43
Views
0
CrossRef citations to date
0
Altmetric
Review Article

High Pressure Sub-Zero Temperature Concepts for Improving Microbial Safety and Maintaining Food Quality: Background Fundamentals, Equipment Issues and Applications

, , , , , & show all

References

  • Hassan, R.; Tecle, S.; Adcock, B.; Kellis, M.; Weiss, J.; Saupe, A.; Sorenson, A.; Klos, R.; Blankenship, J.; Blessington, T., et al. Multistate Outbreak of Salmonella Paratyphi B Variant L(+) Tartrate(+) and Salmonella Weltevreden Infections Linked to Imported Frozen Raw Tuna: USA, March–July 2015. Epidemiol. Infect. 2018, 146(11), 1461–1467. DOI: 10.1017/S0950268818001462.
  • Scavia, G.; Alfonsi, V.; Taffon, S.; Escher, M.; Bruni, R.; De Medici, D.; Di Pasquale, S.; Guizzardi, S.; Cappelletti, B.; Iannazzo, S., et al. A Large Prolonged Outbreak of Hepatitis a Associated with Consumption of Frozen Berries, Italy, 2013–14. J. Med. Microbiol. 2017, 66(3), 342–349. DOI: 10.1099/jmm.0.000433.
  • Byrd, K.; Her, E.; Fan, A.; Almanza, B.; Liu, Y.; Leitch, S. Restaurants and COVID-19: What Are Consumers’ Risk Perceptions About Restaurant Food and Its Packaging During the Pandemic? Int. J. Hosp. Manag. 2021, 94, 102821. DOI: 10.1016/j.ijhm.2020.102821.
  • Nagata, J. M.; Seligman, H. K.; Weiser, S. D. Perspective: The Convergence of Coronavirus Disease 2019 (COVID-19) and Food Insecurity in the United States. Adv. Nutr. 2021, 12(2), 287–290. DOI: 10.1093/advances/nmaa126.
  • Principato, L.; Secondi, L.; Cicatiello, C.; Mattia, G. Caring More About Food: The Unexpected Positive Effect of the COVID-19 Lockdown on Household Food Management and Waste. Socioecon. Plann. Sci. 2022, 82, 100953. DOI: 10.1016/j.seps.2020.100953.
  • Dagostin, J. L. A. Blanching As an Acrylamide Mitigation Technique. In New Perspectives on Food Blanching, Richter Reis, F., Ed.; Springer International Publishing: Cham, 2016; pp. 95–122. DOI: 10.1007/978-3-319-48665-9_5.
  • Esteghlal, S.; Gahruie, H. H.; Niakousari, M.; Barba, F. J.; Bekhit, A. E. D.; Mallikarjunan, K.; Roohinejad, S. Bridging the Knowledge Gap for the Impact of Non-Thermal Processing on Proteins and Amino Acids. Foods 2019, 8(7), 262–262. DOI: 10.3390/foods8070262.
  • Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages. 2017, 3(4), 54–54. DOI: 10.3390/beverages3040054.
  • Sehrawat, R.; Kaur, B. P.; Nema, P. K.; Tewari, S.; Kumar, L. Microbial Inactivation by High Pressure Processing: Principle, Mechanism and Factors Responsible. Food Sci. Biotechnol. 2021, 30(1), 19–35. DOI: 10.1007/s10068-020-00831-6.
  • Balasubramaniam, V. M.; Martínez-Monteagudo, S. I.; Gupta, R. Principles and Application of High Pressure–Based Technologies in the Food Industry. Annu. Rev. Food Sci. Technol. 2015, 6(1), 435–462. DOI: 10.1146/annurev-food-022814-015539.
  • de Alba, M.; Bravo, D.; Medina, M. High Pressure Treatments on the Inactivation of Salmonella Enteritidis and the Characteristics of Beef Carpaccio. Meat Sci. 2012, 92(4), 823–828. DOI: 10.1016/j.meatsci.2012.07.008.
  • Bridgman, P. W. Water, in the Liquid and Five Solid Forms, Under Pressure. Proc. Am. Acad. Arts Sci. 1912, 47(13), 441–441. DOI: 10.2307/20022754.
  • Bridges, D. F.; Bilbao-Sainz, C.; Powell-Palm, M. J.; Williams, T.; Wood, D.; Sinrod, A. J. G.; Ukpai, G.; McHugh, T. H.; Rubinsky, B.; Wu, V. C. H. Viability of Listeria Monocytogenes and Salmonella Typhimurium After Isochoric Freezing. J. Food Saf. 2020, 40(5), e12840–e12840. DOI: 10.1111/jfs.12840.
  • Li, Y.; Zheng, Z.; Zhu, S.; Ramaswamy, H. S.; Yu, Y. Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia Coli in Milk. Foods 2020, 9(12), 1742–1742. DOI: 10.3390/foods9121742.
  • Xiao, T.; Li, Y.; Hu, L.; Li, T.; Kuang, S.; Nie, P.; Ramaswamy, H. S.; Yu, Y. Characterization of Metastable High Pressure Phase Transition Positions and Its Influence on the Behavior of Microbial Destruction. Innov. Food Sci. Emerg. Technol. 2022, 82, 103159. DOI: 10.1016/j.ifset.2022.103159.
  • Zhu, S.; Wang, C.; Ramaswamy, H. S.; Yu, Y. Phase Transitions During High Pressure Treatment of Frozen Carrot Juice and Influence on Escherichia Coli Inactivation. LWT - Food Sci. Technol. 2017, 79, 119–125. DOI: 10.1016/j.lwt.2017.01.022.
  • Lowder, A. C.; Waite-Cusic, J. G.; Mireles Dewitt, C. A. High Pressure-Low Temperature Processing of Beef: Effects on Survival of Internalized E Coli O157: H7 and Quality Characteristics. Innov. Food Sci. Emerg. Technol. 2014, 26, 18–25. DOI: 10.1016/j.ifset.2014.08.003.
  • Kim, H. Y.; Kim, S. H.; Choi, M. J.; Min, S. G.; Kwak, H. S. The Effect of High Pressure-Low Temperature Treatment on Physicochemical Properties in Milk. J. Dairy. Sci. 2008, 91(11), 4176–4182. DOI: 10.3168/jds.2007-0883.
  • Preciado, J.; Rubinsky, B. The Effect of Isochoric Freezing on Mammalian Cells in an Extracellular Phosphate Buffered Solution. Cryobiology 2018, 82, 155–158. DOI: 10.1016/j.cryobiol.2018.04.004.
  • Shen, T.; Urrutia Benet, G.; Brul, S.; Knorr, D. Influence of High-Pressure-Low-Temperature Treatment on the Inactivation of Bacillus Subtilis Cells. Innov. Food Sci. Emerg. Technol. 2005, 6(3), 271–278. DOI: 10.1016/j.ifset.2005.03.004.
  • Van Buggenhout, S.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Effect of High-Pressure Induced Ice I/Ice III-Transition on the Texture and Microstructure of Fresh and Pretreated Carrots and Strawberries. Food. Res. Int. 2007, 40(10), 1276–1285. DOI: 10.1016/j.foodres.2007.08.008.
  • Zhan, X.; Sun, D. W.; Zhu, Z.; Wang, Q. J. Improving the Quality and Safety of Frozen Muscle Foods by Emerging Freezing Technologies: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(17), 2925–2938. DOI: 10.1080/10408398.2017.1345854.
  • Lyu, C.; Nastase, G.; Ukpai, G.; Serban, A.; Rubinsky, B. A Comparison of Freezing-Damage During Isochoric and Isobaric Freezing of the Potato. PeerJ. 2017, 5(5), e3322–e3322. DOI: 10.7717/peerj.3322.
  • Powell-Palm, M. J.; Preciado, J.; Lyu, C.; Rubinsky, B. Escherichia Coli Viability in an Isochoric System at Subfreezing Temperatures. Cryobiology 2018, 85, 17–24. DOI: 10.1016/j.cryobiol.2018.10.262.
  • Wan, L.; Powell-Palm, M. J.; Lee, C.; Gupta, A.; Weegman, B. P.; Clemens, M. G.; Rubinsky, B. Preservation of Rat Hearts in Subfreezing Temperature Isochoric Conditions to – 8 °C and 78 mpa. Biochem. Biophys. Res. Commun. 2018, 496(3), 852–857. DOI: 10.1016/j.bbrc.2018.01.140.
  • Cheng, L.; Sun, D. W.; Zhu, Z.; Zhang, Z. Effects of High Pressure Freezing (HPF) on Denaturation of Natural Actomyosin Extracted from Prawn (Metapenaeus Ensis). Food Chem. 2017, 229, 252–259. DOI: 10.1016/j.foodchem.2017.02.048.
  • Li, T.; Kuang, S.; Hu, L.; Nie, P.; Ramaswamy, H. S.; Yu, Y. Influence of the Pressure Shift Freezing and Thawing on the Microstructure of Largemouth Bass. Innov. Food Sci. Emerg. Technol. 2022, 82, 103176. DOI: 10.1016/j.ifset.2022.103176.
  • Fernández, P. P.; Otero, L.; Guignon, B.; Sanz, P. D. High-Pressure Shift Freezing versus High-Pressure Assisted Freezing: Effects on the Microstructure of a Food Model. Food Hydrocoll. 2006, 20(4), 510–522. DOI: 10.1016/j.foodhyd.2005.04.004.
  • Hong, G. P.; Choi, M. J. Comparison of the Quality Characteristics of Abalone Processed by High-Pressure Sub-Zero Temperature and Pressure-Shift Freezing. Innov. Food Sci. Emerg. Technol. 2016, 33, 19–25. DOI: 10.1016/j.ifset.2015.12.024.
  • Li, T.; Kuang, S.; Xiao, T.; Hu, L.; Nie, P.; Ramaswamy, H. S.; Yu, Y. The Effect of Pressure–Shift Freezing versus Air Freezing and Liquid Immersion on the Quality of Frozen Fish During Storage. Foods 2022, 11(13), 1842. DOI: 10.3390/foods11131842.
  • Su, G.; Ramaswamy, H. S.; Zhu, S.; Yu, Y.; Hu, F.; Xu, M. Thermal Characterization and Ice Crystal Analysis in Pressure Shift Freezing of Different Muscle (Shrimp and Porcine Liver) versus Conventional Freezing Method. Innov. Food Sci. Emerg. Technol. 2014, 26, 40–50. DOI: 10.1016/j.ifset.2014.05.006.
  • Tironi, V.; Le Bail, A.; De Lamballerie, M. Effects of Pressure-Shift Freezing and Pressure-Assisted Thawing on Sea Bass (Dicentrarchus Labrax) Quality. J. Food Sci. 2007, 72(7), C381–C387. DOI: 10.1111/j.1750-3841.2007.00472.x.
  • Fernández-Martín, F.; Otero, L.; Solas, M. T.; Sanz, P. D. Protein Denaturation and Structural Damage During High-Pressure-Shift Freezing of Porcine and Bovine Muscle. J. Food Sci. 2000, 65(6), 1002–1008. DOI: 10.1111/j.1365-2621.2000.tb09407.x.
  • Préstamo, G.; Palomares, L.; Sanz, P. B. (Brasica Oleracea) Treated Under Pressure-Shift Freezing Process. Eur. Food Res. Technol. 2004, 219(6), 598–604. DOI: 10.1007/s00217-004-1022-2.
  • Zhu, S.; Bail, A. L. E.; Ramaswamy, H. S.; Chapleau, N. Characterization of Ice Crystals in Pork Muscle Formed by Pressure-Shift Freezing as Compared with Classical Freezing Methods. J. Food Sci. 2004, 69(4), FEP190–FEP197. DOI: 10.1111/j.1365-2621.2004.tb06346.x.
  • Sequeira-Munoz, A.; Chevalier, D.; Simpson, B. K.; Bail, A. L. E.; Ramaswamy, H. S. Effect of Pressure-Shift Freezing versus Air-Blast Freezing of Carp (Cyprinus Carpio) Fillets: A Storage Study. J. Food Biochem. 2005, 29(5), 504–516. DOI: 10.1111/j.1745-4514.2005.00034.x.
  • Chevalier, D.; Sequeira-Munoz, A.; Le Bail, A.; Simpson, B. K.; Ghoul, M. Effect of Freezing Conditions and Storage on Ice Crystal and Drip Volume in Turbot (Scophthalmus Maximus): Evaluation of Pressure Shift Freezing Vs. Air-Blast Freezing. Innov. Food Sci. Emerg. Technol. 2000, 1(3), 193–201. DOI: 10.1016/S1466-8564(00)00024-2.
  • Okamoto, A.; Suzuki, A. Effects of High Hydrostatic Pressure-Thawing on Pork Meat. In Progress in Biotechnology, Hayashi, R. B. T.-P. in B., Ed.; Elsevier, 2002; Vol. 19, pp. 571–576. DOI: 10.1016/S0921-0423(02)80155-1.
  • Zhu, S.; Su, G.; He, J.; Ramaswamy, H. S.; Le Bail, A.; Yu, Y. Water Phase Transition Under Pressure and Its Application in High Pressure Thawing of Agar Gel and Fish. J. Food Eng. 2014, 125, 1–6. DOI: 10.1016/j.jfoodeng.2013.10.016.
  • Cai, L.; Cao, M.; Regenstein, J.; Cao, A. Recent Advances in Food Thawing Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18(4), 953–970. DOI: 10.1111/1541-4337.12458.
  • Van Buggenhout, S.; Messagie, I.; Maes, V.; Duvetter, T.; Van Loey, A.; Hendrickx, M. Minimizing Texture Loss of Frozen Strawberries: Effect of Infusion with Pectinmethylesterase and Calcium Combined with Different Freezing Conditions and Effect of Subsequent Storage/Thawing Conditions. Eur. Food Res. Technol. 2006, 223(3), 395–404. DOI: 10.1007/s00217-005-0218-4.
  • Gayán, E.; Govers, S. K.; Aertsen, A. Impact of High Hydrostatic Pressure on Bacterial Proteostasis. Biophys. Chem. 2017, 231(9), 3–9. DOI: 10.1016/j.bpc.2017.03.005.
  • Su, G.; Yu, Y.; Ramaswamy, H. S.; Hu, F.; Xu, M.; Zhu, S. Kinetics of Escherichia Coli Inactivation in Frozen Aqueous Suspensions by High Pressure and Its Application to Frozen Chicken Meat. J. Food Eng. 2014, 142, 23–30. DOI: 10.1016/j.jfoodeng.2014.05.024.
  • Ritz, M.; Tholozan, J. L.; Federighi, M.; Pilet, M. F. Morphological and Physiological Characterization of Listeria Monocytogenes Subjected to High Hydrostatic Pressure. Appl. Environ. Microbiol. 2001, 67(5), 2240–2247. DOI: 10.1128/AEM.67.5.2240-2247.2001.
  • Li, T.; Xiao, T.; Zheng, Z.; Li, Y.; Zhu, S.; Ramaswamy, H. S.; Hu, L.; Yu, Y. Facilitating High Pressure Phase-Transition Research and Kinetics Studies at Subzero Temperatures Using Self-Cooling Laboratory Units. Food. Res. Int. 2022, 151, 110857. DOI: 10.1016/j.foodres.2021.110857.
  • Yu, Y.; Zheng, Z.; Wang, C.; Hu, L.; Ramaswamy, H. S.; Zhu, S. Melting Endothermic Technique for Establishing Different Phase Diagram Pathways During High Pressure Treatment of Liquid Foods. Innov. Food Sci. Emerg. Technol. 2020, 62, 102361. DOI: 10.1016/j.ifset.2020.102361.
  • Edebo, L.; Hedén, C.-G. Disruption of Frozen Bacteria as a Consequence of Changes in the Crystal Structure of Ice. J. Biochem. Microbiol. Technol. Eng. 1960, 2(1), 113–120. DOI: 10.1002/jbmte.390020110.
  • Luscher, C.; Balasa, A.; Fröhling, A.; Ananta, E.; Knorr, D. Effect of High-Pressure-Induced Ice I-To-Ice III Phase Transitions on Inactivation of Listeria Innocua in Frozen Suspension. Appl. Environ. Microbiol. 2004, 70(7), 4021–4029. DOI: 10.1128/AEM.70.7.4021-4029.2004.
  • Shen, T.; Bos, A. P.; Brul, S. Assessing Freeze–Thaw and High Pressure Low Temperature Induced Damage to Bacillus Subtilis Cells with Flow Cytometry. Innov. Food Sci. Emerg. Technol. 2009, 10(1), 9–15. DOI: 10.1016/j.ifset.2008.06.006.
  • Bulut, S. Inactivation of Escherichia Coli in Milk by High Pressure Processing at Low and Subzero Temperatures. High Press. Res. 2014, 34(4), 439–446. DOI: 10.1080/08957959.2014.981262.
  • Bilbao-Sainz, C.; Sinrod, A. J. G.; Dao, L.; Takeoka, G.; Williams, T.; Wood, D.; Chiou, B.-S.; Bridges, D. F.; Wu, V. C. H.; Lyu, C., et al. Preservation of Grape Tomato by Isochoric Freezing. Food. Res. Int. 2021, 143, 110228. DOI: 10.1016/j.foodres.2021.110228.
  • Bilbao-Sainz, C.; Sinrod, A.; Powell-Palm, M. J.; Dao, L.; Takeoka, G.; Williams, T.; Wood, D.; Ukpai, G.; Aruda, J.; Bridges, D. F., et al. Preservation of Sweet Cherry by Isochoric (Constant Volume) Freezing. Innov. Food Sci. Emerg. Technol. 2019, 52, 108–115. DOI: 10.1016/j.ifset.2018.10.016.
  • Moussa, M.; Perrier-Cornet, J. M.; Gervais, P. Synergistic and Antagonistic Effects of Combined Subzero Temperature and High Pressure on Inactivation of Escherichia Coli. Appl. Environ. Microbiol. 2006, 72(1), 150–156. DOI: 10.1128/AEM.72.1.150-156.2006.
  • Perrier-Cornet, J.-M.; Tapin, S.; Gaeta, S.; Gervais, P. High-Pressure Inactivation of Saccharomyces Cerevisiae and Lactobacillus Plantarum at Subzero Temperatures. J. Biotechnol. 2005, 115(4), 405–412. DOI: 10.1016/j.jbiotec.2004.09.009.
  • Moussa, M.; Perrier-Cornet, J. M.; Gervais, P. Damage in Escherichia Coli Cells Treated with a Combination of High Hydrostatic Pressure and Subzero Temperature. Appl. Environ. Microbiol. 2007, 73(20), 6508–6518. DOI: 10.1128/AEM.01212-07.
  • Wu, J. Y.; Hsiao, H. I. Food Quality and Safety Risk Diagnosis in the Food Cold Chain Through Failure Mode and Effect Analysis. Food Control 2021, 120, 107501–107501. DOI: 10.1016/j.foodcont.2020.107501.
  • Guignon, B.; Otero, L.; Molina-García, A. D.; Sanz, P. D. Liquid Water-Ice I Phase Diagrams Under High Pressure: Sodium Chloride and Sucrose Models for Food Systems. Biotechnol. Prog. 2005, 21(2), 439–445. DOI: 10.1021/bp049666d.
  • Vaudagna, S. R.; Gonzalez, C. B.; Guignon, B.; Aparicio, C.; Otero, L.; Sanz, P. D. The Effects of High Hydrostatic Pressure at Subzero Temperature on the Quality of Ready-To-Eat Cured Beef Carpaccio. Meat Sci. 2012, 92(4), 575–581. DOI: 10.1016/j.meatsci.2012.06.002.
  • Fernández, P. P.; Sanz, P. D.; Molina-García, A. D.; Otero, L.; Guignon, B.; Vaudagna, S. R. Conventional Freezing Plus High Pressure–Low Temperature Treatment: Physical Properties, Microbial Quality and Storage Stability of Beef Meat. Meat Sci. 2007, 77(4), 616–625. DOI: 10.1016/j.meatsci.2007.05.014.
  • Schlüter, O.; Urrutia Benet, G.; Heinz, V.; Knorr, D. Metastable States of Water and Ice During Pressure-Supported Freezing of Potato Tissue. Biotechnol. Prog. 2004, 20(3), 799–810. DOI: 10.1021/bp0340279.
  • Bulut, S. The Effects of High-Pressure Processing at Low and Subzero Temperatures on Inactivation of Microorganisms in Frozen and Unfrozen Beef Mince Inoculated with Escherichia Coli Strain ATCC 25922. Food Bioprocess Technol. 2014, 7(10), 3033–3044. DOI: 10.1007/s11947-014-1339-1.
  • Li, W.; Wang, P.; Xu, X.; Xing, T.; Zhou, G. Use of Low-Field Nuclear Magnetic Resonance to Characterize Water Properties in Frozen Chicken Breasts Thawed Under High Pressure. Eur. Food Res. Technol. 2014, 239(2), 183–188. DOI: 10.1007/s00217-014-2189-9.
  • Năstase, G.; Lyu, C.; Ukpai, G.; Şerban, A.; Rubinsky, B. Isochoric and Isobaric Freezing of Fish Muscle. Biochem. Biophys. Res. Commun. 2017, 485(2), 279–283. DOI: 10.1016/j.bbrc.2017.02.091.
  • Choi, M. J.; Min, S. G.; Hong, G. P. Effect of High Pressure Shift Freezing Process on Microbial Inactivation in Dairy Model Food System. Int. J. Food Eng. 2008, 4(5). DOI: 10.2202/1556-3758.1347.
  • Park, S. H.; Hong, G. P.; Min, S. G.; Choi, M. J. Combined High Pressure and Subzero Temperature Phase Transition on the Inactivation of Escherichia Coli ATCC 10536. Int. J. Food Eng. 2008, 4(4). DOI: 10.2202/1556-3758.1346.
  • Zhao, Y.; Bilbao-Sainz, C.; Wood, D.; Chiou, B.-S.; Powell-Palm, M. J.; Chen, L.; McHugh, T.; Rubinsky, B. Effects of Isochoric Freezing Conditions on Cut Potato Quality. Foods 2021, 10(5), 974. DOI: 10.3390/foods10050974.
  • Hayakawa, K.; Ueno, Y.; Kawamura, S.; Kato, T.; Hayashi, R. Microorganism Inactivation Using High-Pressure Generation in Sealed Vessels Under Sub-Zero Temperature. Appl. Microbiol. Biotechnol. 1998, 50(4), 415–418. DOI: 10.1007/s002530051313.
  • Bulut, S.; Karatzas, K. A. G. Inactivation of Escherichia Coli K12 in Phosphate Buffer Saline and Orange Juice by High Hydrostatic Pressure Processing Combined with Freezing. LWT 2021, 136, 110313. DOI: 10.1016/j.lwt.2020.110313.
  • Picart, L.; Dumay, E.; Guiraud, J.-P.; Cheftel, C. Combined High Pressure–Sub-zero Temperature Processing of Smoked Salmon Mince: Phase Transition Phenomena and Inactivation of Listeria Innocua. J. Food Eng. 2005, 68(1), 43–56. DOI: 10.1016/j.jfoodeng.2004.05.047.
  • Lebow, N. K.; DesRocher, L. D.; Younce, F. L.; Zhu, M.-J.; Ross, C. F.; Smith, D. M. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria Innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon. J. Food Sci. 2017, 82(12), 2977–2986. DOI: 10.1111/1750-3841.13957.
  • Cap, M.; Paredes, P. F.; Fernández, D.; Mozgovoj, M.; Vaudagna, S. R.; Rodriguez, A. Effect of High Hydrostatic Pressure on Salmonella Spp Inactivation and Meat-Quality of Frozen Chicken Breast. LWT 2020, 118, 108873. DOI: 10.1016/j.lwt.2019.108873.
  • Boziaris, I. S.; Parlapani, F. F.; Mireles DeWitt, C. A. High Pressure Processing at Ultra-Low Temperatures: Inactivation of Foodborne Bacterial Pathogens and Quality Changes in Frozen Fish Fillets. Innov. Food Sci. Emerg. Technol. 2021, 74, 102811. DOI: 10.1016/j.ifset.2021.102811.
  • Xiao, T.; Li, Y.; Hu, L.; Nie, P.; Ramaswamy, H. S.; Yu, Y. Demonstration of Escherichia Coli Inactivation in Sterile Physiological Saline Under High Pressure (HP) Phase Transition Conditions and Analysis of Probable Contribution of HP Metastable Positions Using Model Solutions and Apple Juice. Foods 2022, 11(8), 1080. DOI: 10.3390/foods11081080.
  • Bilbao-Sainz, C.; Sinrod, A. G. J.; Dao, L.; Takeoka, G.; Williams, T.; Wood, D.; Bridges, D. F.; Powell-Palm, M. J.; Ukpai, G.; Chiou, B.-S., et al. Preservation of Spinach by Isochoric (Constant Volume) Freezing. Int. J. Food Sci. Technol. 2020, 55(5), 2141–2151. DOI: 10.1111/ijfs.14463.
  • Wen, X.; Hu, R.; Zhao, J. H.; Peng, Y.; Ni, Y. Y. Evaluation of the Effects of Different Thawing Methods on Texture, Colour and Ascorbic Acid Retention of Frozen Hami Melon (Cucumis Melo Var. Saccharinus). Int. J. Food Sci. Technol. 2015, 50(5), 1116–1122. DOI: 10.1111/ijfs.12755.
  • Jia, F.; Jing, Y.; Dai, R.; Li, X.; Xu, B. High-Pressure Thawing of Pork: Water Holding Capacity, Protein Denaturation and Ultrastructure. Food Biosci. 2020, 38, 100688–100688. DOI: 10.1016/j.fbio.2020.100688.
  • Park, S. H.; Ryu, H. S.; Hong, G. P.; Min, S. G. Physical Properties of Frozen Pork Thawed by High Pressure Assisted Thawing Process. Food Sci. Technol. Int. 2006, 12(4), 347–352. DOI: 10.1177/1082013206068037.
  • Bilbao-Sainz, C.; Sinrod, A. J. G.; Williams, T.; Wood, D.; Chiou, B.-S.; Bridges, D. F.; Wu, V. C. H.; Lyu, C.; Rubinsky, B.; McHugh, T. Preservation of Tilapia (Oreochromis Aureus) Fillet by Isochoric (Constant Volume) Freezing. J. Aquat. Food Prod. Technol. 2020, 29(7), 629–640. DOI: 10.1080/10498850.2020.1785602.
  • Ritz, M.; Jugiau, F.; Federighi, M.; Chapleau, N.; De Lamballerie, M. Effects of High Pressure, Subzero Temperature, and pH on Survival of Listeria Monocytogenes in Buffer and Smoked Salmon. J. Food Prot. 2008, 71(8), 1612–1618. DOI: 10.4315/0362-028X-71.8.1612.
  • Zhu, S.; Ramaswamy, H. S.; Simpson, B. K. Effect of High-Pressure versus Conventional Thawing on Color, Drip Loss and Texture of Atlantic Salmon Frozen by Different Methods. LWT - Food Sci. Technol. 2004, 37(3), 291–299. DOI: 10.1016/j.lwt.2003.09.004.
  • Rouillé, J.; Lebail, A.; Ramaswamy, H. S.; Leclerc, L. High Pressure Thawing of Fish and Shellfish. J. Food Eng. 2002, 53(1), 83–88. DOI: 10.1016/S0260-8774(01)00143-1.
  • Chevalier, D.; Sequeira-Munoz, A.; Bail, A. L.; Simpson, B. K.; Ghoul, M. Effect of Freezing Conditions and Storage on Ice Crystal and Drip Volume in Turbot (Scophthalmus Maximus): Evaluation of Pressure Shift Freezing Vs. Air-Blast Freezing. Innov. Food Sci. Emerg. Technol. 2000, 1(3), 193–201. DOI: 10.1016/S1466-8564(00)00024-2.
  • Zhu, S.; Le Bail, A.; Ramaswamy, H. S. Ice Crystal Formation in Pressure Shift Freezing of Atlantic Salmon (Salmo Salar) as Compared to Classical Freezing Methods. J. Food Process Preserv. 2003, 27(6), 427–444. DOI: 10.1111/j.1745-4549.2003.tb00528.x.
  • Ma, H. J.; Ledward, D. A. High Pressure/Thermal Treatment Effects on the Texture of Beef Muscle. Meat Sci. 2004, 68(3), 347–355. DOI: 10.1016/j.meatsci.2004.04.001.
  • Cheng, L.; Sun, D. W.; Zhu, Z.; Zhang, Z. Emerging Techniques for Assisting and Accelerating Food Freezing Processes: A Review of Recent Research Progresses. Crit. Rev. Food Sci. Nutr. 2017, 57(4), 769–781. DOI: 10.1080/10408398.2015.1004569.
  • Tironi, V.; De Lamballerie, M.; Le Bail, A. Quality Changes During the Frozen Storage of Sea Bass (Dicentrarchus Labrax) Muscle After Pressure Shift Freezing and Pressure Assisted Thawing. Innov. Food Sci. Emerg. Technol. 2010, 11(4), 565–573. DOI: 10.1016/j.ifset.2010.05.001.
  • Hansen, E.; Appelgren Trinderup, R.; Hviid, M.; Darré, M.; Skibsted, L. H. Thaw Drip Loss and Protein Characterization of Drip from Air-Frozen, Cryogen-Frozen, and Pressure-Shift-Frozen Pork Longissimus Dorsi in Relation to Ice Crystal Size. Eur. Food Res. Technol. 2003, 218(1), 2–6. DOI: 10.1007/s00217-003-0824-y.
  • Jung, S.; Ghoul, M.; De Lamballerie-Anton, M. Influence of High Pressure on the Color and Microbial Quality of Beef Meat. LWT - Food Sci. Technol. 2003, 36(6), 625–631. DOI: 10.1016/S0023-6438(03)00082-3.
  • Marcos, B.; Kerry, J. P.; Mullen, A. M. High Pressure Induced Changes on Sarcoplasmic Protein Fraction and Quality Indicators. Meat Sci. 2010, 85(1), 115–120. DOI: 10.1016/j.meatsci.2009.12.014.
  • Realini, C. E.; Guàrdia, M. D.; Garriga, M.; Pérez-Juan, M.; Arnau, J. High Pressure and Freezing Temperature Effect on Quality and Microbial Inactivation of Cured Pork Carpaccio. Meat Sci. 2011, 88(3), 542–547. DOI: 10.1016/j.meatsci.2011.02.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.