0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Apigenin’s Health Benefits in Kidney Disease: Pharmacological Insights and Future Perspectives

, , , , , & ORCID Icon show all

References

  • Jager, K. J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A Single Number for Advocacy and Communication—Worldwide More Than 850 Million Individuals Have Kidney Diseases. Kidney Int. 2019, 96(5), 1048–1050. DOI: 10.1016/j.kint.2019.07.012.
  • Liu, Q.; Chen, J.; Zeng, A.; Song, L. Pharmacological Functions of Salidroside in Renal Diseases: Facts and Perspectives. Front. Pharmacol. 2024, 14. DOI: 10.3389/fphar.2023.1309598.
  • Chen, D.-Q.; Hu, H.-H.; Wang, Y.-N.; Feng, Y.-L.; Cao, G.; Zhao, Y.-Y. Natural Products for the Prevention and Treatment of Kidney Disease. Phytomed. Int. J. Phytother. Phytopharm. 2018, 50, 50–60. DOI: 10.1016/j.phymed.2018.09.182.
  • Ekrikpo, U.; Obiagwu, P.; Chika-Onu, U.; Yadla, M.; Karam, S.; Tannor, E. K.; Bello, A. K.; Okpechi, I. G. Epidemiology and Outcomes of Glomerular Diseases in Low- and Middle-Income Countries. Semin. Nephrol. 2022, 42(5), 151316. DOI: 10.1016/j.semnephrol.2023.151316.
  • Zoccali, C.; Mallamaci, F.; Lightstone, L.; Jha, V.; Pollock, C.; Tuttle, K.; Kotanko, P.; Wiecek, A.; Anders, H. J.; Remuzzi, G., et al. A New Era in the Science and Care of Kidney Diseases. Nat. Rev. Nephrol. 2024, 20(7), 460–472. DOI: 10.1038/s41581-024-00828-y.
  • Wang, J.; Lin, Y.; Chen, X.; Liu, Y.; Zhou, T. Mesenchymal Stem Cells: A New Therapeutic Tool for Chronic Kidney Disease. Front. Cell. Dev. Biol. 2022, 10, 910592. DOI: 10.3389/fcell.2022.910592.
  • Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and Advances in Clinical Applications of Mesenchymal Stromal Cells. J. Hematol. Oncol. 2021, 14(1), 24. DOI: 10.1186/s13045-021-01037-x.
  • Yang, B.; Xie, Y.; Guo, M.; Rosner, M. H.; Yang, H.; Ronco, C. Nephrotoxicity and Chinese Herbal Medicine. Clin. J. Am. Soc. Nephrol. CJASN. 2018, 13(10), 1605–1611. DOI: 10.2215/CJN.11571017.
  • Zhao, M.; Yu, Y.; Wang, R.; Chang, M.; Ma, S.; Qu, H.; Zhang, Y. Mechanisms and Efficacy of Chinese Herbal Medicines in Chronic Kidney Disease. Front. Pharmacol. 2021, 11, 619201. DOI: 10.3389/fphar.2020.619201.
  • Vargas, F.; Romecín, P.; García-Guillén, A. I.; Wangesteen, R.; Vargas-Tendero, P.; Paredes, M. D.; Atucha, N. M.; García-Estañ, J. Flavonoids in Kidney Health and Disease. Front. Physiol. 2018, 9. DOI: 10.3389/fphys.2018.00394.
  • Ahmed, S. A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A. B. Rationalizing the Therapeutic Potential of Apigenin Against Cancer. Life Sci. 2021, 267, 118814. DOI: 10.1016/j.lfs.2020.118814.
  • Nezu, M.; Suzuki, N. Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. Int. J. Mol. Sci. 2020, 21(8), 2951. DOI: 10.3390/ijms21082951.
  • Khanna, R. Clinical Presentation & Management of Glomerular Diseases: Hematuria, Nephritic & Nephrotic Syndrome. Mo. Med. 2011, 108(1), 33–36.
  • Radi, Z. A. Kidney Pathophysiology, Toxicology, and Drug-Induced Injury in Drug Development. Int. J. Toxicol. 2019, 38(3), 215–227. DOI: 10.1177/1091581819831701.
  • Yan, L.-J. Folic Acid-Induced Animal Model of Kidney Disease. Anim. Model Exp. Med. 2021, 4(4), 329–342. DOI: 10.1002/ame2.12194.
  • Jenssen, T. G. Efficacy and Safety of Sodium-Glucose-Transporter-2 Inhibitors in Kidney Transplant Patients. Curr. Opin. Nephrol. Hypertens. 2021, 30(6), 577–583. DOI: 10.1097/MNH.0000000000000749.
  • Capolongo, G.; Capasso, G.; Viggiano, D. A Shared Nephroprotective Mechanism for Renin-Angiotensin-System Inhibitors, Sodium-Glucose Co-Transporter 2 Inhibitors, and Vasopressin Receptor Antagonists: Immunology Meets Hemodynamics. Int. J. Mol. Sci. 2022, 23(7), 3915. DOI: 10.3390/ijms23073915.
  • Sharma, N.; Anders, H.-J.; Gaikwad, A. B. Fiend and Friend in the Renin Angiotensin System: An Insight on Acute Kidney Injury. Biomed. Pharmacother. 2019, 110, 764–774. DOI: 10.1016/j.biopha.2018.12.018.
  • Liew, A. Perspectives in Renal Replacement Therapy: Haemodialysis. Nephrol. Carlton Vic 2018, 23(Suppl S4), 95–99. DOI: 10.1111/nep.13449.
  • Lai, X.; Zheng, X.; Mathew, J. M.; Gallon, L.; Leventhal, J. R.; Zhang, Z. J. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front. Immunol. 2021, 12, 661643. DOI: 10.3389/fimmu.2021.661643.
  • Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E. B.; Novellino, E., et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20(6), 1305. DOI: 10.3390/ijms20061305.
  • Jang, J. Y.; Sung, B.; Kim, N. D. Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int. J. Mol. Sci. 2022, 23(7), 3757. DOI: 10.3390/ijms23073757.
  • Thomas, S. D.; Jha, N. K.; Jha, S. K.; Sadek, B.; Ojha, S. Pharmacological and Molecular Insight on the Cardioprotective Role of Apigenin. Nutrients. 2023, 15(2), 385. DOI: 10.3390/nu15020385.
  • Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant Flavone Apigenin: An Emerging Anticancer Agent. Curr. Pharmacol. Rep. 2017, 3(6), 423–446. DOI: 10.1007/s40495-017-0113-2.
  • Graf, J. Herbal Anti-Inflammatory Agents for Skin Disease. Skin Ther. Lett. 2000, 5(4), 3–5.
  • Mushtaq, Z.; Sadeer, N. B.; Hussain, M.; Mahwish Alsagaby, S. A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W. Therapeutical Properties of Apigenin: A Review on the Experimental Evidence and Basic Mechanisms. Int. J. Food Prop. 2023, 26(1), 1914–1939. DOI: 10.1080/10942912.2023.2236329.
  • Patel, D.; Shukla, S.; Gupta, S. Apigenin and Cancer Chemoprevention: Progress, Potential and Promise (Review). Int. J. Oncol. 2007, 30(1), 233–245. DOI: 10.3892/ijo.30.1.233.
  • Zhang, J.; Liu, D.; Huang, Y.; Gao, Y.; Qian, S. Biopharmaceutics Classification and Intestinal Absorption Study of Apigenin. Int. J. Pharm. 2012, 436(1), 311–317. DOI: 10.1016/j.ijpharm.2012.07.002.
  • Abid, R.; Ghazanfar, S.; Farid, A.; Sulaman, S. M.; Idrees, M.; Amen, R. A.; Muzammal, M.; Shahzad, M. K.; Mohamed, M. O.; Khaled, A. A., et al. Pharmacological Properties of 4′, 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways. Molecules 2022, 27(13), 4304. DOI: 10.3390/molecules27134304.
  • Singh, B.; Kumar, A.; Malik, A. K. Flavonoids Biosynthesis in Plants and Its Further Analysis by Capillary Electrophoresis. Electrophoresis. 2017, 38(6), 820–832. DOI: 10.1002/elps.201600334.
  • Chen, P.; Chen, F.; Guo, Z.; Lei, J.; Zhou, B. Recent Advancement in Bioeffect, Metabolism, Stability, and Delivery Systems of Apigenin, a Natural Flavonoid Compound: Challenges and Perspectives. Front. Nutr. 2023, 10, 10. DOI: 10.3389/fnut.2023.1221227.
  • Cvetanović, A. Chapter 24 - Apigenin. In A Centum of Valuable Plant Bioactives; Mushtaq, M. and Anwar, F., Eds.; Academic Press, 2021; pp. 545–562. DOI: 10.1016/B978-0-12-822923-1.00024-8.
  • Alam, W.; Rocca, C.; Khan, H.; Hussain, Y.; Aschner, M.; De Bartolo, A.; Amodio, N.; Angelone, T.; Cheang, W. S. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants. 2021, 10(10), 1643. DOI: 10.3390/antiox10101643.
  • Fossatelli, L.; Maroccia, Z.; Fiorentini, C.; Bonucci, M. Resources for Human Health from the Plant Kingdom: The Potential Role of the Flavonoid Apigenin in Cancer Counteraction. Int. J. Mol. Sci. 2024, 25(1), 251. DOI: 10.3390/ijms25010251.
  • DeRango-Adem, E. F.; Blay, J. Does Oral Apigenin Have Real Potential for a Therapeutic Effect in the Context of Human Gastrointestinal and Other Cancers? Front. Pharmacol. 2021, 12, 681477. DOI: 10.3389/fphar.2021.681477.
  • Zhang, J.; Liu, D.; Huang, Y.; Gao, Y.; Qian, S. Biopharmaceutics Classification and Intestinal Absorption Study of Apigenin. Int. J. Pharm. 2012, 436(1–2), 311–317. DOI: 10.1016/j.ijpharm.2012.07.002.
  • Zhang, X.; Han, R.; Sun, X.; Li, G.; Yang, Q.; Li, Q.; Gai, W.; Zhang, M.; Chen, L.; Yang, G., et al. The Effect of the Skeleton Structure of Flavanone and Flavonoid on Interaction with Transferrin. Bioorg. Med. Chem. Lett. 2013, 23(24), 6677–6681. DOI: 10.1016/j.bmcl.2013.10.042.
  • Gradolatto, A.; Basly, J.-P.; Berges, R.; Teyssier, C.; Chagnon, M.-C.; Siess, M.-H.; Canivenc-Lavier, M.-C. Pharmacokinetics and Metabolism of Apigenin in Female and Male Rats After a Single Oral Administration. Drug. Metab. Dispos. Biol. Fate Chem. 2005, 33(1), 49–54. DOI: 10.1124/dmd.104.000893.
  • Wang, M.; Firrman, J.; Liu, L.; Yam, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. Biomed Res. Int. 2019, 2019, e7010467. DOI: 10.1155/2019/7010467.
  • Ashrafizadeh, M.; Bakhoda, M. R.; Bahmanpour, Z.; Ilkhani, K.; Zarrabi, A.; Makvandi, P.; Khan, H.; Mazaheri, S.; Darvish, M.; Mirzaei, H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms with Emphasis on Pancreatic Cancer. Front. Chem. 2020, 8, 8. DOI: 10.3389/fchem.2020.00829.
  • Griffiths, L. A.; Smith, G. E. Metabolism of Apigenin and Related Compounds in the Rat. Metabolite Formation in vivo and by the Intestinal Microflora in vitro. Biochem. J. 1972, 128(4), 901–911. DOI: 10.1042/bj1280901.
  • Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic Properties and Drug Interactions of Apigenin, a Natural Flavone. Expert Opin. Drug. Metab. Toxicol. 2017, 13(3), 323–330. DOI: 10.1080/17425255.2017.1251903.
  • Kashyap, D.; Sharma, A.; Tuli, H. S.; Sak, K.; Garg, V. K.; Buttar, H. S.; Setzer, W. N.; Sethi, G. Apigenin: A Natural Bioactive Flavone-Type Molecule with Promising Therapeutic Function. J. Funct. Foods 2018, 48, 457–471. DOI: 10.1016/j.jff.2018.07.037.
  • Cicek, M.; Unsal, V.; Doganer, A.; Demir, M. Investigation of Oxidant/Antioxidant and Anti-Inflammatory Effects of Apigenin on Apoptosis in Sepsis-Induced Rat Lung. J. Biochem. Mol. Toxicol. 2021, 35(5), e22743. DOI: 10.1002/jbt.22743.
  • Bhosale, P. B.; Kim, H. H.; Abusaliya, A.; Jeong, S. H.; Park, M. Y.; Kim, H.-W.; Seong, J. K.; Ahn, M.; Park, K. I.; Heo, J. D., et al. Inhibition of Cell Proliferation and Cell Death by Apigetrin Through Death Receptor-Mediated Pathway in Hepatocellular Cancer Cells. Biomolecules. 2023, 13(7), 1131. DOI: 10.3390/biom13071131.
  • Yang, J.; Pi, C.; Wang, G. Inhibition of PI3K/Akt/mTOR Pathway by Apigenin Induces Apoptosis and Autophagy in Hepatocellular Carcinoma Cells. Biomed. Pharmacother. 2018, 103, 699–707. DOI: 10.1016/j.biopha.2018.04.072.
  • Kuru Bektaşoğlu, P.; Demir, D.; Koyuncuoğlu, T.; Yüksel, M.; Peker Eyüboğlu, İ.; Karagöz Köroğlu, A.; Akakın, D.; Yıldırım, A.; Çelikoğlu, E.; Gürer, B. Possible Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Apigenin in the Setting of Mild Traumatic Brain Injury: An Investigation. Immunopharmacol. Immunotoxicol. 2023, 45(2), 185–196. DOI: 10.1080/08923973.2022.2130076.
  • Adham, A. N.; Abdelfatah, S.; Naqishbandi, A. M.; Mahmoud, N.; Efferth, T. Cytotoxicity of Apigenin Toward Multiple Myeloma Cell Lines and Suppression of iNOS and COX-2 Expression in STAT1-Transfected HEK293 Cells. Phytomed. Int. J. Phytother. Phytopharm. 2021, 80, 153371. DOI: 10.1016/j.phymed.2020.153371.
  • Cavalier, A. N.; Clayton, Z. S.; Wahl, D.; Hutton, D. A.; McEntee, C. M.; Seals, D. R.; LaRocca, T. J. Protective Effects of Apigenin on the Brain Transcriptome with Aging. Mech. Ageing Dev. 2024, 217, 111889. DOI: 10.1016/j.mad.2023.111889.
  • Shu, N.; Zhang, Z.; Wang, X.; Li, R.; Li, W.; Liu, X.; Zhang, Q.; Jiang, Z.; Tao, L.; Zhang, L., et al. Apigenin Alleviates Autoimmune Uveitis by Inhibiting Microglia M1 Pro-Inflammatory Polarization. Invest. Ophthalmol. Vis. Sci. 2023, 64(5), 21. DOI: 10.1167/iovs.64.5.21.
  • Weng, X.; Luo, X.; Dai, X.; Lv, Y.; Zhang, S.; Bai, X.; Bao, X.; Wang, Y.; Zhao, C.; Zeng, M., et al. Apigenin Inhibits Macrophage Pyroptosis Through Regulation of Oxidative Stress and the NF-Κb Pathway and Ameliorates Atherosclerosis. Phytother. Res. PTR. 2023, 37(11), 5300–5314. DOI: 10.1002/ptr.7962.
  • Jin, Z.; Tian, L.; Zhang, Y.; Zhang, X.; Kang, J.; Dong, H.; Huang, N.; Pan, L.; Ning, B. Apigenin Inhibits Fibrous Scar Formation After Acute Spinal Cord Injury Through TGFβ/SMADs Signaling Pathway. CNS Neurosci. Ther. 2022, 28(11), 1883–1894. DOI: 10.1111/cns.13929.
  • Lu, J.; Meng, Z.; Cheng, B.; Liu, M.; Tao, S.; Guan, S. Apigenin Reduces the Excessive Accumulation of Lipids Induced by Palmitic Acid via the AMPK Signaling Pathway in HepG2 Cells. Exp. Ther. Med. 2019, 18(4), 2965–2971. DOI: 10.3892/etm.2019.7905.
  • Wu, L.; Guo, T.; Deng, R.; Liu, L.; Yu, Y. Apigenin Ameliorates Insulin Resistance and Lipid Accumulation by Endoplasmic Reticulum Stress and SREBP-1c/SREBP-2 Pathway in Palmitate-Induced HepG2 Cells and High-Fat Diet–Fed Mice. J. Pharmacol. Exp. Ther. 2021, 377(1), 146–156. DOI: 10.1124/jpet.120.000162.
  • Pan, F.-F.; Shao, J.; Shi, C.-J.; Li, Z.-P.; Fu, W.-M.; Zhang, J.-F. Apigenin Promotes Osteogenic Differentiation of Mesenchymal Stem Cells and Accelerates Bone Fracture Healing via Activating Wnt/β-Catenin Signaling. Am. J. Physiol. Endocrinol. Metab. 2021, 320(4), E760–E771. DOI: 10.1152/ajpendo.00543.2019.
  • Banerjee, K.; Banerjee, S.; Das, S.; Mandal, M. Probing the Potential of Apigenin Liposomes in Enhancing Bacterial Membrane Perturbation and Integrity Loss. J. Colloid. Interface Sci. 2015, 453, 48–59. DOI: 10.1016/j.jcis.2015.04.030.
  • Khandelwal, N.; Chander, Y.; Kumar, R.; Riyesh, T.; Dedar, R. K.; Kumar, M.; Gulati, B. R.; Sharma, S.; Tripathi, B. N.; Barua, S., et al. Antiviral Activity of Apigenin Against Buffalopox: Novel Mechanistic Insights and Drug-Resistance Considerations. Antiviral Res. 2020, 181, 104870. DOI: 10.1016/j.antiviral.2020.104870.
  • Tsiailanis, A. D.; Tellis, C. C.; Papakyriakopoulou, P.; Kostagianni, A. D.; Gkalpinos, V.; Chatzigiannis, C. M.; Kostomitsopoulos, N.; Valsami, G.; Tselepis, A. D.; Tzakos, A. G. Development of a Novel Apigenin Dosage Form as a Substitute for the Modern Triple Antithrombotic Regimen. Mol. Basel Switz. 2023, 28(5), 2311. DOI: 10.3390/molecules28052311.
  • Yue, S.; Xue, N.; Li, H.; Huang, B.; Chen, Z.; Wang, X. Hepatoprotective Effect of Apigenin Against Liver Injury via the Non-Canonical NF-Κb Pathway in vivo and in vitro. Inflammation. 2020, 43(5), 1634–1648. DOI: 10.1007/s10753-020-01238-5.
  • Wang, X.; Zhao, J.; Li, Y.; Rao, J.; Xu, G. Epigenetics and Endoplasmic Reticulum in Podocytopathy During Diabetic Nephropathy Progression. Front. Immunol. 2022, 13, 13. DOI: 10.3389/fimmu.2022.1090989.
  • Arora, M. K.; Singh, U. K. Molecular Mechanisms in the Pathogenesis of Diabetic Nephropathy: An Update. Vascul. Pharmacol. 2013, 58(4), 259–271. DOI: 10.1016/j.vph.2013.01.001.
  • Hu, Q.; Jiang, L.; Yan, Q.; Zeng, J.; Ma, X.; Zhao, Y. A Natural Products Solution to Diabetic Nephropathy Therapy. Pharmacol. Ther. 2023, 241, 108314. DOI: 10.1016/j.pharmthera.2022.108314.
  • Jin, Q.; Liu, T.; Qiao, Y.; Liu, D.; Yang, L.; Mao, H.; Ma, F.; Wang, Y.; Peng, L.; Zhan, Y. Oxidative Stress and Inflammation in Diabetic Nephropathy: Role of Polyphenols. Front. Immunol. 2023, 14, 14. DOI: 10.3389/fimmu.2023.1185317.
  • Malik, S.; Suchal, K.; Khan, S. I.; Bhatia, J.; Kishore, K.; Dinda, A. K.; Arya, D. S. Apigenin Ameliorates Streptozotocin-Induced Diabetic Nephropathy in Rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-Fibronectin Pathways. Am. J. Physiol. Renal Physiol. 2017, 313(2), F414–F422. DOI: 10.1152/ajprenal.00393.2016.
  • Hou, Y.; Zhang, Y.; Lin, S.; Yu, Y.; Yang, L.; Li, L.; Wang, W. Protective Mechanism of Apigenin in Diabetic Nephropathy is Related to Its Regulation of MiR-423-5P-USF2 Axis. Am. J. Transl. Res. 2021, 13(4), 2006–2020.
  • Ogura, Y.; Kitada, M.; Xu, J.; Monno, I.; Koya, D. CD38 Inhibition by Apigenin Ameliorates Mitochondrial Oxidative Stress Through Restoration of the Intracellular NAD+/NADH Ratio and Sirt3 Activity in Renal Tubular Cells in Diabetic Rats. Aging. 2020, 12(12), 11325–11336. DOI: 10.18632/aging.103410.
  • Zhang, J.; Zhao, X.; Zhu, H.; Wang, J.; Ma, J.; Gu, M. Apigenin Protects Against Renal Tubular Epithelial Cell Injury and Oxidative Stress by High Glucose via Regulation of NF-E2-Related Factor 2 (Nrf2) Pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res 2019, 25, 5280–5288. DOI: 10.12659/MSM.915038.
  • Saleh Aldayel, T. Apigenin Attenuates High-Fat Diet-Induced Nephropathy in Rats by Hypoglycemic and Hypolipidemic Effects, and Concomitant Activation of the Nrf2/Antioxidant Axis. J. Funct. Foods. 2022, 99, 105295. DOI: 10.1016/j.jff.2022.105295.
  • Johnson, R. J.; Bakris, G. L.; Borghi, C.; Chonchol, M. B.; Feldman, D.; Lanaspa, M. A.; Merriman, T. R.; Moe, O. W.; Mount, D. B.; Sanchez Lozada, L. G., et al. Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. Am. J. Kidney Dis. Off. J. Natl. Kidney Found 2018, 71(6), 851–865. DOI: 10.1053/j.ajkd.2017.12.009.
  • El Ridi, R.; Tallima, H. Physiological Functions and Pathogenic Potential of Uric Acid: A Review. J. Adv. Res 2017, 8(5), 487–493. DOI: 10.1016/j.jare.2017.03.003.
  • Li, Y.; Zhao, Z.; Luo, J.; Jiang, Y.; Li, L.; Chen, Y.; Zhang, L.; Huang, Q.; Cao, Y.; Zhou, P., et al. Apigenin Ameliorates Hyperuricemic Nephropathy by Inhibiting URAT1 and GLUT9 and Relieving Renal Fibrosis via the Wnt/β-Catenin Pathway. Phytomed. Int. J. Phytother. Phytopharm. 2021, 87, 153585. DOI: 10.1016/j.phymed.2021.153585.
  • Liu, T.; Gao, H.; Zhang, Y.; Wang, S.; Lu, M.; Dai, X.; Liu, Y.; Shi, H.; Xu, T.; Yin, J., et al. Apigenin Ameliorates Hyperuricemia and Renal Injury Through Regulation of Uric Acid Metabolism and JAK2/STAT3 Signaling Pathway. Pharm. Basel Switz 2022, 15(11), 1442. DOI: 10.3390/ph15111442.
  • Zhu, J.-X.; Yang, H.-Y.; Hu, W.-Q.; Cheng, J.; Liu, Y.; Yi, L.-T.; Cheng, H.-Y. Active Components from Lagotis Brachystachya Maintain Uric Acid Homeostasis by Inhibiting Renal TLR4-NLRP3 Signaling in Hyperuricemic Mice. Inflammopharmacology. 2021, 29(4), 1187–1200. DOI: 10.1007/s10787-021-00844-5.
  • Zhang, C.; Zhao, M.; Jiang, B.; Yu, J.; Hao, Q.; Liu, W.; Hu, Z.; Zhang, Y.; Song, C. Extraction Optimization, Structural Characterization and Potential Alleviation of Hyperuricemia by Flavone Glycosides from Celery Seeds. Food Funct. 2022, 13(19), 9832–9846. DOI: 10.1039/d2fo01715f.
  • Fan, H.; Liu, J.; Sun, J.; Feng, G.; Li, J. Advances in the Study of B Cells in Renal Ischemia-Reperfusion Injury. Front. Immunol. 2023, 14, 14. DOI: 10.3389/fimmu.2023.1216094.
  • Smith, S. F.; Hosgood, S. A.; Nicholson, M. L. Ischemia-Reperfusion Injury in Renal Transplantation: 3 Key Signaling Pathways in Tubular Epithelial Cells. Kidney Int. 2019, 95(1), 50–56. DOI: 10.1016/j.kint.2018.10.009.
  • Pefanis, A.; Ierino, F. L.; Murphy, J. M.; Cowan, P. J. Regulated Necrosis in Kidney Ischemia-Reperfusion Injury. Kidney Int. 2019, 96(2), 291–301. DOI: 10.1016/j.kint.2019.02.009.
  • Liu, Y.; Liu, X.; Wang, L.; Du, Y.; Chen, Z.; Chen, H.; Guo, J.; Weng, X.; Wang, X.; Wang, M., et al. Effects of Apigenin on the Expression Levels of B-Cell Lymphoma-2, Fas and Fas Ligand in Renal Ischemia-Reperfusion Injury in Rats. Exp. Ther. Med. 2017, 14(6), 5345–5354. DOI: 10.3892/etm.2017.5241.
  • Liu, Y.; Wang, L.; Du, Y.; Chen, Z.; Guo, J.; Weng, X.; Wang, X.; Wang, M.; Chen, D.; Liu, X. Effects of Apigenin Pretreatment Against Renal Ischemia/Reperfusion Injury via Activation of the JAK2/STAT3 Pathway. Biomed. Pharmacother. 2017, 95, 1799–1808. DOI: 10.1016/j.biopha.2017.09.091.
  • Wang, X.; Wang, W.; Wang, J.-Z.; Yang, C.; Liang, C.-Z. Effect of Apigenin on Apoptosis Induced by Renal Ischemia/Reperfusion Injury in vivo and in vitro. Ren. Fail. 2018, 40(1), 498–505. DOI: 10.1080/0886022X.2018.1497517.
  • Liu, Y.; Liu, X.; Du, Y.; Chen, Z.; Chen, H.; Guo, J.; Weng, X.; Wang, X.; Wang, M.; Wang, Z., et al. Combination of Apigenin and Ischemic Postconditioning Protects Against Renal Ischemia/Reperfusion Injury in Rat by Inhibiting TLR4/NF-Κb Signaling Pathway.
  • He, X.; Wen, Y.; Wang, Q.; Wang, Y.; Zhang, G.; Wu, J.; Li, Z.; Wen, J. Apigenin Nanoparticle Attenuates Renal Ischemia/Reperfusion Inflammatory Injury by Regulation of MiR-140-5p/CXCL12/NF-Κb Signaling Pathway. J. Biomed. Nanotechnol. 2021, 17(1), 64–77. DOI: 10.1166/jbn.2021.3010.
  • Song, L.; Zhang, W.; Tang, S.-Y.; Luo, S.-M.; Xiong, P.-Y.; Liu, J.-Y.; Hu, H.-C.; Chen, Y.-Q.; Jia, B.; Yan, Q.-H., et al. Natural Products in Traditional Chinese Medicine: Molecular Mechanisms and Therapeutic Targets of Renal Fibrosis and State-Of-The-Art Drug Delivery Systems. Biomed. Pharmacother. 2024, 170, 116039. DOI: 10.1016/j.biopha.2023.116039.
  • Sun, T.; Li, S.; Li, X.; Lei, Y.; Wang, B.; Liu, X.; Yu, S.; Li, N. Apigenin Intervenes in Liver Fibrosis by Regulating PKM2-HIF-1α Mediated Oxidative Stress. Biochem. Biophys. Res. Commun. 2024, 721, 150130. DOI: 10.1016/j.bbrc.2024.150130.
  • Kan, H.; Wang, P.; Yang, Y.; Jia, H.; Liu, A.; Wang, M.; Ouyang, C.; Yang, X. Apigenin Inhibits Proliferation and Differentiation of Cardiac Fibroblasts Through AKT/GSK3β Signaling Pathway. J. Ethnopharmacol. 2024, 334, 118518. DOI: 10.1016/j.jep.2024.118518.
  • Li, P.; Fang, R.-L.; Wang, W.; Zeng, X.-X.; Lan, T.; Liu, S.-Y.; Hu, Y.-J.; Shen, Q.; Wang, S.-W.; Tong, Y.-H., et al. Apigenin Suppresses Epithelial-Mesenchymal Transition in High Glucose-Induced Retinal Pigment Epithelial Cell by Inhibiting CBP/p300-Mediated Histone Acetylation. Biochem. Biophys. Res. Commun. 2024, 717, 150061. DOI: 10.1016/j.bbrc.2024.150061.
  • Wei, X.; Gao, P.; Pu, Y.; Li, Q.; Yang, T.; Zhang, H.; Xiong, S.; Cui, Y.; Li, L.; Ma, X., et al. Activation of TRPV4 by Dietary Apigenin Antagonizes Renal Fibrosis in Deoxycorticosterone Acetate (DOCA)-Salt-Induced Hypertension. Clin. Sci. 2017, 131(7), 567–581. DOI: 10.1042/CS20160780.
  • Li, N.; Wang, Z.; Sun, T.; Lei, Y.; Liu, X.; Li, Z. Apigenin Alleviates Renal Fibroblast Activation Through AMPK and ERK Signaling Pathways in vitro. Curr. Pharm. Biotechnol. 2020, 21(11), 1107–1118. DOI: 10.2174/1389201021666200320140908.
  • Siddiqi, A.; Rani, M.; Bansal, P.; Rizvi, M. M. A. Renal Cell Carcinoma Management: A Step to Nano-Chemoprevention. Life Sci. 2022, 308, 120922. DOI: 10.1016/j.lfs.2022.120922.
  • Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S. A.; Bray, F.; Coleman, J.; Gore, J. L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urology. 2019, 75(1), 74–84. DOI: 10.1016/j.eururo.2018.08.036.
  • Lyskjær, I.; Iisager, L.; Axelsen, C. T.; Nielsen, T. K.; Dyrskjøt, L.; Fristrup, N. Management of Renal Cell Carcinoma: Promising Biomarkers and the Challenges to Reach the Clinic. Clin. Cancer Res. 2024, 30(4), 663–672. DOI: 10.1158/1078-0432.CCR-23-1892.
  • Meng, S.; Zhu, Y.; Li, J.-F.; Wang, X.; Liang, Z.; Li, S.-Q.; Xu, X.; Chen, H.; Liu, B.; Zheng, X.-Y., et al. Apigenin Inhibits Renal Cell Carcinoma Cell Proliferation. Oncotarget. 2017, 8(12), 19834–19842. DOI: 10.18632/oncotarget.15771.
  • Bao, Y.; Wu, X.; Jin, X.; Kanematsu, A.; Nojima, M.; Kakehi, Y.; Yamamoto, S. Apigenin Inhibits Renal Cell Carcinoma Cell Proliferation Through G2/M Phase Cell Cycle Arrest. Oncol. Rep. 2022, 47(3), 60. DOI: 10.3892/or.2022.8271.
  • Li, J.; Tan, G.; Cai, Y.; Liu, R.; Xiong, X.; Gu, B.; He, W.; Liu, B.; Ren, Q.; Wu, J., et al. A Novel Apigenin Derivative Suppresses Renal Cell Carcinoma via Directly Inhibiting Wild-Type and Mutant MET. Biochem. Pharmacol. 2021, 190, 114620. DOI: 10.1016/j.bcp.2021.114620.
  • Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in Cancer Therapy: Anti-Cancer Effects and Mechanisms of Action. Cell. Biosci. 2017, 7(1), 50. DOI: 10.1186/s13578-017-0179-x.
  • Xu, Y.; Xin, Y.; Diao, Y.; Lu, C.; Fu, J.; Luo, L.; Yin, Z.; Sarkar, F. H. Synergistic Effects of Apigenin and Paclitaxel on Apoptosis of Cancer Cells. PLOS ONE. 2011, 6(12), e29169. DOI: 10.1371/journal.pone.0029169.
  • Lee, S. H.; Ryu, J. K.; Lee, K.-Y.; Woo, S. M.; Park, J. K.; Yoo, J. W.; Kim, Y.-T.; Yoon, Y. B. Enhanced Anti-Tumor Effect of Combination Therapy with Gemcitabine and Apigenin in Pancreatic Cancer. Cancer Lett. 2008, 259(1), 39–49. DOI: 10.1016/j.canlet.2007.09.015.
  • Gaballah, H. H.; Gaber, R. A.; Mohamed, D. A. Apigenin Potentiates the Antitumor Activity of 5-FU on Solid Ehrlich Carcinoma: Crosstalk Between Apoptotic and JNK-Mediated Autophagic Cell Death Platforms. Toxicol. Appl. Pharmacol. 2017, 316, 27–35. DOI: 10.1016/j.taap.2016.12.012.
  • Sen, K.; Banerjee, S.; Mandal, M. Dual Drug Loaded Liposome Bearing Apigenin and 5-Fluorouracil for Synergistic Therapeutic Efficacy in Colorectal Cancer. Colloids Surf. B Biointerfaces. 2019, 180, 9–22. DOI: 10.1016/j.colsurfb.2019.04.035.
  • Viljoen, A.; Chaudhry, R.; Bycroft, J. Renal Stones. Ann. Clin. Biochem. 2019, 56(1), 15–27. DOI: 10.1177/0004563218781672.
  • Azimi, A.; Eidi, A.; Mortazavi, P.; Rohani, A. H. Protective Effect of Apigenin on Ethylene Glycol-Induced Urolithiasis via Attenuating Oxidative Stress and Inflammatory Parameters in Adult Male Wistar Rats. Life Sci. 2021, 279, 119641. DOI: 10.1016/j.lfs.2021.119641.
  • Stiani, S. N.; Syahidah, F. M.; Fikriani, H.; Subarnas, A.; Rusdiana, T. Anticalculi Activity of Apigenin and Celery (Apium Graveolens L.) Extract in Rats Induced by Ethylene Glycol–Ammonium Chloride. J. Pharm. Bioallied Sci. 2019, 11(Suppl 4), S556–S561. DOI: 10.4103/jpbs.JPBS_202_19.
  • Lin, Q.; Li, S.; Jin, H.; Cai, H.; Zhu, X.; Yang, Y.; Wu, J.; Qi, C.; Shao, X.; Li, J., et al. Mitophagy Alleviates Cisplatin-Induced Renal Tubular Epithelial Cell Ferroptosis Through ROS/HO-1/GPX4 Axis. Int. J. Biol. Sci. 2023, 19(4), 1192–1210. DOI: 10.7150/ijbs.80775.
  • Fang, C.-Y.; Lou, D.-Y.; Zhou, L.-Q.; Wang, J.-C.; Yang, B.; He, Q.-J.; Wang, J.-J.; Weng, Q.-J. Natural Products: Potential Treatments for Cisplatin-Induced Nephrotoxicity. Acta Pharmacol. Sin. 2021, 42(12), 1951–1969. DOI: 10.1038/s41401-021-00620-9.
  • He, X.; Li, C.; Wei, Z.; Wang, J.; Kou, J.; Liu, W.; Shi, M.; Yang, Z.; Fu, Y. Protective Role of Apigenin in Cisplatin-Induced Renal Injury. Eur. J. Pharmacol. 2016, 789, 215–221. DOI: 10.1016/j.ejphar.2016.07.003.
  • Ju, S. M.; Kang, J. G.; Bae, J. S.; Pae, H. O.; Lyu, Y. S.; Jeon, B. H. The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity Through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells. Evid.-Based Complement. Altern. Med. ECAM. 2015, 2015, 186436. DOI: 10.1155/2015/186436.
  • Hassan, S. M.; Khalaf, M. M.; Sadek, S. A.; Abo-Youssef, A. M. Protective Effects of Apigenin and Myricetin Against Cisplatin-Induced Nephrotoxicity in Mice. Pharm. Biol. 2017, 55(1), 766–774. DOI: 10.1080/13880209.2016.1275704.
  • Sharma, A.; Sinha, S.; Shrivastava, N. Apigenin and Kaempferol as Novel Renoprotective Agent Against Cisplatin-Induced Toxicity: An in vitro Study. Nat. Prod. Res. 2022, 36(23), 6085–6090. DOI: 10.1080/14786419.2022.2045603.
  • Arab, H. H.; Abd El-Aal, S. A.; Eid, A. H.; Arafa, E.-S. A.; Mahmoud, A. M.; Ashour, A. M. Targeting Inflammation, Autophagy, and Apoptosis by Troxerutin Attenuates Methotrexate-Induced Renal Injury in Rats. Int. Immunopharmacol. 2022, 103, 108284. DOI: 10.1016/j.intimp.2021.108284.
  • Sahindokuyucu-Kocasari, F.; Akyol, Y.; Ozmen, O.; Erdemli-Kose, S.; Garli, S. Apigenin Alleviates Methotrexate-Induced Liver and Kidney Injury in Mice. Hum. Exp. Toxicol. 2021, 40(10), 1721–1731. DOI: 10.1177/09603271211009964.
  • Wu, Q.; Chen, J.; Zheng, X.; Song, J.; Yin, L.; Guo, H.; Chen, Q.; Liu, Y.; Ma, Q.; Zhang, H., et al. Kaempferol Attenuates Doxorubicin-Induced Renal Tubular Injury by Inhibiting ROS/ASK1-Mediated Activation of the MAPK Signaling Pathway. Biomed. Pharmacother. 2023, 157, 114087. DOI: 10.1016/j.biopha.2022.114087.
  • Wu, Q.; Li, W.; Zhao, J.; Sun, W.; Yang, Q.; Chen, C.; Xia, P.; Zhu, J.; Zhou, Y.; Huang, G., et al. Apigenin Ameliorates Doxorubicin-Induced Renal Injury via Inhibition of Oxidative Stress and Inflammation. Biomed. Pharmacother. 2021, 137, 111308. DOI: 10.1016/j.biopha.2021.111308.
  • Kang, S.; Chen, T.; Hao, Z.; Yang, X.; Wang, M.; Zhang, Z.; Hao, S.; Lang, F.; Hao, H. Oxymatrine Alleviates Gentamicin-Induced Renal Injury in Rats. Mol. Basel Switz. 2022, 27(19), 6209. DOI: 10.3390/molecules27196209.
  • Hussein, M. M.; Althagafi, H. A.; Alharthi, F.; Albrakati, A.; Alsharif, K. F.; Theyab, A.; Kassab, R. B.; Mufti, A. H.; Algahtani, M.; Oyouni, A. A. A., et al. Apigenin Attenuates Molecular, Biochemical, and Histopathological Changes Associated with Renal Impairments Induced by Gentamicin Exposure in Rats. Environ. Sci. Pollut. Res. Int. 2022, 29(43), 65276–65288. DOI: 10.1007/s11356-022-20235-9.
  • Huo, X.; Meng, Q.; Wang, C.; Zhu, Y.; Liu, Z.; Ma, X.; Ma, X.; Peng, J.; Sun, H.; Liu, K. Cilastatin Protects Against Imipenem-Induced Nephrotoxicity via Inhibition of Renal Organic Anion Transporters (OATs). Acta Pharm. Sin. B. 2019, 9(5), 986–996. DOI: 10.1016/j.apsb.2019.02.005.
  • Huo, X.; Meng, Q.; Wang, C.; Wu, J.; Zhu, Y.; Sun, P.; Ma, X.; Sun, H.; Liu, K. Targeting Renal OATs to Develop Renal Protective Agent from Traditional Chinese Medicines: Protective Effect of Apigenin Against Imipenem-Induced Nephrotoxicity. Phytother. Res. PTR. 2020, 34(11), 2998–3010. DOI: 10.1002/ptr.6727.
  • Wu, Q.; Kuca, K. Metabolic Pathway of Cyclosporine a and Its Correlation with Nephrotoxicity. Curr. Drug. Metab. 2019, 20(2), 84–90. DOI: 10.2174/1389200219666181031113505.
  • Chong, F. W.; Chakravarthi, S.; Nagaraja, H. S.; Thanikachalam, P. M.; Lee, N. Expression of Transforming Growth Factor- and Determination of Apoptotic Index in Histopathological Sections for Assessment of the Effects of Apigenin (4’, 5’, 7’ - Trihydroxyflavone) on Cyclosporine a Induced Renal Damage, 2009.
  • Gulati, N. M.; Stewart, P. L.; Steinmetz, N. F. Bioinspired Shielding Strategies for Nanoparticle Drug Delivery Applications. Mol. Pharm. 2018, 15(8), 2900–2909. DOI: 10.1021/acs.molpharmaceut.8b00292.
  • Makhdoumi, P.; Karimi, H.; Khazaei, M. Review on Metal-Based Nanoparticles: Role of Reactive Oxygen Species in Renal Toxicity. Chem. Res. Toxicol. 2020, 33(10), 2503–2514. DOI: 10.1021/acs.chemrestox.9b00438.
  • Ali, A. A.-M.; Mansour, A. B.; Attia, S. A. The Potential Protective Role of Apigenin Against Oxidative Damage Induced by Nickel Oxide Nanoparticles in Liver and Kidney of Male Wistar Rat, Rattus norvegicus. Environ. Sci. Pollut. Res. 2021, 28(22), 27577–27592. DOI: 10.1007/s11356-021-12632-3.
  • Wang, T.; Zhang, Z.; Xie, M.; Li, S.; Zhang, J.; Zhou, J. Apigenin Attenuates Mesoporous Silica Nanoparticles-Induced Nephrotoxicity by Activating FOXO3a. Biol. Trace Elem. Res. 2022, 200(6), 2793–2806. DOI: 10.1007/s12011-021-02871-3.
  • Zamani, F.; Samiei, F.; Mousavi, Z.; Azari, M. R.; Seydi, E.; Pourahmad, J. Apigenin Ameliorates Oxidative Stress and Mitochondrial Damage Induced by Multiwall Carbon Nanotubes in Rat Kidney Mitochondria. J. Biochem. Mol. Toxicol. 2021, 35(6), 1–7. DOI: 10.1002/jbt.22762.
  • Petejova, N.; Martinek, A.; Zadrazil, J.; Teplan, V. Acute Toxic Kidney Injury. Ren. Fail. 2019, 41(1), 576–594. DOI: 10.1080/0886022X.2019.1628780.
  • Wang, E.; Chen, F.; Hu, X.; Yuan, Y. Protective Effects of Apigenin Against Furan-Induced Toxicity in Mice. Food Funct. 2014, 5(8), 1804–1812. DOI: 10.1039/c4fo00038b.
  • Zhong, Y.; Jin, C.; Wang, X.; Li, X.; Han, J.; Xue, W.; Wu, P.; Peng, X.; Xia, X. Protective Effects of Apigenin Against 3-MCPD-Induced Renal Injury in Rat. Chem. Biol. Interact. 2018, 296, 9–17. DOI: 10.1016/j.cbi.2018.08.005.
  • Ahmad, A.; Kumari, P.; Ahmad, M. Apigenin Attenuates Edifenphos-Induced Toxicity by Modulating ROS-Mediated Oxidative Stress, Mitochondrial Dysfunction and Caspase Signal Pathway in Rat Liver and Kidney. Pestic. Biochem. Physiol. 2019, 159, 163–172. DOI: 10.1016/j.pestbp.2019.06.010.
  • Kang, H.-K.; Ecklund, D.; Liu, M.; Datta, S. K. Apigenin, a Non-Mutagenic Dietary Flavonoid, Suppresses Lupus by Inhibiting Autoantigen Presentation for Expansion of Autoreactive Th1 and Th17 Cells. Arthritis Res. Ther. 2009, 11(2), R59. DOI: 10.1186/ar2682.
  • Almaghrabi, S. Y. Apigenin Ameliorates Hypercholesterolemic-Induced Kidney Injury via Modulating Renal KIM-1, Fn1, and Nrf2 Signaling Pathways.
  • Jeon, B.-J.; Yang, H.-M.; Lyu, Y.-S.; Pae, H.-O.; Ju, S.-M.; Jeon, B.-H. Apigenin Inhibits Indoxyl Sulfate-Induced Endoplasmic Reticulum Stress and Anti-Proliferative Pathways, CHOP and IL-6/p21, in Human Renal Proximal Tubular Cells. Eur. Rev. Med. Pharmacol. Sci. 2015, 19(12), 2303–2310.
  • Fehaid, A.; Al-Ghamdi, M. S.; Alzahrani, K. J.; Theyab, A.; Al-Amer, O. M.; Al-Shehri, S. S.; Algahtani, M.; Oyouni, A. A.; Alnfiai, M. M.; Aly, M. H., et al. Apigenin Protects from Hepatorenal Damage Caused by Lead Acetate in Rats. J. Biochem. Mol. Toxicol. 2023, 37(3), e23275. DOI: 10.1002/jbt.23275.
  • Kramer, D. J.; Johnson, A. A. Apigenin: A Natural Molecule at the Intersection of Sleep and Aging. Front. Nutr. 2024, 11. DOI: 10.3389/fnut.2024.1359176.
  • Amsterdam, J. D.; Li, Q. S.; Xie, S. X.; Mao, J. J. Putative Antidepressant Effect of Chamomile (Matricaria Chamomilla L.) Oral Extract in Subjects with Comorbid Generalized Anxiety Disorder and Depression. The J. Alternative Complement. Med. Sep 18, 2020, 26(9), 815–821. DOI: 10.1089/acm.2019.0252.
  • Zargaran, A.; Borhani-Haghighi, A.; Salehi-Marzijarani, M.; Faridi, P.; Daneshamouz, S.; Azadi, A.; Sadeghpour, H.; Sakhteman, A.; Mohagheghzadeh, A. Evaluation of the Effect of Topical Chamomile (Matricaria Chamomilla L.) Oleogel as Pain Relief in Migraine without Aura: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Neurol. Sci. 2018, 39(8), 1345–1353. DOI: 10.1007/s10072-018-3415-1.
  • Shoara, R.; Hashempur, M. H.; Ashraf, A.; Salehi, A.; Dehshahri, S.; Habibagahi, Z. Efficacy and Safety of Topical Matricaria Chamomilla L. (Chamomile) Oil for Knee Osteoarthritis: A Randomized Controlled Clinical Trial. Complement. Ther. Clin. Pract. 2015, 21(3), 181–187. DOI: 10.1016/j.ctcp.2015.06.003.
  • Choi, S.; Youn, J.; Kim, K.; Joo, D. H.; Shin, S.; Lee, J.; Lee, H. K.; An, I.-S.; Kwon, S.; Youn, H. J., et al. Apigenin Inhibits UVA-Induced Cytotoxicity in vitro and Prevents Signs of Skin Aging in vivo. Int. J. Mol. Med. 2016, 38(2), 627–634. DOI: 10.3892/ijmm.2016.2626.
  • Hoensch, H.; Groh, B.; Edler, L.; Kirch, W. Prospective Cohort Comparison of Flavonoid Treatment in Patients with Resected Colorectal Cancer to Prevent Recurrence. World J. Gastroenterol. 2008, 14(14), 2187–2193. DOI: 10.3748/wjg.14.2187.
  • Li, L.; Gu, L.; Chen, Z.; Wang, R.; Ye, J.; Jiang, H. Toxicity Study of Ethanolic Extract of Chrysanthemum Morifolium in Rats. J. Food Sci. 2010, 75(6), T105–109. DOI: 10.1111/j.1750-3841.2010.01702.x.
  • Divya Rajaselvi, N.; Jida, M. D.; Nair, D. B.; Sujith, S.; Beegum, N.; Nisha, A. R. Toxicity Prediction and Analysis of Flavonoid Apigenin as a Histone Deacetylase Inhibitor: An in-Silico Approach. Silico Pharmacol. 2023, 11(1), 34. DOI: 10.1007/s40203-023-00170-4.
  • Nielsen, S. E.; Young, J. F.; Daneshvar, B.; Lauridsen, S. T.; Knuthsen, P.; Sandström, B.; Dragsted, L. O. Effect of Parsley (Petroselinum Crispum) Intake on Urinary Apigenin Excretion, Blood Antioxidant Enzymes and Biomarkers for Oxidative Stress in Human Subjects. Br. J. Nutr. 1999, 81(6), 447–455. DOI: 10.1017/S000711459900080X.
  • Janssen, K.; Mensink, R. P.; Cox, F. J.; Harryvan, J. L.; Hovenier, R.; Hollman, P. C.; Katan, M. B. Effects of the Flavonoids Quercetin and Apigenin on Hemostasis in Healthy Volunteers: Results from an in vitro and a Dietary Supplement Study. Am. J. Clin. Nutr. 1998, 67(2), 255–262. DOI: 10.1093/ajcn/67.2.255.
  • Singh, P.; Mishra, S. K.; Noel, S.; Sharma, S.; Rath, S. K.; Ahmad, A. Acute Exposure of Apigenin Induces Hepatotoxicity in Swiss Mice. PLOS ONE. 2012, 7(2), e31964. DOI: 10.1371/journal.pone.0031964.
  • Saeed, M.; Kadioglu, O.; Khalid, H.; Sugimoto, Y.; Efferth, T. Activity of the Dietary Flavonoid, Apigenin, Against Multidrug-Resistant Tumor Cells as Determined by Pharmacogenomics and Molecular Docking. J. Nutr. Biochem. 2015, 26(1), 44–56. DOI: 10.1016/j.jnutbio.2014.09.008.
  • Zhang, D.-Y.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Wang, W.; Gu, C.-B.; Zhao, C.-J.; Jiao, J.; Efferth, T. Enzyme Pretreatment and Negative Pressure Cavitation Extraction of Genistein and Apigenin from the Roots of Pigeon Pea [Cajanus Cajan (L.) Millsp.] and the Evaluation of Antioxidant Activity. Ind. Crops Prod. 2012, 37(1), 311–320. DOI: 10.1016/j.indcrop.2011.12.026.
  • Sen, K.; Mandal, M. Second Generation Liposomal Cancer Therapeutics: Transition from Laboratory to Clinic. Int. J. Pharm. 2013, 448(1), 28–43. DOI: 10.1016/j.ijpharm.2013.03.006.
  • Banerjee, K.; Banerjee, S.; Mandal, M. Enhanced Chemotherapeutic Efficacy of Apigenin Liposomes in Colorectal Cancer Based on Flavone-Membrane Interactions. J. Colloid. Interface Sci. 2017, 491, 98–110. DOI: 10.1016/j.jcis.2016.12.025.
  • Bhattacharya, S.; Mondal, L.; Mukherjee, B.; Dutta, L.; Ehsan, I.; Debnath, M. C.; Gaonkar, R. H.; Pal, M. M.; Majumdar, S. Apigenin Loaded Nanoparticle Delayed Development of Hepatocellular Carcinoma in Rats. Nanomed. Nanotechnol. Biol. Med. 2018, 14(6), 1905–1917. DOI: 10.1016/j.nano.2018.05.011.
  • Shukla, R.; Kashaw, S. K.; Jain, A. P.; Lodhi, S. Fabrication of Apigenin Loaded Gellan Gum-Chitosan Hydrogels (GGCH-HGs) for Effective Diabetic Wound Healing. Int. J. Biol. Macromol. 2016, 91, 1110–1119. DOI: 10.1016/j.ijbiomac.2016.06.075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.