345
Views
1
CrossRef citations to date
0
Altmetric
Articles

Mathematical Difficulties vs. High Achievement: An Analysis of Arithmetical Cognition in Elementary School

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 49-65 | Received 10 Sep 2019, Accepted 31 Jan 2020, Published online: 09 Feb 2020

References

  • Andersson, U. (2008). Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology, 100, 48–66. doi:10.1037/a0025398
  • Andersson, U. (2010). Skill development in different components of arithmetic and basic cognitive functions: Findings from a 3-year longitudinal study of children with different types of learning difficulties. Journal of Educational Psychology, 102(1), 115–134. doi:10.1037/a0016838
  • Baroody, A. J. (2006). Why children have difficulty mastering the basic number combinations and how to help them. Teaching Children Mathematics, 13, 22–31.
  • Berg, D. H. (2008). Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99, 288−308. doi:10.1016/j.jecp.2007.12.002
  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534–541. doi:10.1016/j.tics.2010.09.007
  • Cai, D., Georgiou, G., Wen, M., & Das, J. (2016). The role of planning in different mathematical skills. Journal of Cognitive Psychology, 28(2), 234–241. doi:10.1080/20445911.2015.1103742
  • Cai, D., Li, Q. W., & Ping, C. P. (2013). Cognitive processing characteristics of 6th to 8th grade Chinese students with mathematics learning disability: Relationships among working memory, PASS processes, and processing speed. Learning and Individual Differences, 27, 120–127. doi:10.1016/j.lindif.2013.07.008
  • Cowan, R., Donlan, C., Shepherd, D.-L., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103, 786–803. doi:10.1037/a0024556
  • Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology, 106(1), 214–229. doi:10.1037/a0034097
  • Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34(4), 344–377. doi:10.1016/j.dr.2014.10.001
  • Dark, V. J., & Benbow, C. P. (1991). Differential enhancement of working memory with mathematical versus verbal precocity. Journal of Educational Psychology, 83, 48–60. doi:10.1037/0022-0663.83.1.48
  • Das, J. P., & Naglieri, J. A. (2001). The Das-Naglieri cognitive assessment system in theory and practice. In J. J. W. Andrews, D. H. Sakolfske, & H. L. Janzen (Eds.), Handbook of psychoeducational assessment: ability, achievement, and behavior in children (pp. 34–64). San Diego, CA: Academic Press.
  • Das, J. P., & Janzen, C. (2004). Learning math: basic concepts, math difficulties, and suggestions for intervention. Developmental Disabilities Bulletin, 32(2), 191–205.
  • Das, J. P., Kirby, J. R., & Jarman, R. F. (1979). Simultaneous and successive cognitive processes. New York, NY: Academic Press.
  • Das, J. P., & Misra, S. B. (2015). Cognitive planning and executive functions. Applications in management and education. New Delhi, India: SAGE.
  • Das, J. P., Naglieri, J. A., & Kirby, J. R. (1994). Assessment of cognitive processes: The PASS theory of intelligence. Boston, MA: Allyn & Bacon.
  • De Smedt, B., Noël, M., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55. doi:10.1016/j.tine.2013.06.001
  • Deaño, M., Alfonso, S., & Fernández, M. J. (2006). El D.N:CAS como sistema de evaluación cognitiva para el aprendizaje [The D.N:CAS as a cognitive assessment system of learning.]. In M. Deaño (Ed.), Formación del profesorado para atender a las necesidades específicas de apoyo educativo. XXXII Reunión Científica Anual (pp. 159–182). Ourense, Spain: AEDES.
  • Deaño, M., Alfonso, S., & Das, J. P. (2015). Program of arithmetic improvement by means of cognitive enhancement: An intervention in children with special educational needs. Research in Developmental Disabilities, 38, 352–361. doi:10.1016/j.ridd.2014.12.032
  • Dowker, A. (2005). Individual differences in arithmetic. Hove,  England: Psychology Press.
  • Gagné, F. (2005). From gifts to talents: The DMGT as a developmental model. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (2nd ed., pp. 98–119). New York, NY: Cambridge University Press.
  • Garofalo, J. (1986). Simultaneous synthesis, regulation, and arithmetical performance. Journal of Psychoeducational Assessment, 4(3), 229–238. doi:10.1177/073428298600400306
  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. doi:10.1177/00222194040370010201
  • Geary, D. C. (2011). Cognitive predictors of individual differences in achievement growth in mathematics: A five year longitudinal study. Developmental Psychology, 47, 1539–1552. doi:10.1037/a0025510
  • Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 34, 411–429. doi:10.1016/j.cogdev.2009.10.001
  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of numbers. Cambridge, MA: Harvard University Press.
  • Hannula-Sormunen, M. M., Lehtinen, E., & Räsänen, P. (2015). Preschool children’s spontaneous focusing on numerosity, subitizing, and counting skills as predictors of their mathematical performance seven years later at school. Mathematical Thinking and Learning, 17(2–3), 155–177. doi:10.1080/10986065.2015.1016814
  • Iglesias-Sarmiento, V. (2009). Dificultades de aprendizaje en el dominio aritmético y en el procesamiento cognitivo subyacente [Learning difficulties in the mastery of arithmetic and in the underlying cognitive processing]. (Doctoral dissertation). Available from ProQuest database. (UMI No. AAT 3386296)
  • Iglesias-Sarmiento, V., & Deaño, M. (2011). Cognitive processing and mathematical achievement: A study with schoolchildren between 4th and 6th grade of primary education. Journal of Learning Disabilities, 44(6), 570–583. doi:10.1177/0022219411400749
  • Iglesias-Sarmiento, V., & Deaño, M. (2016). Arithmetical difficulties and low arithmetic achievement: Analysis of the underlying cognitive functioning. Spanish Journal of Cognitive Psychology, 19(e36), 1–14. doi:10.1017/sjp.2016.40
  • Iglesias-Sarmiento, V., Deaño, M., Alfonso, S., & Conde, A. (2017). Mathematical learning disabilities and attention deficit and/or hyperactivity disorder: A study of the cognitive processes involved in arithmetic problem solving. Research in Developmental Disabilities, 61, 44–54. doi:10.1016/j.ridd.2016.12.012
  • Instituto Galego de Estatística. (2017). Análise do sector cultural [Analysis of the cultural sector]. Santiago de Compostela, Spain: Author.
  • International Association for the Evaluation of Educational Achievement IEA. (2016). TIMMS 2015. Student achievement. Chestnut Hill, MA: TIMSS & PIRLS International Study Center.
  • Iseman, J. S., & Naglieri, J. A. (2011). A cognitive strategy instruction to improve math calculation for children with ADHD and LD: A randomized controlled study. Journal of Learning Disabilities, 44, 184–195. doi:10.1177/0022219410391190
  • Kroesbergen, E. H., van Luit, J. E. H., & Naglieri, J. A. (2003). Mathematics learning difficulties and PASS cognitive processes. Journal of Learning Disabilities, 36(6), 574–582. doi:10.1177/00222194030360060801
  • Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309–324. doi:10.1016/j.jecp.2009.03.006
  • LeFevre, J.-A., Greenham, S. L., & Waheed, N. (1993). The development of procedural and conceptual knowledge in computational estimation. Cognition and Instruction, 11(2), 95–132. doi:10.1207/s1532690xci1102_1
  • Leikin, M., Paz-Baruch, N., & Leikin, R. (2013). Memory abilities in generally gifted and excelling in mathematics adolescents. Intelligence, 41, 566–578. doi:10.1016/j.intell.2013.07.018
  • Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2014). The association between children’s numerical magnitude processing and mental multidigit subtraction. Acta Psychologica, 145, 75–83. doi:10.1016/j.actpsy.2013.10.008
  • Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2015). The association between numerical magnitude processing and mental versus algorithmic multidigit subtraction in children. Learning and Instruction, 35, 42–50. doi:10.1016/j.learninstruc.2014.09.003
  • Mabbott, D. J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41(1), 15–28. doi:10.1177/0022219407311003
  • Männamaa, M., Kikas, E., Peets, K., & Palu, A. (2012). Cognitive correlates of math skills in third-grade students. Educational Psychology, 32, 21–44. doi:10.1177/0022219407311003
  • Mazzocco, M. M. M. (2007). Defining and differentiating mathematical learning disabilities and difficulties. In D. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children. The nature and origins of mathematical learning difficulties and disabilities (pp. 29–47). Baltimore, MD, US: Paul H. Brookes.
  • Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20, 101–109. doi:10.1016/j.lindif.2009.08.004
  • Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H.-C. (2011). Early place-value understanding as a precursor for later arithmetic performance—A longitudinal study on numerical development. Research in Developmental. Disabilities, 32, 1837–1851. doi:10.1016/j.ridd.2011.03.012
  • Moll, K., Göbel, S. M., & Snowling, M. J. (2015). Basic number processing in children with specific learning disorders: Comorbidity of reading and mathematics disorders. Child Neuropsychology, 21, 399–417. doi:10.1080/09297049.2014.899570
  • Murphy, M. M., Mazzocco, M. M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to defineMLD. Journal of Learning Disabilities, 40, 458-478. doi:10.1177/00222194070400050901
  • Naglieri, J. A. (2015). 100 years of intelligence testing: Moving from traditional IQ to second-generation intelligence tests. In S. Goldstein, D. Princiotta, & J. A. Naglieri (Eds.), Handbook of intelligence: Evolutionary theory, historical perspective, and current concepts (pp. 295–316). New York, NY: Springer.
  • Naglieri, J. A., & Das, J. P. (1997). Cognitive assessment system. Itasca, IL: Riverside.
  • Noël, M.-P., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5, 165. doi:10.3389/fnhum.2011.00165
  • Passolunghi, M. C., Cargnelutti, E., & Pastore, M. (2014). The contribution of general cognitive abilities and approximate number system to early mathematics. British Journal of Educational Psychology, 84, 631–649. doi:10.1111/bjep.12054
  • Ploger, D., & Hetch, S. (2009). Enhancing children’s conceptual understanding of mathematics through chartworld software. Journal of Research in Childhood Education, 23, 267–277. doi:10.1080/02568540909594660
  • Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioral inattention in children with math difficulties. Journal of Learning Disabilities, 42, 356–371. doi:10.1177/0022219409335211
  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122. doi:10.1016/j.lindif.2009.10.005
  • Raven, J. C., Court, J. H., & Raven, J. (1996). Raven manual section 3 standard progressive matrices. Oxford, England: Oxford Psychologists Press.
  • Shin, M., & Bryant, D. P. (2015). A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities. Journal of Learning Disabilities, 48(1), 96–112. doi:10.1177/0022219413508324
  • Skwarchuk, S. L., & Anglin, J. M. (2002). Children’s acquisition of the English cardinal number words: A special case of vocabulary development. Journal of Educational Psychology, 94(1), 107. doi:10.1037/0022-0663.94.1.107
  • Skwarchuk, S. L., & Betts, P. (2006). An error analysis of elementary school children’s number production abilities. Australian Journal of Educational & Developmental Psychology, 6, 1–11.
  • Sowinski, C., LeFevre, J.-A., Skwarchuk, S.-L., Kamawar, D., Bisanz, J., & Smith-Chant, B. L. (2015). Refining the quantitative pathway of the pathways to mathematics. Journal of Experimental Child Psychology, 131, 73–93. doi:10.1016/j.jecp.2014.11.004
  • Star, J. R., Rittle-Johnson, B., Lynch, K., & Perova, N. (2009). The role of prior knowledge in the development of strategy flexibility: The case of computational estimation. Mathematics Education, 41, 569–579. doi:10.1007/s11858-009-0181-9
  • Swanson, H. L. (2006). Cognitive processes that underlie mathematical precociousness in young children. Journal of Experimental Child Psychology, 93, 239–264. doi:10.1016/j.jecp.2005.09.006
  • Szűcs, D., & Goswami, U. (2013). Developmental dyscalculia: Fresh perspectives. Trends in Neuroscience and Education, 2(2), 33−37. doi:10.1016/j.tine.2013.06.004
  • Toll, S. W. M., Van der Ven, S. H. G., Kroesbergen, E. H., & Van Luit, J. E. H. (2001). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44(6), 521–532. doi:10.1177/0022219410387302
  • Träff, U. (2013). The contribution of general cognitive abilities and number abilities to different aspects of mathematics in children. Journal of Experimental Child Psychology, 116, 139–156. doi:10.1016/j.jecp.2013.04.007
  • Träff, U., Olsson, L., Skagerlund, K., & Östergren, R. (2018). Cognitive mechanisms underlying third graders’ arithmetic skills: Expanding the pathways to mathematics model. Journal of Experimental Child Psychology, 167, 369–387. doi:10.1016/j.jecp.2017.11.010
  • Wang, X., Georgiou, G., Li, G., & Tavouktsoglou, A. (2018). Do Chinese children with math difficulties have a deficit in executive functioning? Frontiers in Psychology, 9, 906. doi:10.3389/fpsyg.2018.00906
  • Warrick, P. D. (1989). Investigation of the PASS model (planning, attention, simultaneous, successive) of cognitive processing and mathematics achievement. Unpublished doctoral dissertation, Ohio State University, Columbus, OH, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.