110
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Anthocyanin and its Bioavailability, Health Benefits, and Applications: A Comprehensive Review

, , &

References

  • Bueno, J. M.; Sáez-Plaza, P.; Ramos-Escudero, F.; Jiménez, A. M.; Fett, R.; Asuero, A. G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part II: Chemical Structure, Color, and Intake of Anthocyanins. Crit. Rev. Anal. Chem. 2012, 42(2), 126–151. DOI: 10.1080/10408347.2011.632314.
  • Li, X.; Bai, X. Q.; Liu, C. X.; Liu, B. J.; Fan, X. Z. Research Progress on Antioxidant Mechanism and Functional Activity of Natural Anthocyanin. J. Food Saf. Qual. 2021, 012(20), 8163–8171. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2021.20.036.
  • Khoo, H. E.; Azlan, A.; Tang, S. T.; Lim, S. M. Anthocyanidins and Anthocyanins: Colored Pigments As Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61(1). DOI: 10.1080/16546628.2017.1361779.
  • Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2022, 39(7), 4581–4609. DOI: 10.1080/87559129.2022.2029479.
  • Reis, J. F.; Monteiro, V. V. S.; de Souza Gomes, R.; Do Carmo, M. M.; da Costa, G. V.; Ribera, P. C.; Monteiro, M. C. Action Mechanism and Cardiovascular Effect of Anthocyanins: A Systematic Review of Animal and Human Studies. J. Transl. Med. 2016, 14(1). DOI: 10.1186/s12967-016-1076-5.
  • Panchal, S. K.; John, O. D.; Mathai, M. L.; Brown, L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022, 14(10). DOI: 10.3390/nu14102161.
  • Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C. U.; Temizkan, R.; Agcam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R., et al. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants (Basel). 2022, 12(1). DOI: 10.3390/antiox12010048.
  • Garcia, C.; Blesso, C. N. Antioxidant Properties of Anthocyanins and Their Mechanism of Action in Atherosclerosis. Free Radical Biol. Med. 2021, 172, 152–166. DOI: 10.1016/j.freeradbiomed.2021.05.040.
  • Suresh, S.; Begum, R. F.; SinghS, A. V. Anthocyanin As a Therapeutic in Alzheimer’s Disease: A Systematic Review of Preclinical Evidences. Ageing Res. Rev. 2022, 76. DOI: 10.1016/j.arr.2022.101595.
  • Enaru, B.; Drețcanu, G.; Pop, T. D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10(12). DOI: 10.3390/antiox10121967.
  • Zhao, Y.-W.; Wang, C.-K.; Huang, X.-Y.; Hu, D.-G. Anthocyanin Stability and Degradation in Plants. Plant. Signaling & Behav. 2021, 16(12), 1987767. DOI: 10.1080/15592324.2021.1987767.
  • Zang, Z. H.; Tang, S. Y.; Li, Z. Y.; Chou, S. R.; Shu, C.; Chen, Y.; Chen, W.; Yang, S. F.; Yang, Y. Y.; Tian, J. L., et al. An Updated Review on the Stability of Anthocyanins Regarding the Interaction with Food Proteins and Polysaccharides. Compr. Rev. Food Sci. Food Saf. 2022, 21(5), 4378–4401.
  • Cortez, R.; Luna‐Vital, D. A.; Margulis, D.; Gonzalez de Mejia, E. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf. 2016, 16(1), 180–198. DOI: 10.1111/1541-4337.12244.
  • Sharif, N.; Khoshnoudi-Nia, S.; Jafari, S. M. Nano/Microencapsulation of Anthocyanins; a Systematic Review and Meta-Analysis. Food Res. Int. 2020, 132. DOI: 10.1016/j.foodres.2020.109077.
  • Shi, L.; Li, X.; Fu, Y.; Li, C. J. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24(22). DOI: 10.3390/ijms242216415.
  • Guo, F. H.; Shahidi, F. Can Anthocyanins Replace Antibiotics in Food and Animal Feed? A Review. Trends Food Sci. Technol. 2024, 143. DOI: 10.1016/j.tifs.2023.104219. 104219
  • Du, L.; Lu, H.; Chen, Y.; Yu, X.; Jian, T.; Zhao, H.; Wu, W.; Ding, X.; Chen, J.; Li, W. Blueberry and Blackberry Anthocyanins Ameliorate Metabolic Syndrome by Modulating Gut Microbiota and Short-Chain Fatty Acids Metabolism in High-Fat Diet-Fed C57BL/6J Mice. J. Agric. Food Chem. 2023, 71(40), 14649–14665. DOI: 10.1021/acs.jafc.3c04606.
  • Mohammed, H. A.; Khan, R. A. Anthocyanins: Traditional Uses, Structural and Functional Variations, Approaches to Increase Yields and Products’ Quality, Hepatoprotection, Liver Longevity, and Commercial Products. Int. J. Mol. Sci. 2022, 23(4). DOI: 10.3390/ijms23042149.
  • Nistor, M.; Pop, R.; Daescu, A.; Pintea, A.; Socaciu, C.; Rugina, D. Anthocyanins As Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022, 27(13). DOI: 10.3390/molecules27134254.
  • Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25(23). DOI: 10.3390/molecules25235500.
  • Lila, M. A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Ann. Rev. Food Sci. Technol. 2016, 7(1), 375–393. DOI: 10.1146/annurev-food-041715-033346.
  • Manolescu; Oprea; Mititelu; Ruta; Farcasanu. Dietary Anthocyanins and Stroke: A Review of Pharmacokinetic and Pharmacodynamic Studies. Nutrients 2019, 11(7). DOI: 10.3390/nu11071479.
  • Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of Anthocyanins and Derivatives. J. Funct. Foods. 2014, 7, 54–66. DOI: 10.1016/j.jff.2013.05.010.
  • Gowd, V.; Jia, Z.; Chen, W. Anthocyanins as Promising Molecules and Dietary Bioactive Components Against Diabetes – a Review of Recent Advances. Trends Food Sci. Technol. 2017, 68, 1–13. DOI: 10.1016/j.tifs.2017.07.015.
  • You, Q.; Wang, B.; Chen, F.; Huang, Z.; Wang, X.; Luo, P. G. Comparison of Anthocyanins and Phenolics in Organically and Conventionally Grown Blueberries in Selected Cultivars. Food Chem. 2011, 125(1), 201–208. DOI: 10.1016/j.foodchem.2010.08.063.
  • He, J.; Giusti, M. M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Ann. Rev. Food Sci. Technol. 2010, 1(1), 163–187. DOI: 10.1146/annurev.food.080708.100754.
  • Tang, P.; Giusti, M. M. Metal Chelates of Petunidin Derivatives Exhibit Enhanced Color and Stability. Foods 2020, 9(10). DOI: 10.3390/foods9101426.
  • Zhao, C. L.; Yu, Y. Q.; Chen, Z. J.; Wen, G. S.; Wei, F. G.; Zheng, Q.; Wang, C. D.; Xiao, X. L. Stability-Increasing Effects of Anthocyanin Glycosyl Acylation. Food Chem. 2017, 214, 119–128. DOI: 10.1016/j.foodchem.2016.07.073.
  • Shi, J.; Simal-Gandara, J.; Mei, J. F.; Ma, W. J.; Peng, Q. H.; Shi, Y. L.; Xu, Q.; Lin, Z.; Lv, H. P. Insight into the Pigmented Anthocyanins and the Major Potential Co-Pigmented Flavonoids in Purple-Coloured Leaf Teas. Food Chem. 2021, 363. DOI: 10.1016/j.foodchem.2021.130278.
  • Martín-Gómez, J.; Varo, M. Á.; Mérida, J.; Serratosa, M. P. Influence of Drying Processes on Anthocyanin Profiles, Total Phenolic Compounds and Antioxidant Activities of Blueberry (Vaccinium Corymbosum). LWT Food Sci. Technol. 2020, 120. DOI: 10.1016/j.lwt.2019.108931.
  • Zhou, L.; Xie, M. H.; Yang, F.; Liu, J. K. Antioxidant Activity of High Purity Blueberry Anthocyanins and the Effects on Human Intestinal Microbiota. LWT Food Sci. Technol. 2020, 117. DOI: 10.1016/j.lwt.2019.108621.
  • Wang, X.; Tong, H. R.; Chen, F.; Gangemi, J. D. Chemical Characterization and Antioxidant Evaluation of Muscadine Grape Pomace Extract. Food Chem. 2010, 123(4), 1156–1162. DOI: 10.1016/j.foodchem.2010.05.080.
  • Hair, R.; Sakaki, J. R.; Chun, O. K. A. Microbiome and Health Benefits in Aging. Molecules 2021, 26(3), 3. DOI: 10.3390/molecules26030537.
  • Xianchu, L.; Ming, L.; Xiangbin, L.; Lan, Z. Grape Seed Proanthocyanidin Extract Supplementation Affects Exhaustive Exercise-Induced Fatigue in Mice. Food Nutr. Res. 2018, 62. DOI: 10.29219/fnr.v62.1421.
  • Han, F.; Yang, P.; Wang, H.; Fernandes, I.; Mateus, N.; Liu, Y. Digestion and Absorption of Red Grape and Wine Anthocyanins Through the Gastrointestinal Tract. Trends Food Sci. Technol. 2019, 83, 211–224. DOI: 10.1016/j.tifs.2018.11.025.
  • Guo, D.-L.; Liu, H.-N.; Wang, Z.-G.; Guo, L.-L.; Zhang, G.-H. Sodium Dehydroacetate Treatment Prolongs the Shelf-Life of ‘Kyoho’grape by Regulating Oxidative Stress and DNA Methylation. J. Integr. Agric. 2022, 21(5), 1525–1533. DOI: 10.1016/S2095-3119(21)63765-6.
  • Qi, Y.; Zhu, C.; Chen, J.; Liu, G.; Yang, Z.; Chen, W. Comparative Analysis of the Quality and Health-Promoting Compounds of Two-Shaped Fruits of Wild Lycium Ruthenicum Murr. from the Qinghai–Tibet Plateau. Acta Physiologiae Plantarum 2019, 41(6), 1–10. DOI: 10.1016/S2095-31192163765-6.
  • Theodorou, N.; Nikolaou, N.; Zioziou, E.; Kyraleou, M.; Kallithraka, S.; Kotseridis, Y.; Koundouras, S. Anthocyanin Content and Composition in Four Red Winegrape Cultivars (Vitis Vinifera L.) Under Variable Irrigation: Anthocyanin Content and Composition Under Variable Irrigation. Oeno One. 2019, 53(1). DOI: 10.20870/oeno-one.2019.53.1.2366.
  • Liu, Z.; Liu, B.; Wen, H.; Tao, Y.; Shao, Y. Phytochemical Profiles, Nutritional Constituents and Antioxidant Activity of Black Wolfberry (Lycium Ruthenicum Murr.). Ind. Crops Prod. 2020, 154, 112692. DOI: 10.1016/j.indcrop.2020.112692.
  • Larsen, C.; Malte, H.; Weber, R. E. ATP-Induced Reverse Temperature Effect in Isohemoglobins from the Endothermic Porbeagle Shark (Lamna Nasus). J. Biol. Chem. 2003, 278(33), 30741–30747. DOI: 10.1074/jbc.M301930200.
  • He, Q.; Ren, Y. J.; Zhao, W. B.; Li, R.; Zhang, L. G. Low Temperature Promotes Anthocyanin Biosynthesis and Related Gene Expression in the Seedlings of Purple Head Chinese Cabbage (Brassica Rapa L.). Genes 2020, 11(1). DOI: 10.3390/genes11010081.
  • Pliszka, B.; Huszcza‐Ciołkowska, G.; Mieleszko, E.; Czaplicki, S. Stability and Antioxidative Properties of Acylated Anthocyanins in Three Cultivars of Red Cabbage (Brassica Oleracea L. Var. Capitata L. F. Rubra). J. Sci. Food Agric. 2009, 89(7), 1154–1158. DOI: 10.1002/jsfa.3565.
  • Mohamed, D.; Mabrok, H.; Abdelgayed, S.; Elbakry, H. Cardioprotective Potency of Anthocyanin-Rich Extract of Red Cabbage Against Isoproterenol-Induced Myocardial Infarction in Experimental Animals. J. Appl. Pharm. Sci. 2021, 11(8), 022–030. DOI: 10.7324/JAPS.2021.110804.
  • Mansour, K. A.; Moustafa, S. F.; Abdelkhalik, S. M. High-Resolution UPLC-MS Profiling of Anthocyanins and Flavonols of Red Cabbage (Brassica Oleracea L. Var. Capitata F. Rubra DC.) Cultivated in Egypt and Evaluation of Their Biological Activity. Molecules. 2021, 26(24), 7567. DOI: 10.3390/molecules26247567.
  • Im, Y. R.; Kim, I.; Lee, J. Phenolic Composition and Antioxidant Activity of Purple Sweet Potato (Ipomoea Batatas (L.) Lam.): Varietal Comparisons and Physical Distribution. Antioxidants (Basel). 2021, 10, 3. DOI: 10.3390/antiox10030462.
  • Hwang, Y. P.; Choi, J. H.; Han, E. H.; Kim, H. G.; Wee, J.-H.; Jung, K. O.; Jung, K. H.; Kwon, K.-I.; Jeong, T. C.; Chung, Y. C., et al. Purple Sweet Potato Anthocyanins Attenuate Hepatic Lipid Accumulation Through Activating Adenosine Monophosphate–Activated Protein Kinase in Human HepG2 Cells and Obese Mice. Nutr. Res. 2011, 31(12), 896–906. DOI: 10.1016/j.nutres.2011.09.026.
  • Xu, J.; Su, X.; Lim, S.; Griffin, J.; Carey, E.; Katz, B.; Tomich, J.; Smith, J. S.; Wang, W. Characterisation and Stability of Anthocyanins in Purple-Fleshed Sweet Potato P40. Food Chem. 2015, 186, 90–96. DOI: 10.1016/j.foodchem.2014.08.123.
  • Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; Yin, S.; Wang, B.; Shi, X.; He, J. Research Advances of Purple Sweet Potato Anthocyanins: Extraction, Identification, Stability, Bioactivity, Application, and Biotransformation. Molecules 2019, 24(21). DOI: 10.3390/molecules24213816.
  • Quan, W.; He, W.; Lu, M.; Yuan, B.; Zeng, M.; Gao, D.; Qin, F.; Chen, J.; He, Z. Anthocyanin Composition and Storage Degradation Kinetics of Anthocyanins‐Based Natural Food Colourant from Purple‐Fleshed Sweet Potato. Int. J. Food Sci. Technol. 2019, 54(8), 2529–2539. DOI: 10.1111/ijfs.14163.
  • Sharma, R. J.; Gupta, R. C.; Singh, S.; Bansal, A. K.; Singh, I. P. Stability of Anthocyanins- and Anthocyanidins-Enriched Extracts, and Formulations of Fruit Pulp of Eugenia Jambolana (‘Jamun’). Food Chem. 2016, 190, 808–817. DOI: 10.1016/j.foodchem.2015.06.029.
  • Chu, M. J.; Du, Y. M.; Liu, X. M.; Yan, N.; Wang, F. Z.; Zhang, Z. F. Extraction of Proanthocyanidins from Chinese Wild Rice (Zizania Latifolia) and Analyses of Structural Composition and Potential Bioactivities of Different Fractions. Molecules 2019, 24(9). DOI: 10.3390/molecules24091681.
  • Yan, N.; Du, Y. M.; Liu, X. M.; Chu, C.; Shi, J.; Zhang, H. B.; Liu, Y. H.; Zhang, Z. F. Morphological Characteristics, Nutrients, and Bioactive Compounds of Zizania Latifolia, and Health Benefits of Its Seeds. Molecules 2018, 23(7). DOI: 10.3390/molecules23071561.
  • Coutinho, I. B.; Freitas, A.; Macanita, A. L.; Lima, J. C. Effect of Water Content on the Acid-Base Equilibrium of Cyanidin-3-Glucoside. Food Chem. 2015, 172, 476–480. DOI: 10.1016/j.foodchem.2014.09.060.
  • Cai, D.; Li, X.; Chen, J.; Jiang, X.; Ma, X.; Sun, J.; Tian, L.; Vidyarthi, S. K.; Xu, J.; Pan, Z., et al. A Comprehensive Review on Innovative and Advanced Stabilization Approaches of Anthocyanin by Modifying Structure and Controlling Environmental Factors. Food Chem. 2022, 366, 130611. DOI: 10.1016/j.foodchem.2021.130611.
  • Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red Cabbage Anthocyanins: Stability, Extraction, Biological Activities and Applications in Food Systems. Food Chem. 2021, 365. DOI: 10.1016/j.foodchem.2021.130482.
  • Pérez-Gregorio, R. M.; García-Falcón, M. S.; Simal-Gándara, J.; Rodrigues, A. S.; Almeida, D. P. F. Identification and Quantification of Flavonoids in Traditional Cultivars of Red and White Onions at Harvest. J. Food Compost. Anal. 2010, 23(6), 592–598. DOI: 10.1016/j.jfca.2009.08.013.
  • Zhao, C. L.; Chen, Z. J.; Bai, X. S.; Ding, C.; Long, T. J.; Wei, F. G.; Miao, K. R. Structure-Activity Relationships of Anthocyanidin Glycosylation. Mol. Diversity 2014, 18(3), 687–700. DOI: 10.1007/s11030-014-9520-z.
  • Barnard, H.; Dooley, A. N.; Areshian, G.; Gasparyan, B.; Faull, K. F. Chemical Evidence for Wine Production Around 4000 BCE in the Late Chalcolithic Near Eastern Highlands. J. Archaeol. Sci. 2011, 38(5), 977–984. DOI: 10.1016/j.jas.2010.11.012.
  • Jaime, L.; Santoyo, S. The Health Benefits of the Bioactive Compounds in Foods. Foods 2021, 10(2). DOI: 10.3390/foods10020325.
  • Rosales, T. K. O.; Hassimotto, N. M. A.; Lajolo, F. M.; Fabi, J. P. Nanotechnology As a Tool to Mitigate the Effects of Intestinal Microbiota on Metabolization of Anthocyanins. Antioxidants 2022, 11(3), 3. DOI: 10.3390/antiox11030506.
  • Kamonpatana, K.; Giusti, M. M.; Chitchumroonchokchai, C.; MorenoCruz, M.; Riedl, K. M.; Kumar, P.; Failla, M. L. Susceptibility of Anthocyanins to ex vivo Degradation in Human Saliva. Food Chem. 2012, 135(2), 738–747. DOI: 10.1016/j.foodchem.2012.04.110.
  • Sapian, S.; Taib, I. S.; Katas, H.; Latip, J.; Zainalabidin, S.; Hamid, Z. A.; Anuar, N. N. M.; Budin, S. B. The Role of Anthocyanin in Modulating Diabetic Cardiovascular Disease and Its Potential to Be Developed As a Nutraceutical. Pharmaceuticals 2022, 15(11), 1344. DOI: 10.3390/ph15111344.
  • You, L.; Dang, Y. Research Progress in Metabolic and Functional Properties of Blueberry Anthocyanins. Food Res. Dev. 2021, 42(14), 8. DOI: 10.12161/j.issn.1005-6521.2021.14.030.
  • Faria, A.; Pestana, D.; Azevedo, J.; Martel, F.; de Freitas, V.; Azevedo, I.; Mateus, N.; Calhau, C. Absorption of Anthocyanins Through Intestinal Epithelial Cells – Putative Involvement of GLUT2. Mol. Nutr. Food Res. 2009, 53(11), 1430–1437. DOI: 10.1002/mnfr.200900007.
  • Passamonti, S.; Terdoslavich, M.; Franca, R.; Vanzo, A.; Tramer, F.; Braidot, E.; Petrussa, E.; Vianello, A. Bioavailability of Flavonoids: A Review of Their Membrane Transport and the Function of Bilitranslocase in Animal and Plant Organisms. Curr. Drug Metab. 2009, 10(4), 369–394. DOI: 10.2174/138920009788498950.
  • Ding, W.; Liu, H. M.; Qin, Z. Q.; Liu, M. H.; Zheng, M. Z.; Cai, D.; Liu, J. S. Dietary Antioxidant Anthocyanins Mitigate Type II Diabetes Through Improving the Disorder of Glycometabolism and Insulin Resistance. J. Agric. Food Chem. 2021, 69(45), 13350–13363. DOI: 10.1021/acs.jafc.1c05630.
  • Tian, L. M.; Tan, Y. S.; Chen, G. W.; Wang, G.; Sun, J. X.; Ou, S. Y.; Chen, W.; Bai, W. B. Metabolism of Anthocyanins and Consequent Effects on the Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2018, 59(6), 982–991. DOI: 10.1080/10408398.2018.1533517.
  • Lou, Y. H.; Huang, T.; Zhang, X.; Tian, L. M.; Bai, W. B. Progress in Preparation and Application of Anthocyanin-Starch Complexes: A Review. Food Sci. 2023, 44(13), 317–327. DOI: 10.7506/spkx1002-6630-20220731-349.
  • Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte‐Junior, C. A.; Gonzalez‐Aguilar, G. A.; Ou, J.; Bai, W.; Zamarioli, C. M., et al. Available Technologies on Improving the Stability of Polyphenols in Food Processing. Food Front. 2021, 2(2), 109–139. DOI: 10.1002/fft2.65.
  • Adrar, N. S.; Madani, K.; Adrar, S. Impact of the Inhibition of Proteins Activities and the Chemical Aspect of Polyphenols-Proteins Interactions. Pharma nutr. 2019, 7. DOI: 10.1016/j.phanu.2019.100142.
  • Guo, W.; Mehrparvar, S.; Hou, W.; Pan, J.; Aghbashlo, M.; Tabatabaei, M.; Rajaei, A. Unveiling the Impact of High-Pressure Processing on Anthocyanin-Protein/polysaccharide Interactions: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 270(Pt 1), 132042. DOI: 10.1016/j.ijbiomac.2024.132042.
  • Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. DOI: 10.1016/j.foodchem.2014.12.013.
  • Li, Z.; Wang, Y.; Song, B.; Li, J.; Bao, Y.; Jiang, Q.; Chen, Y.; Yang, S.; Yang, Y.; Tian, J., et al. The Comparison Between Zein-Anthocyanins Complex and Nanoparticle Systems: Stability Enhancement, Interaction Mechanism, and in silico Approaches. Food Chem. 2023, 420, 136136. DOI: 10.1016/j.foodchem.2023.136136.
  • Tang, R.; He, Y.; Fan, K. Recent Advances in Stability Improvement of Anthocyanins by Efficient Methods and Its Application in Food Intelligent Packaging: A Review. Food Biosci. 2023, 56. DOI: 10.1016/j.fbio.2023.103164.
  • Ren, C.; Xiong, W. F.; Li, J.; Li, B. Comparison of Binding Interactions of Cyanidin-3-O-Glucoside to β-Conglycinin and Glycinin Using Multi-Spectroscopic and Thermodynamic Methods. Food Hydrocolloids. 2019, 92, 155–162. DOI: 10.1016/j.foodhyd.2019.01.053.
  • Chen, Z. Q.; Wang, C.; Gao, X. D.; Chen, Y.; Kumar Santhanam, R.; Wang, C. L.; Xu, L. L.; Chen, H. X. Interaction Characterization of Preheated Soy Protein Isolate with Cyanidin-3-O-Glucoside and Their Effects on the Stability of Black Soybean Seed Coat Anthocyanins Extracts. Food Chem. 2019, 271, 266–273. DOI: 10.1016/j.foodchem.2018.07.170.
  • Sui, X. N.; Sun, H. B.; Qi, B. K.; Zhang, M.; Li, Y.; Jiang, L. Z. Functional and Conformational Changes to Soy Proteins Accompanying Anthocyanins: Focus on Covalent and Non-Covalent Interactions. Food Chem. 2018, 245, 871–878. DOI: 10.1016/j.foodchem.2017.11.090.
  • Jiang, L. Z.; Liu, Y. J.; Li, L.; Qi, B. K.; Ju, M. N.; Xu, Y.; Zhang, Y.; Sui, X. N. Covalent Conjugates of Anthocyanins to Soy Protein: Unravelling Their Structure Features and in vitro Gastrointestinal Digestion Fate. Food Res. Int. 2019, 120, 603–609. DOI: 10.1016/j.foodres.2018.11.011.
  • Quan, W.; He, W.; Qie, X. J.; Chen, Y.; Zeng, M. M.; Qin, F.; Chen, J.; He, Z. Y. Effects of β-Cyclodextrin, Whey Protein, and Soy Protein on the Thermal and Storage Stability of Anthocyanins Obtained from Purple-Fleshed Sweet Potatoes. Food Chem. 2020, 320. DOI: 10.1016/j.foodchem.2020.126655.
  • Patras, A.; Brunton, N. P.; O’Donnell, C.; Tiwari, B. K. Effect of Thermal Processing on Anthocyanin Stability in Foods; Mechanisms and Kinetics of Degradation. Trends Food Sci. Technol. 2010, 21(1), 3–11. DOI: 10.1016/j.tifs.2009.07.004.
  • Lang, Y. X.; Gao, H. Y.; Tian, J. L.; Shu, C.; Sun, R. Y.; Li, B.; Meng, X. J. Protective Effects of α-Casein or β-Casein on the Stability and Antioxidant Capacity of Blueberry Anthocyanins and Their Interaction Mechanism. LWT Food Sci. Technol. 2019, 115. DOI: 10.1016/j.lwt.2019.108434.
  • Lang, Y. X.; Li, E. H.; Meng, X. J.; Tian, J. L.; Ran, X. L.; Zhang, Y.; Zang, Z. H.; Wang, W. S.; Li, B. Protective Effects of Bovine Serum Albumin on Blueberry Anthocyanins Under Illumination Conditions and Their Mechanism Analysis. Food Res. Int. 2019, 122, 487–495. DOI: 10.1016/j.foodres.2019.05.021.
  • Ahmad, M. M. Recent Trends in Chemical Modification and Antioxidant Activities of Plants-Based Polysaccharides: A Review. Carbohydr. Polym. Technologies And Applications 2021, 2. DOI: 10.1016/j.carpta.2021.100045.
  • Zheng, Y.; Xie, Q. X.; Wang, H.; Hu, Y. J.; Ren, B.; Li, X. F. Recent Advances in Plant Polysaccharide-Mediated Nano Drug Delivery Systems. Int. J. Biol. Macromol. 2020, 165, 2668–2683. DOI: 10.1016/j.ijbiomac.2020.10.173.
  • Koh, J.; Xu, Z. M.; Wicker, L. Binding Kinetics of Blueberry Pectin-Anthocyanins and Stabilization by Non-Covalent Interactions. Food Hydrocolloids 2020, 99. DOI: 10.1016/j.foodhyd.2019.105354.
  • Lin, Z. S.; Pattathil, S.; Hahn, M. G.; Wicker, L. Blueberry Cell Wall Fractionation, Characterization and Glycome Profiling. Food Hydrocolloids. 2019, 90, 385–393. DOI: 10.1016/j.foodhyd.2018.12.051.
  • Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D. J. Enhancement of Colour Stability of Anthocyanins in Model Beverages by Gum Arabic Addition. Food Chem. 2016, 201, 14–22. DOI: 10.1016/j.foodchem.2016.01.051.
  • Wang, W. J.; Xue, C. H.; Mao, X. Z. Radioprotective Effects and Mechanisms of Animal, Plant and Microbial Polysaccharides. Int. J. Biol. Macromol. 2020, 153, 373–384. DOI: 10.1016/j.ijbiomac.2020.02.203.
  • Ma, Z. L.; Du, B.; Li, J.; Yang, Y. D.; Zhu, F. M. An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both in vivo and in vitro Investigations. Int. J. Mol. Sci. 2021, 22(20). DOI: 10.3390/ijms222011076.
  • Xu, Z. L.; Xie, J. W.; Zhang, H. Y.; Pang, J.; Li, Q.; Wang, X.; Xu, H. H.; Sun, X. Y.; Zhao, H. W.; Yang, Y., et al. Anthocyanin Supplementation at Different Doses Improves Cholesterol Efflux Capacity in Subjects with Dyslipidemia—A Randomized Controlled Trial. Eur. J. Clin. Nutr. 2020, 75(2), 345–354. DOI: 10.1038/s41430-020-0609-4.
  • Winter, A. N.; Ross, E. K.; Wilkins, H. M.; Stankiewicz, T. R.; Wallace, T.; Miller, K.; Linseman, D. A. An Anthocyanin-Enriched Extract from Strawberries Delays Disease Onset and Extends Survival in the hSod1g93a Mouse Model of Amyotrophic Lateral Sclerosis. Nutr. Neurosci. 2017, 21(6), 414–426. DOI: 10.1080/1028415x.2017.1297023.
  • Zaa, C. A.; Marcelo, Á. J.; An, Z.; Medina-Franco, J. L.; Velasco-Velázquez, M. A. Anthocyanins: Molecular Aspects on Their Neuroprotective Activity. Biomolecules 2023, 13(11). DOI: 10.3390/biom13111598.
  • Pole, A.; Dimri, M.; Dimri, G.P Oxidative Stress, Cellular Senescence and Ageing. Aims Mol. Sci. 2016, 3(3), 300–324. DOI: 10.3934/molsci.2016.3.300.
  • Zheng, Y.-Z.; Deng, G.; Zhang, Y.-C. Multiple Free Radical Scavenging Reactions of Flavonoids. Dyes Pigm. 2022, 198. DOI: 10.1016/j.dyepig.2021.109877.
  • Najjar, R. S.; Mu, S.; Feresin, R. G. Blueberry Polyphenols Increase Nitric Oxide and Attenuate Angiotensin II-Induced Oxidative Stress and Inflammatory Signaling in Human Aortic Endothelial Cells. Antioxidants. 2022, 11(4), 616. DOI: 10.3390/antiox11040616.
  • Wang, H.; Cao, G. H.; Prior, R. L. Oxygen Radical Absorbing Capacity of Anthocyanins. J. Agric. Food Chem. 1997, 45(2), 304–309. DOI: 10.1021/jf960421t.
  • Terahara, N.; Callebaut, A.; Ohba, R.; Nagata, T.; Ohnishi-Kameyama, M.; Suzuki, M. Acylated Anthocyanidin 3-Sophoroside-5-Glucosides from Ajuga Reptans Flowers and the Corresponding Cell Cultures. Phytochemistry. 2001, 58(3), 493–500. DOI: 10.1016/s0031-9422(01)00172-8.
  • Stintzing, F. C.; Stintzing, A. S.; Carle, R.; Frei, B.; Wrolstad, R. E. Color and Antioxidant Properties of Cyanidin-Based Anthocyanin Pigments. J. Agric. Food Chem. 2002, 50(21), 6172–6181. DOI: 10.1021/jf0204811.
  • Tamura, H.; Yamagami, A. Antioxidative Activity of Monoacylated Anthocyanins Isolated from Muscat Bailey a Grape. J. Agric. Food Chem. 2002, 42(8), 1612–1615. DOI: 10.1021/jf00044a005.
  • Lapidot, T.; Harel, S.; Akiri, B.; Granit, R.; Kanner, J. pH-Dependent Forms of Red Wine Anthocyanins As Antioxidants. J. Agric. Food Chem. 1998, 47(1), 67–70. DOI: 10.1021/jf980704g.
  • Duan, Y. B.; Chen, F.; Yao, X. C.; Zhu, J. B.; Wang, C.; Zhang, J. L.; Li, X. Y. Protective Effect of Lycium Ruthenicum Murr. Against Radiation Injury in Mice. Int. J. Environ. Res. Public Health 2015, 12(7), 8332–8347. DOI: 10.3390/ijerph120708332.
  • Tsuda, T.; Horio, F.; Osawa, T. The Role of Anthocyanins As an Antioxidant Under Oxidative Stress in Rats. BioFactors 2008, 13(1–4), 133–139. DOI: 10.1002/biof.5520130122.
  • Pang, G.; Lv, Z.; Ye, N.; Zhang, F.; Li, P. Research Progress on the Mechanism of Modern Chinese Medicine Compound in Treating Diabetes Mellitus and Its Complications. Jiangxi J. Tradit. Chin. Med. 2020, 51(5). DOI: 10.1186/s13020-023-00783-z.
  • Naseri, R.; Farzaei, F.; Haratipour, P.; Nabavi, S. F.; Habtemariam, S.; Farzaei, M. H.; Khodarahmi, R.; Tewari, D.; Momtaz, S. Anthocyanins in the Management of Metabolic Syndrome: A Pharmacological and Biopharmaceutical Review. Front. Pharmacol. 2018, 9. DOI: 10.3389/fphar.2018.01310.
  • Li, Z.; Tian, J.; Cheng, Z.; Teng, W.; Zhang, W.; Bao, Y.; Wang, Y.; Song, B.; Chen, Y.; Li, B. Hypoglycemic Bioactivity of Anthocyanins: A Review on Proposed Targets and Potential Signaling Pathways. Crit. Rev. Food Sci. Nutr. 2023, 63(26), 7878–7895. DOI: 10.1080/10408398.2022.2055526.
  • Festa, J.; Hussain, A.; Al-Hareth, Z.; Singh, H.; Da Boit, M. Anthocyanins and Vascular Health: A Matter of Metabolites. Foods 2023, 12(9). DOI: 10.3390/foods12091796.
  • Christison, G. B.; MacKenzie, H. A. Laser Photoacoustic Determination of Physiological Glucose Concentrations in Human Whole Blood. Med. Biol. Eng. Comput. 1993, 31(3), 284–290. DOI: 10.1007/bf02458048.
  • Johnson, M. H.; Lucius, A.; Meyer, T.; Gonzalez de Mejia, E. Cultivar Evaluation and Effect of Fermentation on Antioxidant Capacity and in vitro Inhibition of α-Amylase and α-Glucosidase by Highbush Blueberry (Vaccinium Corombosum). J. Agric. Food Chem. 2011, 59(16), 8923–8930. DOI: 10.1021/jf201720z.
  • Takikawa, M.; Inoue, S.; Horio, F.; Tsuda, T. Dietary Anthocyanin-Rich Bilberry Extract Ameliorates Hyperglycemia and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic Mice. J. Nutr. 2010, 140(3), 527–533. DOI: 10.3945/jn.109.118216.
  • Wei, T.; Ji, X. W.; Xue, J. S.; Gao, Y.; Zhu, X. M.; Xiao, G. R. Cyanidin-3-O-Glucoside Represses Tumor Growth and Invasion in Vivo by Suppressing Autophagy via inhibition of the JNK Signaling Pathways. Food Funct. 2021, 12(1), 387–396. DOI: 10.1039/d0fo02107e.
  • de Arruda Nascimento, E.; de Lima Coutinho, L.; da Silva, C. J.; de Lima, V. L. A. G.; dos Santos Aguiar, J. In vitro Anticancer Properties of Anthocyanins: A Systematic Review. Biochim. Biophys. Acta (BBA) - Reviews On Cancer 2022, 1877(4), 188748. DOI: 10.1016/j.bbcan.2022.188748.
  • Chatthongpisut, R.; Schwartz, S. J.; Yongsawatdigul, J. Antioxidant Activities and Antiproliferative Activity of Thai Purple Rice Cooked by Various Methods on Human Colon Cancer Cells. Food Chem. 2015, 188, 99–105. DOI: 10.1016/j.foodchem.2015.04.074.
  • Lin, B. W.; Gong, C. C.; Song, H. F.; Cui, Y. Y. Effects of Anthocyanins on the Prevention and Treatment of Cancer. Br. J. Pharmacol. 2017, 174(11), 1226–1243. DOI: 10.1111/bph.13627.
  • Marko, D.; Puppel, N.; Tjaden, Z.; Jakobs, S.; Pahlke, G. The Substitution Pattern of Anthocyanidins Affects Different Cellular Signaling Cascades Regulating Cell Proliferation. Mol. Nutr. Food Res. 2004, 48(4), 318–325. DOI: 10.1002/mnfr.200400034.
  • Zhang, H.; Guo, J.; Mao, L. P.; Li, Q. Q.; Guo, M. N.; Mu, T.; Zhang, Q. H.; Bi, X. L. Up-Regulation of MiR-24-1-5p Is Involved in the Chemoprevention of Colorectal Cancer by Black Raspberry Anthocyanins. Br. J. Nutr. 2018, 122(5), 518–526. DOI: 10.1017/s0007114518003136.
  • Liao, S. F.; Liu, J. H.; Xu, M.; Zheng, J. G. Evaluation of the Liver Cancer Prevention of Anthocyanin Extracts from Mulberry (Morus Alba L.) Variety PR-01. Adv. Biosci. Biotechnol. 2018, 09(9), 423–442. DOI: 10.4236/abb.2018.99030.
  • Kuntz, S.; Kunz, C.; Rudloff, S. Inhibition of Pancreatic Cancer Cell Migration by Plasma Anthocyanins Isolated from Healthy Volunteers Receiving an Anthocyanin-Rich Berry Juice. Eur. J. Nutr. 2015, 56(1), 203–214. DOI: 10.1007/s00394-015-1070-3.
  • Wallace, T.; Slavin, M.; Frankenfeld, C. Systematic Review of Anthocyanins and Markers of Cardiovascular Disease. Nutrients 2016, 8(1). DOI: 10.3390/nu8010032.
  • Cutler, B. R.; Petersen, C.; Anandh Babu, P. V. Mechanistic Insights into the Vascular Effects of Blueberries: Evidence from Recent Studies. Mol. Nutr. Food Res. 2016, 61(6). DOI: 10.1002/mnfr.201600271.
  • Hori, M.; Nishida, K. Oxidative Stress and Left Ventricular Remodelling After Myocardial Infarction. Cardiovasc. Res. 2008, 81(3), 457–464. DOI: 10.1093/cvr/cvn335.
  • Toufektsian, M.-C.; de Lorgeril, M.; Nagy, N.; Salen, P.; Donati, M. B.; Giordano, L.; Mock, H.-P.; Peterek, S.; Matros, A.; Petroni, K., et al. Chronic Dietary Intake of Plant-Derived Anthocyanins Protects the Rat Heart Against Ischemia-Reperfusion Injury3. J. Nutr. 2008, 138(4), 747–752. DOI: 10.1093/jn/138.4.747.
  • Masella, R.; Di Benedetto, R.; Vari, R.; Filesi, C.; Giovannini, C. Novel Mechanisms of Natural Antioxidant Compounds in Biological Systems: Involvement of Glutathione and Glutathione-Related Enzymes. J. Nutr. Biochem. 2005, 16(10), 577–586. DOI: 10.1016/j.jnutbio.2005.05.013.
  • Chan, S. W.; Chu, T. T. W.; Choi, S. W.; Benzie, I. F. F.; Tomlinson, B. Impact of Short‐Term Bilberry Supplementation on Glycemic Control, Cardiovascular Disease Risk Factors, and Antioxidant Status in Chinese Patients with Type 2 Diabetes. Phytotherapy Res. 2021, 35(6), 3236–3245. DOI: 10.1002/ptr.7038.
  • Kimble, R.; Keane, K. M.; Lodge, J. K.; Howatson, G. Dietary Intake of Anthocyanins and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Crit. Rev. Food Sci. Nutr. 2018, 59(18), 3032–3043. DOI: 10.1080/10408398.2018.1509835.
  • Matsuo, M. Regulation of Cholesterol Transporters by Nuclear Receptors. Receptors. 2023, 2(4), 204–219. DOI: 10.3390/receptors2040014.
  • Cassidy, A.; Mukamal, K. J.; Liu, L.; Franz, M.; Eliassen, A. H.; Rimm, E. B. High Anthocyanin Intake Is Associated with a Reduced Risk of Myocardial Infarction in Young and Middle-Aged Women. Circulation. 2013, 127(2), 188–196. DOI: 10.1161/circulationaha.112.122408.
  • Cassidy, A.; O’Reilly, É. J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J. P.; Curhan, G.; Rimm, E. B. Habitual Intake of Flavonoid Subclasses and Incident Hypertension in Adults. Am. J. Clin. Nutr. 2011, 93(2), 338–347. DOI: 10.3945/ajcn.110.006783.
  • Shaughnessy, K. S.; Boswall, I. A.; Scanlan, A. P.; Gottschall-Pass, K. T.; Sweeney, M. I. Diets Containing Blueberry Extract Lower Blood Pressure in Spontaneously Hypertensive Stroke-Prone Rats. Nutr. Res. 2009, 29(2), 130–138. DOI: 10.1016/j.nutres.2009.01.001.
  • Janaszak-Jasiecka, A.; Płoska, A.; Wierońska, J. M.; Dobrucki, L. W.; Kalinowski, L. Endothelial Dysfunction Due to eNOS Uncoupling: Molecular Mechanisms As Potential Therapeutic Targets. Cellular & Mol. Biol. Lett. 2023, 28(1), 21. DOI: 10.1186/s11658-023-00423-2.
  • Zhang, G.; Chen, S. S.; Zhou, W.; Meng, J.; Deng, K.; Zhou, H. N.; Hu, N.; Suo, Y. R. Anthocyanin Composition of Fruit Extracts from Lycium Ruthenicum and Their Protective Effect for Gouty Arthritis. Ind. Crops Prod. 2019, 129, 414–423. DOI: 10.1016/j.indcrop.2018.12.026.
  • Xu, W.; Zhou, Q.; Yao, Y.; Li, X.; Zhang, J. L.; Su, G. H.; Deng, A. P. Inhibitory Effect of Gardenblue Blueberry (Vaccinium Ashei Reade) Anthocyanin Extracts on Lipopolysaccharide-Stimulated Inflammatory Response in RAW 264.7 Cells. J. Zhejiang Univ. Sci. B 2016, 17(6), 425–436. DOI: 10.1631/jzus.B1500213.
  • Li, P.; Feng, D.; Yang, D. C.; Li, X. S.; Sun, J. X.; Wang, G.; Tian, L. M.; Jiang, X. W.; Bai, W. B. Protective Effects of Anthocyanins on Neurodegenerative Diseases. Trends Food Sci. Technol. 2021, 117, 205–217. DOI: 10.1016/j.tifs.2021.05.005.
  • Tarozzi, A.; Morroni, F.; Hrelia, S.; Angeloni, C.; Marchesi, A.; Cantelli-Forti, G.; Hrelia, P. Neuroprotective Effects of Anthocyanins and Their in vivo Metabolites in SH-SY5Y Cells. Neurosci. Lett. 2007, 424(1), 36–40. DOI: 10.1016/j.neulet.2007.07.017.
  • Roghani, M.; Niknam, A.; Jalali-Nadoushan, M.-R.; Kiasalari, Z.; Khalili, M.; Baluchnejadmojarad, T. Oral Pelargonidin Exerts Dose-Dependent Neuroprotection in 6-Hydroxydopamine Rat Model of Hemi-Parkinsonism. Brain Res. Bull. 2010, 82(5–6), 279–283. DOI: 10.1016/j.brainresbull.2010.06.004.
  • Vepsäläinen, S.; Koivisto, H.; Pekkarinen, E.; Mäkinen, P.; Dobson, G.; McDougall, G. J.; Stewart, D.; Haapasalo, A.; Karjalainen, R. O.; Tanila, H., et al. Anthocyanin-Enriched Bilberry and Blackcurrant Extracts Modulate Amyloid Precursor Protein Processing and Alleviate Behavioral Abnormalities in the APP/PS1 Mouse Model of Alzheimer’s Disease. J. Nutr. Biochem. 2013, 24(1), 360–370. DOI: 10.1016/j.jnutbio.2012.07.006.
  • Gutierres, J. M.; Carvalho, F. B.; Schetinger, M. R. C.; Marisco, P.; Agostinho, P.; Rodrigues, M.; Rubin, M. A.; Schmatz, R.; da Silva, C. R.; Cognato de, G, et al. Anthocyanins Restore Behavioral and Biochemical Changes Caused by Streptozotocin-Induced Sporadic Dementia of Alzheimer’s Type. Life Sci. 2014, 96(1–2), 7–17. DOI:.10.1016/j.lfs.2013.11.014.
  • Boespflug, E. L.; Eliassen, J. C.; Dudley, J. A.; Shidler, M. D.; Kalt, W.; Summer, S. S.; Stein, A. L.; Stover, A. N.; Krikorian, R. Enhanced Neural Activation with Blueberry Supplementation in Mild Cognitive Impairment. Nutr. Neurosci. 2017, 21(4), 297–305. DOI: 10.1080/1028415x.2017.1287833.
  • Kent, K.; Charlton, K.; Roodenrys, S.; Batterham, M.; Potter, J.; Traynor, V.; Gilbert, H.; Morgan, O.; Richards, R. Consumption of Anthocyanin-Rich Cherry Juice for 12 Weeks Improves Memory and Cognition in Older Adults with Mild-To-Moderate Dementia. Eur. J. Nutr. 2015, 56(1), 333–341. DOI: 10.1007/s00394-015-1083-y.
  • Huang, X. D.; Liang, J. B.; Tan, H. Y.; Yahya, R.; Long, R. J.; Ho, Y. W. Protein-Binding Affinity of Leucaena Condensed Tannins of Differing Molecular Weights. J. Agric. Food Chem. 2011, 59(19), 10677–10682. DOI: 10.1021/jf201925g.
  • Ma, Y.; Feng, Y.; Diao, T.; Zeng, W.; Zuo, Y. Experimental and Theoretical Study on Antioxidant Activity of the Four Anthocyanins. J. Mol. Struct. 2020, 1204. DOI: 10.1016/j.molstruc.2019.127509.
  • Semmarath, W.; Mapoung, S.; Umsumarng, S.; Arjsri, P.; Srisawad, K.; Thippraphan, P.; Yodkeeree, S.; Dejkriengkraikul, P. Cyanidin-3-O-Glucoside and Peonidin-3-O-Glucoside-Rich Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-Induction in vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3 Inflammasome Pathway. Nutrients. 2022, 14(13), 2738. DOI: 10.3390/nu14132738.
  • Liu, P.; Zhou, W.; Xu, W.; Peng, Y.; Yan, Y.; Lu, L.; Mi, J.; Zeng, X.; Cao, Y. The Main Anthocyanin Monomer from Lycium Ruthenicum Murray Fruit Mediates Obesity via Modulating the Gut Microbiota and Improving the Intestinal Barrier. Foods 2021, 11(1), 98. DOI: 10.3390/foods11010098.
  • Rugina, D.; Hanganu, D.; Diaconeasa, Z.; Tabaran, F.; Coman, C.; Leopold, L.; Bunea, A.; Pintea, A. Antiproliferative and Apoptotic Potential of Cyanidin-Based Anthocyanins on Melanoma Cells. Int. J. Mol. Sci. 2017, 18(5). DOI: 10.3390/ijms18050949.
  • Basu, A.; Du, M.; Leyva, M. J.; Sanchez, K.; Betts, N. M.; Wu, M.; Aston, C. E.; Lyons, T. J. Blueberries Decrease Cardiovascular Risk Factors in Obese Men and Women with Metabolic Syndrome. J. Nutr. 2010, 140(9), 1582–1587. DOI: 10.3945/jn.110.124701.
  • Cásedas, G.; Les, F.; González-Burgos, E.; Gómez-Serranillos, M. P.; Smith, C.; López, V. Cyanidin-3-O-Glucoside Inhibits Different Enzymes Involved in Central Nervous System Pathologies and Type-2 Diabetes. South Afr. J. Botany. 2019, 120, 241–246. DOI: 10.1016/j.sajb.2018.07.001.
  • Zhang, J. F. A Review of Functional Studies of Anthocyanins Improving Motor Capacity. China Food Saf. 2023, 10(18), 157–160. DOI: 10.16043/j.cnki.cfs.2023.18.047.
  • He, J. J.; Liu, Y. X.; Pan, Q. H.; Cui, X. Y.; Duan, C. Q. Different Anthocyanin Profiles of the Skin and the Pulp of Yan7 (Muscat Hamburg X Alicante Bouschet) Grape Berries. Molecules 2010, 15(3), 1141–1153. DOI: 10.3390/molecules15031141.
  • Zhang, X.; Huang, H.; Zhang, Q.; Fan, F.; Xu, C.; Sun, C.; Li, X.; Chen, K. Phytochemical Characterization of Chinese Bayberry (Myrica Rubra Sieb. Et Zucc.) of 17 Cultivars and Their Antioxidant Properties. Int. J. Mol. Sci. 2015, 16(6), 12467–12481. DOI: 10.3390/ijms160612467.
  • Jin, Q.; Yang, J.; Ma, L.; Cai, J.; Li, J. Comparison of Polyphenol Profile and Inhibitory Activities Against Oxidation and Alpha-Glucosidase in Mulberry (Genus Morus) Cultivars from China. J. Food Sci 2015, 80(11), C2440–2451. DOI: 10.1111/1750-3841.13099.
  • Covaci, E.; Senila, M.; Leopold, L. F.; Olah, N.-K.; Cobzac, C.; Ivanova-Petropulos, V.; Balabanova, B.; Cadar, O.; Becze, A.; Ponta, M., et al. Characterization of Lycium Barbarum L. Berry Cultivated in North Macedonia: A Chemometric Approach. J. Berry Res. 2020, 10(2), 223–241. DOI: 10.3233/jbr-190450.
  • da Silva, F. L.; Escribano-Bailón, M. T.; Alonso, J. J. P.; Rivas-Gonzalo, J. C.; Santos-Buelga, C. Anthocyanin Pigments in Strawberry. LWT Food Sci. Technol. 2007, 40(2), 374–382. DOI: 10.1016/j.lwt.2005.09.018.
  • Gomes, V.; Pires, A. S.; Fernandes, I.; Mateus, N.; de Freitas, V.; Cruz, L. Synthesis of Novel Pyrano-3,7-Deoxyanthocyanin Derivatives and Study of Their Thermodynamic, Photophysical and Cytotoxicity Properties. J. Photochem. Photobiol. A Chem. 2021, 415. DOI: 10.1016/j.jphotochem.2021.113313.
  • Gong, S.; Fei, P.; Sun, Q.; Guo, L.; Jiang, L.; Duo, K.; Bi, X.; Yun, X. Action Mode of Cranberry Anthocyanin on Physiological and Morphological Properties of Staphylococcus Aureus and Its Application in Cooked Meat. Food Microbiol. 2021, 94, 103632. DOI: 10.1016/j.fm.2020.103632.
  • Ben Ticha, M.; Haddar, W.; Meksi, N.; Guesmi, A.; Mhenni, M. F. Improving Dyeability of Modified Cotton Fabrics by the Natural Aqueous Extract from Red Cabbage Using Ultrasonic Energy. Carbohydr. Polym. 2016, 154, 287–295. DOI: 10.1016/j.carbpol.2016.06.056.
  • Luo, X.; Wang, R.; Wang, J.; Li, Y.; Luo, H.; Chen, S.; Zeng, X.; Han, Z. Acylation of Anthocyanins and Their Applications in the Food Industry: Mechanisms and Recent Research Advances. Foods 2022, 11(14). DOI: 10.3390/foods11142166.
  • Shukla, V.; Kandeepan, G.; Vishnuraj, M. R.; Soni, A. Anthocyanins Based Indicator Sensor for Intelligent Packaging Application. Agric. Res. 2016, 5(2), 205–209. DOI: 10.1007/s40003-016-0211-0.
  • de Azevedo, E. S.; Noreña, C. P. Z. Anthocyanin-Based Indicators Design by Polyelectrolyte Complexation: A Study on Structural and Thermodynamic Properties, and Application for Milk Freshness Assessment. Food Hydrocolloids 2024, 147, 109389. DOI: 10.1016/j.foodhyd.2023.109389.
  • Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of Anthocyanin As a Color Indicator in Gelatin Films. Food Biosci. 2020, 36. DOI: 10.1016/j.fbio.2020.100603.
  • Rose, P. M.; Cantrill, V.; Benohoud, M.; Tidder, A.; Rayner, C. M.; Blackburn, R. S. Application of Anthocyanins from Blackcurrant (Ribes Nigrum L.) Fruit Waste as Renewable Hair Dyes. J. Agric. Food Chem. 2018, 66(26), 6790–6798. DOI: 10.1021/acs.jafc.8b01044.
  • Stastnik, O.; Mrkvicova, E.; Karasek, F.; Trojan, V.; Vyhnanek, T.; Hrivna, L.; Jakubcova, Z. The Influence of Colored Wheat Feeding on Broiler Chickens Performance Parameters. Proceedings of the International Ph. D. Students Conference on Mendelnet, Brno, Czech Republic, 2016.
  • Amnueysit, P.; Tatakul, T.; Chalermsan, N.; Amnueysit, K. Effects of Purple Field Corn Anthocyanins on Broiler Heart Weight. Asian J. Food Agro-Ind. 2010, 3(3), 319–327.
  • Saputra, Y.; Suthama, N.; Sukamto, B. Supplementation of Purple Sweet Potato Extract on Protein Digestibility and Meat Protein Mass in Broiler Reared Under Different Cage Density. Proceedings of International Seminar on Livestock Production and Veterinary Technology, Yogyakarta, Indonesia, 2016, 378–384. DOI: 10.14334/proc.intsem.lpvt-2016-p.378-384.
  • Tensiska, T.; Marta, H.; Cahyana, Y.; Amirah, N. S. Application of Encapsulated Anthocyanin Pigments from Purple Sweet Potato (Ipomoea Batatas L.) in Jelly Drink. KnE Life Sci. 2017, 2(6), 482. DOI: 10.18502/kls.v2i6.1069.
  • da Silva, R. F. R.; Barreira, J. C. M.; Heleno, S. A.; Barros, L.; Calhelha, R. C.; Ferreira, I. Anthocyanin Profile of Elderberry Juice: A Natural-Based Bioactive Colouring Ingredient with Potential Food Application. Molecules 2019, 24(13), 2359. DOI: 10.3390/molecules24132359.
  • Lee, H. J.; Lee, D.-Y.; Chun, Y.-S.; Kim, J.-K.; Lee, J.-O.; Ku, S.-K.; Shim, S.-M. Effects of Blue Honeysuckle Containing Anthocyanin on Anti-Diabetic Hypoglycemia and Hyperlipidemia in Ob/Ob Mice. J. Funct. Foods 2022, 89. DOI: 10.1016/j.jff.2022.104959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.