, 13, 45–55. DOI: 10.1016/j.foostr.2016.08.001.
  • Ayunta, C. A.; Quinzio, C. M.; Iturriaga, L. B.; Puppo, M. C. Gels of Carrageenan-Caprine Whey Protein Concentrate: A Physicochemical Study. Food Sci. Technol. Int. 2022, No. 1900. 30(2), 117–127. DOI: 10.1177/10820132221137619.
  • O’Chiu, E.; Vardhanabhuti, B. Utilizing Whey Protein Isolate and Polysaccharide Complexes to Stabilize Aerated Dairy Gels. J. Dairy. Sci. 2017, 100(5), 3404–3412. DOI: 10.3168/jds.2016-12053.
  • Walayat, N.; Wang, X.; Liu, J.; Nawaz, A.; Zhang, Z.; Khalifa, I.; Rincón Cervera, M. Á.; Pateiro, M.; Lorenzo, J. M.; Nikoo, M., et al. Kappa-Carrageenan As an Effective Cryoprotectant on Water Mobility and Functional Properties of Grass Carp Myofibrillar Protein Gel During Frozen Storage. LWT 2022, 154, 112675. DOI: 10.1016/j.lwt.2021.112675.
  • Wu, D.; Wang, H.; Guo, X.; Zhang, Z.; Gao, Z.; Gao, S.; Liu, Z.; Rao, S.; Meng, X. Insight into the Mechanism of Enhancing Myofibrillar Protein Gel Hardness by Ultrasonic Treatment Combined with Insoluble Dietary Fiber from Oat. LWT 2023, 178(January), 114539. DOI: 10.1016/j.lwt.2023.114539.
  • Xu, X. Y.; Cao, Y.; Zhang, H.; Yaqoob, S.; Zheng, M. Z.; Wu, Y. Z.; Zhao, C. B.; Liu, J. S. Effects of Cornstarch on the Gel Properties of Black Bean Protein Isolate. J. Texture Stud. 2018, 49(5), 548–555. DOI: 10.1111/jtxs.12353.
  • Cortez-Trejo, M. C.; Gaytán-Martínez, M.; Reyes-Vega, M. L.; Mendoza, S. Protein-Gum-Based Gels: Effect of Gum Addition on Microstructure, Rheological Properties, and Water Retention Capacity. Trends Food Sci. Technol. 2021, 116(January), 303–317. DOI: 10.1016/j.tifs.2021.07.030.
  • Pilipenko, N.; Gonçalves, O. H.; Bona, E.; Fernandes, I. P.; Pinto, J. A.; Sorita, G. D.; Leimann, F. V.; Barreiro, M. F. Tailoring Swelling of Alginate-Gelatin Hydrogel Microspheres by Crosslinking with Calcium Chloride Combined with Transglutaminase. Carbohydr. Polym. 2019, 223(July), 115035. DOI: 10.1016/j.carbpol.2019.115035.
  • Zhang, Q.; Liu, Y.; Yang, G.; Kong, H.; Guo, L.; Wei, G. Recent Advances in Protein Hydrogels: From Design, Structural and Functional Regulations to Healthcare Applications. Chem. Eng. J. 2023, 451(July 2022), 138494. DOI: 10.1016/j.cej.2022.138494.
  • Ozel, B.; Cikrikci, S.; Aydin, O.; Oztop, M. H. Polysaccharide Blended Whey Protein Isolate-(WPI) Hydrogels: A Physicochemical and Controlled Release Study. Food Hydrocoll. 2017, 71, 35–46. DOI: 10.1016/j.foodhyd.2017.04.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.