28
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Progresses in Nanocomposite Films for Food-Packaging Applications: Synthesis Strategies, Technological Advancements, Potential Risks and Challenges

&

References

  • Ribeiro-Santos, R.; Andrade, M.; de Melo, N.-R.; Sanches-Silva, A. Use of Essential Oils in Active Food Packaging: Recent Advances and Future Trends. Trend. Food. Sci. Tech. 2017, 61, 132–140. DOI: 10.1016/j.tifs.2016.11.021.
  • Geyer, R.; Jambeck, J.-R.; Law, K.-L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3(7), e1700782. DOI: 10.1126/sciadv.1700782.
  • Shlush, E.; Davidovich-Pinhas, M. Bioplastics for Food Packaging. Trend. Food. Sci. Tech. 2022, 125, 66–80. DOI: 10.1016/j.tifs.2022.04.026.
  • Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. 2020, 62, 102346. DOI: 10.1016/j.ifset.2020.102346.
  • Syahida, S.-N.; Ismail-Fitry, M.-R.; Ainun, Z. M. A.; Hanani, A.-N. Effects of Palm Wax on the Physical, Mechanical and Water Barrier Properties of Fish Gelatin Films for Food Packaging Application. Food Packag. Shelf Life 2020, 23, 100437. DOI: 10.1016/j.fpsl.2019.100437.
  • Fatyeyeva, K.; Chappey, C.; Marais, S. Biopolymer/Clay Nanocomposites As the High Barrier Packaging Material: Recent Advances. In Food Packaging: Nanotechnology in the Agri-Food Industry, Grumezescu, A.-M., Ed.; Academic Press, 2017; Vol. 7, pp. 425–463.
  • Shah, N.; Ul-Islam, M.; Khattak, W.-A.; Park, J.-K. Overview of Bacterial Cellulose Composites: A Multipurpose Advanced Material. Carbohyd. Polym. 2013, 98, 1585–1598. DOI: 10.1016/j.carbpol.2013.08.018.
  • Ali, M.-S.; Al-Shukri, A.-A.; Maghami, M.-R.; Gomes, C. Nano and Bio-Composites and Their Applications: A Review. IOP Conf. Ser Mater. Sci. Eng. 2021, 1067(1), 012093. DOI: 10.1088/1757-899X/1067/1/012093.
  • Pirsa, S.; Sani, I.-K.; Mirtalebi, S.-S. Nano-Biocomposite Based Color Sensors: Investigation of Structure, Function, and Applications in Intelligent Food Packaging. Food Packag. Shelf Life 2022, 31, 100789. DOI: 10.1016/j.fpsl.2021.100789.
  • Chen, Y.; Fan, Z.; Zhang, Z.; Niu, W.; Li, C.; Yang, N.; Bo, C.; Zhang, H. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem. Rev. 2018, 118(13), 6409–6455. DOI: 10.1021/acs.chemrev.7b00727.
  • Abdollahzadeh, E.; Nematollahi, A.; Hosseini, H. Composition of Antimicrobial Edible Films and Methods for Assessing Their Antimicrobial Activity: A Review. Trends Food Sci. Tech. 2021, 110, 291–303. DOI: 10.1016/j.tifs.2021.01.084.
  • Robertson, G. L. Food Packaging: Principles and Practice; CRC Press: Boca Raton, 2nd, 2005.
  • Janjarasskul, T.; Suppakul, P. Active and Intelligent Packaging: The Indication of Quality and Safety. Crit. Rev. Food Sci. 2018, 58, 808–831. DOI: 10.1080/10408398.2016.1225278.
  • Fernández-Marín, R.; Fernandes, S.-C.; Sánchez, M. Á. A.; Labidi, J. Halochromic and Antioxidant Capacity of Smart Films of Chitosan/Chitin Nanocrystals with Curcuma Oil and Anthocyanins. Food Hydrocoll. 2022, 123, 107119. DOI: 10.1016/j.foodhyd.2021.107119.
  • Yin, W.; Qiu, C.; Ji, H.; Li, X.; Sang, S.; McClements, D.-J.; Jiao, A.; Jin, Z. Recent Advances in Biomolecule-Based Films and Coatings for Active and Smart Food Packaging Applications. Food Biosci. 2023, 52, 102378. DOI: 10.1016/j.fbio.2023.102378.
  • Sani, M.-A.; Tavassoli, M.; Azizi-Lalabadi, M.; Mohammadi, K.; McClements, D.-J. Nano-Enabled Plant-Based Colloidal Delivery Systems for Bioactive Agents in Foods: Design, Formulation, and Application. Adv. Colloid Interface Sci. 2022, 102709. DOI: 10.1016/j.cis.2022.102709.
  • Bumbudsanpharoke, N.; Ko, S. Nanoclays in Food and Beverage Packaging. J. Nanomater. 2019, 2019, 1–13. DOI: 10.1155/2019/8927167.
  • Ahmad, A.; Qurashi, A.; Sheehan, D. Nano Packaging–Progress and Future Perspectives for Food Safety, and Sustainability. Food Packag. Shelf Life 2023, 35, 100997. DOI: 10.1016/j.fpsl.2022.100997.
  • Nath, D.; Santhosh, R.; Pal, K.; Sarkar, P. Nanoclay-Based Active Food Packaging Systems: A Review. Food Packag. Shelf Life 2022, 31, 31100803. DOI: 10.1016/j.fpsl.2021.100803.
  • Dharini, V.; Selvam, S.-P.; Jayaramudu, J.; Emmanuel, R.-S. Functional Properties of Clay Nanofillers Used in the Biopolymer-Based Composite Films for Active Food Packaging Applications-Review. Appl. Clay Sci. 2022, 226, 106555. DOI: 10.1016/j.clay.2022.106555.
  • Sabaghi, M.; Tavasoli, S.; Jamali, S.-N.; Katouzian, I.; Faridi Esfanjani, A. The Pros and Cons of Incorporating Bioactive Compounds within Food Networks and Food Contact Materials: A Review. Food Bioproc. Tech. 2022, 15, 2422–2455. DOI: 10.1007/s11947-022-02837-w.
  • Fadiji, T.; Rashvand, M.; Daramola, M.-O.; Iwarere, S.-A. A Review on Antimicrobial Packaging for Extending the Shelf Life of Food. Processes 2023, 2023(2), 11, 590. DOI: 10.3390/pr11020590.
  • Bhowmik, S.; Agyei, D.; Ali, A. Bioactive Chitosan and Essential Oils in Sustainable Active Food Packaging: Recent Trends, Mechanisms, and Applications. Food Packag. Shelf Life 2022, 34, 100962. DOI: 10.1016/j.fpsl.2022.100962.
  • Salunkhe, S.; Chaudhary, B.-U.; Tewari, S.; Meshram, R.; Kale, R. Utilization of Agricultural Waste As an Alternative for Packaging Films. Ind. Crop Prod. 2022, 188, 115685. DOI: 10.1016/j.indcrop.2022.115685.
  • Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-Composites–a Review. Biotechnol. Rep. 2019, 21, 00316. DOI: 10.1016/j.btre.2019.e00316.
  • Takkalkar, P.; Tobin, M. J.; Vongsvivut, J.; Mukherjee, T.; Nizamuddin, S.; Griffin, G.; Kao, N. Structural, Thermal, and Optical Properties of Poly (Lactic Acid) Films Prepared Through Solvent Casting and Melt Processing Techniques. J. Taiwan Inst. Chem. Eng. 2019, 104, 293–300. DOI: 10.1016/j.jtice.2019.08.018.
  • Prasad, A.; Sankar, M.-R.; Katiyar, V. State of Art on Solvent Casting Particulate Leaching Method for Orthopedic Scaffolds Fabrication. Mater. Today Proc. 2017, 4, 898–907. DOI: 10.1016/j.matpr.2017.01.101.
  • Wang, Q.; Chen, W.; Zhu, W.; McClements, D.-J.; Liu, X.; Liu, F. A Review of Multilayer and Composite Films and Coatings for Active Biodegradable Packaging. NPJ Sci. Food 2022, 6(1), 18. DOI: 10.1038/s41538-022-00132-8.
  • Papageorgiou, D.-G.; Li, Z.; Liu, M.; Kinloch, I.-A.; Young, R.-J. Mechanisms of Mechanical Reinforcement by Graphene and Carbon Nanotubes in Polymer Nanocomposites. Nanoscale 2020, 12(4), 2228–2267. DOI: 10.1039/C9NR06952F.
  • Han, Y.; Xu, Y.; Zhang, S.; Li, T.; Ramakrishna, S.; Liu, Y. Progress of Improving Mechanical Strength of Electrospun Nanofibrous Membranes. Macromol. Mater. Eng. 2020, 305(11), 2000230. DOI: 10.1002/mame.202000230.
  • Lin, T.; Shen, Y. Fabricating Electrochemical Aptasensors for Detecting Aflatoxin B1 via Layer-By-Layer Self-Assembly. J. Electroanal. Chem. 2020, 870, 114247. DOI: 10.1016/j.jelechem.2020.114247.
  • Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the Layer-By-Layer Assembly of Multilayered Polymer Composites: Strategy, Structural Control and Applications. Prog. Polym. Sci. 2019, 89, 76–107. DOI: 10.1016/j.progpolymsci.2018.10.002.
  • Gamero, S.; Jiménez-Rosado, M.; Romero, A.; Bengoechea, C.; Guerrero, A. Reinforcement of Soy Protein-Based Bioplastics Through Addition of Lignocellulose and Injection Molding Processing Conditions. J Polym. Environ. 2019, 27(6), 1285–1293. DOI: 10.1007/s10924-019-01430-1.
  • Guo, G.; Chen, J.-C.; Gong, G. Injection Molding of Polypropylene Hybrid Composites Reinforced with Carbon Fiber and Wood Fiber. Polym. 2018, 39(9), 3329–3335. DOI: 10.1002/pc.24350.
  • Barkanov, E.; Akishin, P.; Miazza, N.-L.; Galvez, S. ANSYS-Based Algorithms for a Simulation of Pultrusion Processes. Mech. Adv. Mater. Struct. 2017, 24, 377–384. DOI: 10.1080/15376494.2016.1191096.
  • Jaafar, J.; Siregar, J.-P.; Tezara, C.; Hamdan, M. H. M.; Rihayat, T. A Review of Important Considerations in the Compression Molding Process of Short Natural Fiber Composites. Int. J. Adv. Manuf. Technol. 2019, 105(7–8), 3437–3450. DOI: 10.1007/s00170-019-04466-8.
  • Hassen, A.-A.; Noakes, M.; Nandwana, P.; Kim, S.; Kunc, V.; Vaidya, U.; Love, L.; Nycz, A. Scaling Up Metal Additive Manufacturing Process to Fabricate Molds for Composite Manufacturing. Addit. Manuf. 2019, 32, 101093. DOI: 10.1016/j.addma.2020.101093.
  • Mendikute, J.; Plazaola, J.; Baskaran, M.; Zugasti, E.; Aretxabaleta, L.; Aurrekoetxea, J. Impregnation Quality Diagnosis in Resin Transfer Moulding by Machine Learning. Compos. B Eng. 2021, 221, 108973. DOI: 10.1016/j.compositesb.2021.108973.
  • Park, S.; Shou, W.; Makatura, L.; Matusik, W.; Fu, K.-K. 3D Printing of Polymer Composites: Materials, Processes, and Applications. Matter 2022, 5(1), 43–76. DOI: 10.1016/j.matt.2021.10.018.
  • El Moumen, A.; Tarfaoui, M.; Lafdi, K. Additive Manufacturing of Polymer Composites: Processing and Modeling Approaches. Compos. B Eng. 2019, 171, 166–182. DOI: 10.1016/j.compositesb.2019.04.029.
  • Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings As Food-Quality Preservers: An Overview. Foods 2021, 10(2), 249. DOI: 10.3390/foods10020249.
  • Torres, M. Parameters’ Monitoring and in-Situ Instrumentation for Resin Transfer Moulding: A Review. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105500. DOI: 10.1016/j.compositesa.2019.105500.
  • Ostle, C.; Thompson, R.-C.; Broughton, D.; Gregory, L.; Wootton, M.; Johns, D.-G. The Rise in Ocean Plastics Evidenced from a 60-Year Time Series. Nat. Commun. 2019, 10(1), 1622. DOI: 10.1038/s41467-019-09506-1.
  • Lo-Iacono-Ferreira, V.-G.; Viñoles-Cebolla, R.; Bastante-Ceca, M.-J.; Capuz-Rizo, S.-F. Carbon Footprint Comparative Analysis of Cardboard and Plastic Containers Used for the International Transport of Spanish Tomatoes. Sustainability 2021, 13(5), 2552. DOI: 10.3390/su13052552.
  • Mendes, A.-C.; Pedersen, G.-A. Perspectives on Sustainable Food Packaging: –Is Bio-Based Plastics a Solution? Trends Food Sci. Technol. 2021, 112, 839–846. DOI: 10.1016/j.tifs.2021.03.049.
  • Correa, M.-G.; Martínez, F.-B.; Vidal, C.-P.; Streitt, C.; Escrig, J.; de Dicastillo, C.-L. Antimicrobial Metal-Based Nanoparticles: A Review on Their Synthesis, Types and Antimicrobial Action. Beilstein J. Nanotechnol. 2020, 11, 1450–1469. DOI: 10.3762/bjnano.11.129.
  • Asgher, M.; Qamar, S.-A.; Bilal, M.; Iqbal, H.-M. Bio-Based Active Food Packaging Materials: Sustainable Alternative to Conventional Petrochemical-Based Packaging Materials. Food. Res. Int. 2020, 137, 109625. DOI: 10.1016/j.foodres.2020.109625.
  • Wang, L.; Lin, L.; Guo, Y.; Long, J.; Mu, R.-J.; Pang, J. Enhanced Functional Properties of Nanocomposite Film Incorporated with EGCG-Loaded Dialdehyde Glucomannan/Gelatin Matrix for Food Packaging. Food Hydrocoll. 2020, 108, 105863. DOI: 10.1016/j.foodhyd.2020.105863.
  • Yu, Z.; Wang, W.; Kong, F.; Lin, M.; Mustapha, A. Cellulose Nanofibril/Silver Nanoparticle Composite as an Active Food Packaging System and Its Toxicity to Human Colon Cells. Int. J. Biol. Macromol. 2019, 129, 887–894. DOI: 10.1016/j.ijbiomac.2019.02.084.
  • Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in Antioxidant Active Food Packaging. Trends Food Sci. Technol. 2014, 35, 42–51. DOI: 10.1016/j.tifs.2013.10.008.
  • Yousefi, H.; Su, H.-M.; Imani, S.-M.; Alkhaldi, K.-M.; Filipe, C.-D.; Didar, T.-F. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens. 2019, 4(4), 808–821. DOI: 10.1021/acssensors.9b00440.
  • Khanzada, B.; Mirza, B.; Ullah, A. Chitosan Based Bio-Nanocomposites Packaging Films with Unique Mechanical and Barrier Properties. Food Packag. Shelf Life 2023, 35, 101016. DOI: 10.1016/j.fpsl.2022.101016.
  • Usman, A.; Hussain, Z.; Riaz, A.; Khan, A.-N. Enhanced Mechanical, Thermal and Antimicrobial Properties of Poly (Vinyl Alcohol)/Graphene Oxide/Starch/Silver Nanocomposites Films. Carbohydr. Polym. 2016, 153, 592–599. DOI: 10.1016/j.carbpol.2016.08.026.
  • Vaezi, K.; Asadpour, G.; Sharifi, S.-H. Bio Nanocomposites Based on Cationic Starch Reinforced with Montmorillonite and Cellulose Nanocrystals: Fundamental Properties and Biodegradability Study. Int. J. Biol. Macromol. 2020, 146, 374–386. DOI: 10.1016/j.ijbiomac.2020.01.007.
  • Morelli, C.-L.; Belgacem, M.-N.; Branciforti, M.-C.; Bretas, R.-E.; Crisci, A.; Bras, J. Supramolecular Aromatic Interactions to Enhance Biodegradable Film Properties Through Incorporation of Functionalized Cellulose Nanocrystals. Compos. - A: Appl. Sci. Manuf. 2016, 83, 80–88. DOI: 10.1016/j.compositesa.2015.10.038.
  • Shojaeiarani, J.; Bajwa, D.-S.; Chanda, S. Cellulose Nanocrystal Based Composites: A Review. Compos. C: Open Access 2021, 5, 100164. DOI: 10.1016/j.jcomc.2021.100164.
  • Surov, O.-V.; Voronova, M.-I.; Afineevskii, A.-V.; Zakharov, A.-G. Polyethylene Oxide Films Reinforced by Cellulose Nanocrystals: Microstructure-Properties Relationship. Carbohydr. Polym. 2018, 181, 489–498. DOI: 10.1016/j.carbpol.2017.10.075.
  • Yu, M.; Zheng, Y.; Tian, J. Study on the Biodegradability of Modified Starch/Polylactic Acid (PLA) Composite Materials. R.S.C. Adv. 2020, 10(44), 26298–26307. DOI: 10.1039/D0RA00274G.
  • Gasti, T.; Dixit, S.; Hiremani, V.-D.; Chougale, R.-B.; Masti, S.-P.; Vootla, S.-K.; Mudigoudra, B.-S. Chitosan/Pullulan Based Films Incorporated with Clove Essential Oil Loaded Chitosan-ZnO Hybrid Nanoparticles for Active Food Packaging. Carbohydr. Polym. 2022, 277, 118866. DOI: 10.1016/j.carbpol.2021.118866.
  • Benbettaïeb, N.; Frédéric, D.; Thomas, K. Bioactive Edible Films for Food Applications: Mechanisms of Antimicrobial and Antioxidant Activity. Crit. Rev. Food Sci. Nutr. 2019, 59(21), 3431–3455. DOI: 10.1080/10408398.2018.1494132.
  • Kuswandi, B. Environmental Friendly Food Nano-Packaging. Environ. Chem. Lett. 2017, 2017(2), 205–221. DOI: 10.1007/s10311-017-0613-7.
  • Rehman, A.; Jafari, S.-M.; Aadil, R.-M.; Assadpour, E.; Randhawa, M.-A.; Mahmood, S. Development of Active Food Packaging via Incorporation of Biopolymeric Nanocarriers Containing Essential Oils. Trends Food Sci. Technol. 2020, 101, 106–121. DOI: 10.1016/j.tifs.2020.05.001.
  • Kuswandi, B. Active and Intelligent Packaging, Safety, and Quality Controls; Fresh-cut fruits and vegetables, Academic press, 2020; pp. 243–294. DOI: 10.1016/B978-0-12-816184-5.00012-4.
  • Dey, A.; Neogi, S. Oxygen Scavengers for Food Packaging Applications: A Review. Trends Food Sci. Technol. 2019, 90, 26–34. DOI: 10.1016/j.tifs.2019.05.013.
  • Lee, D.-S.; Wang, H.-J.; Jaisan, C.; An. D.-S. Active Food Packaging to Control Carbon Dioxide. Packag. Technol. Sci. 2022, 35(3), 213–227. DOI: 10.1002/pts.2627.
  • Lee, D.-S. Carbon Dioxide Absorbers for Food Packaging Applications. Trends Food Sci. Technol. 2016, 57, 146–155. DOI: 10.1016/j.tifs.2016.09.014.
  • Utto, W.; Preutikul, R.; Malila, P.; Noomhorm, A.; Bronlund, J.-E. Delaying Microbial Proliferation in Freshly Peeled Shallots by Active Packaging Incorporating Ethanol Vapour-Controlled Release Sachets and Low Storage Temperature. Food Sci. Technol. Int. 2018, 24(2), 132–144. DOI: 10.1177/1082013217735951.
  • Gaikwad, K.-K.; Singh, S.; Negi, Y.-S. Ethylene Scavengers for Active Packaging of Fresh Food Produce. Environ. Chem. Lett. 2020, 18(2), 269–284. DOI: 10.1007/s10311-019-00938-1.
  • Rux, G.; Luca, A.; Mahajan, P.-V. Changes in Volatile Organic Compounds in the Headspace of Modified Atmosphere Packed and Unpacked White Sausages. Food Packag. Shelf Life. 2019, 19, 167–173. DOI: 10.1016/j.fpsl.2018.12.010.
  • Qian, M.; Liu, D.; Zhang, X.; Yin, Z.; Ismail, B.-B.; Ye, X.; Guo, M. A Review of Active Packaging in Bakery Products: Applications and Future Trends. Trends Food Sci. Technol. 2021, 114, 459–471. DOI: 10.1016/j.tifs.2021.06.009.
  • Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M. D. C.; Nilsen-Nygaard, J.; Pettersen, M.-K.; Freire, C.-S. A Concise Guide to Active Agents for Active Food Packaging. Trends Food Sci. Technol. 2018, 80, 212–222. DOI: 10.1016/j.tifs.2018.08.006.
  • Zhang, Y.; Naebe, M. Lignin: A Review on Structure, Properties, and Applications As a Light-Colored UV Absorber. ACS Sustain. Chem. Eng. 2021, 9, 1427–1442. DOI: 10.1021/acssuschemeng.0c06998.
  • Zhang, M.; Biesold, G.-M.; Choi, W.; Yu, J.; Deng, Y.; Silvestre, C.; Lin, Z. Recent Advances in Polymers and Polymer Composites for Food Packaging. Mater. Today. 2022, 53, 134–161. DOI: 10.1016/j.mattod.2022.01.022.
  • Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6, 611. DOI: 10.3389/fmicb.2015.00611.
  • Omerović, N.; Djisalov, M.; Živojević, K.; Mladenović, M.; Vunduk, J.; Milenković, I.; Knežević, N.-Ž.; Gadjanski, I.; Vidić, J. Antimicrobial Nanoparticles and Biodegradable Polymer Composites for Active Food Packaging Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454. DOI: 10.1111/1541-4337.12727.
  • Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of Cellulosic Paper Coated with Chitosan-Zinc Oxide Nanocomposite Containing Nisin and Its Application in Packaging of UF Cheese. Int. J. Biol. Macromo. 2018, 109, 1311–1318. DOI: 10.1016/j.ijbiomac.2017.11.145.
  • Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11(4), 4, 11. DOI: 10.3390/antibiotics11040427.
  • Duan, M.; Sun, J.; Huang, Y.; Jiang, H.; Hu, Y.; Pang, J.; Wu, C. Electrospun Gelatin/Chitosan Nanofibers Containing Curcumin for Multifunctional Food Packaging. Food Sci. Hum. Wellness 2023, 12(2), 614–621. DOI: 10.1016/j.fshw.2022.07.064.
  • Elsebaie, E.-M.; Mousa, M.-M.; Abulmeaty, S.-A.; Shaat, H.-A.; Elmeslamy, S.-A.; Asker, G.-A.; Faramawy, A.-A.; Shaat, H. A. Y.; Abd Elrahman, W.-M.; Eldamaty, H. S. E., et al. Chitosan-Based Green Pea (Pisum Sativum L.) Pod Extract Gel Film: Characterization and Application in Food Packaging. Gels 2023, 9(2), 77. DOI: 10.3390/gels9020077.
  • Fatma, N.; Al-Shemy, M.-T.; Dawwam, G.-E. Multifunction Smart Nanocomposite Film for Food Packaging Based on Carboxymethyl Cellulose/Kombucha SCOBY/Pomegranate Anthocyanin Pigment. Int. J. Biol. Macromol. 2023, 242, 125101. DOI: 10.1016/j.ijbiomac.2023.125101.
  • Meira, S. M. M.; Zehetmeyer, G.; Werner, J.-O.; Brandelli, A. A Novel Active Packaging Material Based on Starch-Halloysite Nanocomposites Incorporating Antimicrobial Peptides. Food Hydrocoll. 2017, 63, 561–570. DOI: 10.1016/j.foodhyd.2016.10.013.
  • Gumber, S.; Kanwar, S.; Mazumder, K. Properties and Antimicrobial Activity of Wheat-Straw Nanocellulose-Arabinoxylan Acetate Composite Films Incorporated with Silver Nanoparticles. Int. J. Biol. Macromol. 2023, 125480. DOI: 10.1016/j.ijbiomac.2023.125480.
  • Sherafatkhah Azari, S.; Alizadeh, A.; Roufegarinejad, L.; Asefi, N.; Hamishehkar, H. Preparation and Characterization of gelatin/β-Glucan Nanocomposite Film Incorporated with ZnO Nanoparticles As an Active Food Packaging System. J Polym. Environ. 2021, 29(4), 1143–1152. DOI: 10.1007/s10924-020-01950-1.
  • Liu, J.; Huang, J.; Hu, Z.; Li, G.; Hu, L.; Chen, X.; Hu, Y. Chitosan-Based Films with Antioxidant of Bamboo Leaves and ZnO Nanoparticles for Application in Active Food Packaging. Int. J. Biol. Macromol. 2021, 189, 363–369. DOI: 10.1016/j.ijbiomac.2021.08.136.
  • Zheng, T.; Tang, P.; Li, G. Development of Composite Film Based on Collagen and Phenolic Acid-Grafted Chitosan for Food Packaging. Int. J. Biol. Macromol. 2023, 241, 124494. DOI: 10.1016/j.ijbiomac.2023.124494.
  • Zou, Y.; Sun, Y.; Shi, W.; Wan, B.; Zhang, H. Dual-Functional Shikonin-Loaded Quaternized Chitosan/Polycaprolactone Nanofibrous Film with pH-Sensing for Active and Intelligent Food Packaging. Food Chem. 2023, 399, 133962. DOI: 10.1016/j.foodchem.2022.133962.
  • Azadi, A.; Rafieian, F.; Sami, M.; Rezaei, A. Fabrication, Characterization, and Antimicrobial Activity of Chitosan/Tragacanth Gum/Polyvinyl Alcohol Composite Films Incorporated with Cinnamon Essential Oil Nanoemulsion. Int. J. Biol. Macromol. 2023, 245, 125225. DOI: 10.1016/j.ijbiomac.2023.125225.
  • Dede, S.; Sadak, O.; Didin, M.; Gunasekaran, S. Antimicrobial Food Packaging Application of Angelica Root (Angelica Sylvestris) Oil-Loaded Electrospun Biofibers. Food Packag. Shelf Life 2023, 35, 101035. DOI: 10.1016/j.fpsl.2023.101035.
  • Chen, L.; Wu, F.; Xiang, M.; Zhang, W.; Wu, Q.; Lu, Y.; Fu, J.; Chen, M.; Li, S.; Chen, Y., et al. Encapsulation of Tea Polyphenols into High Amylose Corn Starch Composite Nanofibrous Film for Active Antimicrobial Packaging. Int. J. Biol. Macromol. 2023, 125245. DOI: 10.1016/j.ijbiomac.2023.125245.
  • Lee, M.; Rüegg, N.; Yildirim, S. Evaluation of the Antimicrobial Activity of Sodium Alginate Films Integrated with Cinnamon Essential Oil and Citric Acid on Sliced Cooked Ham. Packag. Technol. Sci. 2023, 36(8), 647–656. DOI: 10.1002/pts.2733.
  • Lee, S.-J.; Gwak, M.-A.; Chathuranga, K.; Lee, J.-S.; Koo, J.; Park, W.-H. Multifunctional Chitosan/Tannic Acid Composite Films with Improved Anti-UV, Antioxidant, and Antimicrobial Properties for Active Food Packaging. Food Hydrocoll. 2023, 136, 108249. DOI: 10.1016/j.foodhyd.2022.108249.
  • Lawal, K.-G.; Riaz, A.; Mostafa, H.; Stathopoulos, C.; Manikas, I.; Maqsood, S. Development of Carboxymethylcellulose Based Active and Edible Food Packaging Films Using Date Seed Components As Reinforcing Agent: Physical, Biological, and Mechanical Properties. Food Biophys. 2023, 18(4), 1–13. DOI: 10.1007/s11483-023-09793-8.
  • Popescu, V.; Prodan, D.; Cuc, S.; Saroşi, C.; Furtos, G.; Moldovan, A.; Carpa, R.; Bomboş, D. Antimicrobial Poly (Lactic Acid)/Copper Nanocomposites for Food Packaging Mater. Materials 1415, 2022(4), 16. DOI: 10.3390/ma16041415.
  • Isık, I.; Yenipazar, H.; Saygun, A.; Sahin Yesilcubuk, N.; Ozkan Zayim, E.; Catalgil Giz, H. Aloe Vera Oil-Added Agar Gelatin Edible Films for Kashar Cheese Packaging. ACS Omega 2023, 8(21), 18516. DOI: 10.1021/acsomega.3c00147.
  • Bahrami, Z.; Pedram-Nia, A.; Saeidi-Asl, M.; Armin, M.; Heydari-Majd, M. Bioactive Gliadin Electrospinning Loaded with Zataria Multiflora Boiss Essential Oil: Improves Antimicrobial Activity and Release Modeling Behavior. Food Sci. Nutr. 2022, 11(1), 307–319. DOI: 10.1002/fsn3.3062.
  • Thongsrikhem, N.; Taokaew, S.; Sriariyanun, M.; Kirdponpattara, S. Antibacterial Activity in Gelatin-Bacterial Cellulose Composite Film by Thermally Crosslinking with Cinnamaldehyde Towards Food Packaging Application. Food Packag. Shelf Life 2022, 31, 100766. DOI: 10.1016/j.fpsl.2021.100766.
  • Wang, K.; Hazra, R.-S.; Ma, Q.; Jiang, L.; Liu, Z.; Zhang, Y.; Wang, S.; Han, G. Multifunctional Silk Fibroin/PVA Bio-Nanocomposite Films Containing TEMPO-Oxidized Bacterial Cellulose Nanofibers and Silver Nanoparticles. Cellul 2022, 29(3), 1647–1666. DOI: 10.1007/s10570-021-04369-6.
  • Liu, Z.; Lin, D.; Shen, R.; Zhang, R.; Liu, L.; Yang, X. Konjac Glucomannan-Based Edible Films Loaded with Thyme Essential Oil: Physical Properties and Antioxidant-Antibacterial Activities. Food Packag. Shelf Life 2021, 29, 100700. DOI: 10.1016/j.fpsl.2021.100700.
  • Abutalib, M.-M.; Rajeh, A. J. P. T. Enhanced Structural, Electrical, Mechanical Properties and Antibacterial Activity of Cs/PEO Doped Mixed Nanoparticles (Ag/TiO2) for Food Packaging Applications. Polym.Test 2021, 93, 107013. DOI: 10.1016/j.polymertesting.2020.107013.
  • Mirsharifi, S.-M.; Sami, M.; Jazaeri, M.; Rezaei, A. Production, Characterization, and Antimicrobial Activity of Almond Gum/Polyvinyl Alcohol/Chitosan Composite Films Containing Thyme Essential Oil Nanoemulsion for Extending the Shelf-Life of Chicken Breast Fillets. Int. J. Biol. Macromol. 2023, 227, 405–415. DOI: 10.1016/j.ijbiomac.2022.12.183.
  • Zhang, X.; Liu, J.; Yong, H.; Qin, Y.; Liu, J.; Jin, C. Development of Antioxidant and Antimicrobial Packaging Films Based on Chitosan and Mangosteen (Garcinia Mangostana L.) Rind Powder. Int. J. Biol. Macromol. 2020, 145, 1129–1139. DOI: 10.1016/j.ijbiomac.2019.10.038.
  • Qin, Y.; Liu, Y.; Zhang, X.; Liu, J. Development of Active and Intelligent Packaging by Incorporating Betalains from Red Pitaya (Hylocereus Polyrhizus) Peel into Starch/Polyvinyl Alcohol Films. Food Hydrocoll. 2020, 100, 105410. DOI: 10.1016/j.foodhyd.2019.105410.
  • Hanani, Z.-N.; Yee, F.-C.; Nor-Khaizura, M. A. R. Effect of Pomegranate (Punica Granatum L.) Peel Powder on the Antioxidant and Antimicrobial Properties of Fish Gelatin Films As Active Packaging. Food Hydrocoll. 2019, 89, 253–259. DOI: 10.1016/j.foodhyd.2018.10.007.
  • Yeddes, W.; Nowacka, M.; Rybak, K.; Younes, I.; Hammami, M.; Saidani-Tounsi, M.; Witrowa-Rajchert, D. Evaluation of the Antioxidant and Antimicrobial Activity of Rosemary Essential Oils As Gelatin Edible Film Component. Food Sci. Technol. Res. 2019, 2019(2), 321–329. DOI: 10.3136/fstr.25.32.
  • Koosha, M.; Hamedi, S. Intelligent Chitosan/PVA Nanocomposite Films Containing Black Carrot Anthocyanin and Bentonite Nanoclays with Improved Mechanical, Thermal and Antibacterial Properties. Prog. Org. Coat. 2019, 127, 338–347. DOI: 10.1016/j.porgcoat.2018.11.028.
  • Iamareerat, B.; Singh, M.; Sadiq, M.-B.; Anal, A.-K. Reinforced Cassava Starch Based Edible Film Incorporated with Essential Oil and Sodium Bentonite Nanoclay As Food Packaging Material. J. Food Sci. Technol. 2018, 55(5), 1953–1959. DOI: 10.1007/s13197-018-3100-7.
  • Nouri, A.; Yaraki, M.-T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.-K. Enhanced Antibacterial Effect of Chitosan Film Using Montmorillonite/CuO Nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. DOI: 10.1016/j.ijbiomac.2017.11.119.
  • Lourenço, S.-C.; Moldão-Martins, M.; Alves, V.-D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24(22), 4132. DOI: 10.3390/molecules24224132.
  • Kumar, H.; Ahuja, A.; Kadam, A.-A.; Rastogi, V.-K.; Negi, Y.-S. Antioxidant Film Based on Chitosan and Tulsi Essential Oil for Food Packaging. Food Bioproc. Tech. 2023, 16(2), 342–355. DOI: 10.1007/s11947-022-02938-6.
  • Emir, A.-A.; Yildiz, E.; Aydogdu, Y.; Sumnu, G. Active Films Based on Faba Bean (Vicia Faba L.) Flour Incorporated with Sumac (Rhus Coriaria): Assessment of Antioxidant and Antimicrobial Performances of Packaging for Shelf Life of Chicken Breast. Food Bioproc. Tech. 2023, 16(2), 327–341. DOI: 10.1007/s11947-022-02940-y.
  • Cui, Y.; Zhang, R.; Cheng, M.; Guo, Y.; Wang, X. Sustained Release and Antioxidant Activity of Active Potato Starch Packaging Films Encapsulating Thymol with MCM-41. LWT. 2023, 173, 114342. DOI: 10.1016/j.lwt.2022.114342.
  • Sadadekar, A.-S.; Shruthy, R.; Preetha, R.; Kumar, N.; Pande, K.-R.; Nagamaniammai, G. Enhanced Antimicrobial and Antioxidant Properties of Nano Chitosan and Pectin Based Biodegradable Active Packaging Films Incorporated with Fennel (Foeniculum Vulgare) Essential Oil and Potato (Solanum Tuberosum) Peel Extracts. J. Food Sci. Technol. 2023, 60(3), 938–946. DOI: 10.1007/s13197-021-05333-9.
  • Kathait, P.; Omre, P.-K.; Kumar, P.; Gaikwad, K.-K. Development of a PVA-Starch Antioxidant Film Incorporating Beetroot Stem Waste Extract for Active Food Packaging. J Polym. Environ. 2023, 2023(10), 1–10. DOI: 10.1007/s10924-023-02840-y.
  • Kong, J.; Ge, X.; Sun, Y.; Mao, M.; Yu, H.; Chu, R.; Wang, Y. Multi-Functional pH-Sensitive Active and Intelligent Packaging Based on Highly Cross-Linked Zein for the Monitoring of Pork Freshness. Food Chem. 2023, 404, 134754. DOI: 10.1016/j.foodchem.2022.134754.
  • Kumar, P.; Tanwar, R.; Gupta, V.; Upadhyay, A.; Kumar, A.; Gaikwad, K.-K. Pineapple Peel Extract Incorporated Poly (Vinyl Alcohol)-Corn Starch Film for Active Food Packaging: Preparation, Characterization and Antioxidant Activity. Int. J. Biol. Macromol. 2021, 187, 223–231. DOI: 10.1016/j.ijbiomac.2021.07.136.
  • Riahi, Z.; Priyadarshi, R.; Rhim, J.-W.; Bagheri, R. Gelatin-Based Functional Films Integrated with Grapefruit Seed Extract and TiO2 for Active Food Packaging Applications. Food Hydrocoll. 2021, 112, 106314. DOI: 10.1016/j.foodhyd.2020.106314.
  • Wu, M.; Zhou, Z.; Yang, J.; Zhang, M.; Cai, F.; Lu, P. ZnO Nanoparticles Stabilized Oregano Essential Oil Pickering Emulsion for Functional Cellulose Nanofibrils Packaging Films with Antimicrobial and Antioxidant Activity. Int. J. Biol. Macromol. 2021, 190, 433–440. DOI: 10.1016/j.ijbiomac.2021.08.210.
  • Roy, S.; Rhim, J.-W. Carboxymethyl Cellulose-Based Antioxidant and Antimicrobial Active Packaging Film Incorporated with Curcumin and Zinc Oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. DOI: 10.1016/j.ijbiomac.2020.01.204.
  • Valdés García, A.; Juárez Serrano, N.; Beltrán Sanahuja, A.; Garrigós, M.-C. Novel Antioxidant Packaging Films Based on Poly (ε-Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds. Antioxidants 2020, 9(7), 629. DOI: 10.3390/antiox9070629.
  • Wang, S.; Xia, P.; Wang, S.; Liang, J.; Sun, Y.; Yue, P.; Gao, X. Packaging Films Formulated with Gelatin and Anthocyanins Nanocomplexes: Physical Properties, Antioxidant Activity and Its Application for Olive Oil Protection. Food Hydrocoll. 2019, 96, 617–624. DOI: 10.1016/j.foodhyd.2019.06.004.
  • Liu, Y.; Qin, Y.; Bai, R.; Zhang, X.; Yuan, L.; Liu, J. Preparation of pH-Sensitive and Antioxidant Packaging Films Based on κ-Carrageenan and Mulberry Polyphenolic Extract. Int. J. Biol. Macromol. 2019, 134, 993–1001. DOI: 10.1016/j.ijbiomac.2019.05.175.
  • Ezati, P.; Rhim. J.-W. pH-Responsive Pectin-Based Multifunctional Films Incorporated with Curcumin and Sulfur Nanoparticles. Carbohydr. Polym. 2020, 230, 115638. DOI: 10.1016/j.carbpol.2019.115638.
  • Taghinia, P.; Abdolshahi, A.; Sedaghati, S.; Shokrollahi, B. Smart Edible Films Based on Mucilage of Lallemantia Iberica Seed Incorporated with Curcumin for Freshness Monitoring. Food Sci. Nutr. 2021, 9, 1222–1231. DOI: 10.1002/fsn3.2114.
  • Riahi, Z.; Khan, A.; Rhim, J.-W.; Shin, G.-H.; Kim, J.-T. Gelatin/Poly (Vinyl Alcohol)-Based Dual Functional Composite Films Integrated with Metal-Organic Frameworks and Anthocyanin for Active and Intelligent Food Packaging. Int. J. Biol. Macromol. 2023, 249, 126040. DOI: 10.1016/j.ijbiomac.2023.126040.
  • Ezati, P.; Bang, Y.-J.; Rhim, J.-W. Preparation of a Shikonin-Based pH-Sensitive Color Indicator for Monitoring the Freshness of Fish and Pork. Food Chem. 2021, 337, 127995. DOI: 10.1016/j.foodchem.2020.127995.
  • Chowdhury, E.-U.; Morey, A. Intelligent Packaging for Poultry Industry. J. Appl. Poult. Res. 2019, 28, 791–800. DOI: 10.3382/japr/pfz098.
  • Anusankari, S.; Balaji Ganesh, A.; Subasri, R.; Deepa, N. Optical Determination of Carbon Dioxide and Oxygen by a Fluorescent Membrane to Evaluate the Freshness of Meat Products. Instrum. Sci. Technol. 2019, 47, 640–665. DOI: 10.1080/10739149.2019.1622132.
  • Ezati, P.; Tajik, H.; Moradi, M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef. Sens. Actuators B: Chem. 2019, 285, 519–528. DOI: 10.1016/j.snb.2019.01.089.
  • Firouz, M.-S.; Mohi-Alden, K.; Omid, M. A Critical Review on Intelligent and Active Packaging in the Food Industry: Research and Development. Int. Food Res. J. 2021, 141, 110113. DOI: 10.1016/j.foodres.2021.110113.
  • Mostaccio, A.; Bianco, G.-M.; Marrocco, G.; Occhiuzzi, C. RFID Technology for Food Industry 4.0: A Review of Solutions and Applications. IEEE J. Radio Freq. Identif, 2023. DOI: 10.1109/JRFID.2023.3278722.
  • Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of Graphene-Family Nanoparticles: A General Review of the Origins and Mechanisms. Part. Fibre Toxicol. 2016, 13(1), 1–24. DOI: 10.1186/s12989-016-0168-y.
  • Farhoodi, M. Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation. Food Eng. Rev. 2016, 8(1), 35–51. DOI: 10.1007/s12393-015-9114-2.
  • Maisanaba, S.; Prieto, A.-I.; Pichardo, S.; Jordá-Beneyto, M.; Aucejo, S.; Jos, A. Cytotoxicity and Mutagenicity Assessment of Organomodified Clays Potentially Used in Food Packaging. Vitro Toxicol. 2015, 29(6), 1222–1230. DOI: 10.1016/j.tiv.2015.03.010.
  • Störmer, A.; Bott, J.; Kemmer, D.; Franz, R. Critical Review of the Migration Potential of Nanoparticles in Food Contact Plastics. Trends Food Sci. Technol. 2017, 63, 39–50. DOI: 10.1016/j.tifs.2017.01.011.
  • Sahu, S.-C.; Hayes, A.-W. Toxicity of Nanomaterials Found in Human Environment: A Literature Review. Toxicol. Res. App. 2017, 1, 2397847317726352. DOI: 10.1177/2397847317726352.
  • Roberto, M.-M.; Christofoletti, C.-A. How to Assess Nanomaterial Toxicity? An Environmental and Human Health Approach; IntechOpen: London, UK, 2019; pp. 1–16.
  • Devi, K.-S.; Alakanandana, A.; Lakshmi, V.-V. Impacts of Nano Technology on Environment-A Review. Asia Pac. J. Oper. Res. 2018, 1, 45–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.