395
Views
3
CrossRef citations to date
0
Altmetric
Articles

Comparison of Intentional Inhibition and Reactive Inhibition in Adolescents and Adults: An ERP Study

, , , , , & ORCID Icon show all
Pages 66-78 | Received 15 Aug 2019, Accepted 11 Feb 2020, Published online: 16 Feb 2020

References

  • Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55–e68. doi:10.1016/j.biopsych.2010.07.024
  • Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology., 108, 44–79. doi:10.1016/j.pneurobio.2013.06.005
  • Baumeister, R. F., Bohs, K. D., & Tice, D. M. (2007). The strength model of self-control. Current Directions in Psychological Science, 16(6), 351–355. doi:10.1111/j.1467-8721.2007.00534.x
  • Bianco, V., Berchicci, M., Perri, R. L., Spinelli, D., & Di Russo, F. (2017). The proactive self-control of actions: Time-course of underlying brain activities. Neuroimage, 156, 388–393. doi:10.1016/j.neuroimage.2017.05.043
  • Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a go/nogo task. Clinical Neurophysiology, 112, 2224–2232. doi:10.1016/S1388-2457(01)00691-5
  • Brass, M., & Haggard, P. (2007). To do or not to do: The neural signature of self-control. The Journal of Neuroscience, 27(34), 9141–9145. doi:10.1523/JNEUROSCI.0924-07.2007
  • Casey, B. J. (2015). Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annual Review of Psychology, 66(1), 295–319. doi:10.1146/annurev-psych-010814-015156
  • Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28, 62–77. doi:10.1016/j.dr.2007.08.003
  • Courchesne, E. (1978). Neurophysiological correlates of cognitive development: Changes in long-latency event-related potentials from childhood to adulthood. Electroencephalography and Clinical Neurophysiology, 45, 468–482. doi:10.1016/0013-4694(78)90291-2
  • Czigler, I., & Balazs, L. (2005). Age-related effects of novel visual stimuli in a letter-matching task: An event-related potential study. Biological Psychology, 69(2), 229–242. doi:10.1016/j.biopsycho.2004.06.006
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. doi:10.1146/annurev-psych-113011-143750
  • Durston, S., Thomas, K. M., Yang, Y. H., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5(4), f9–f16. doi:10.1111/desc.2002.5.issue-4
  • Eimer, M. (1993). Effects of attention and stimulus probability on ERPs in a go/no-go task. Biological Psychology, 35, 123–138. doi:10.1016/0301-0511(93)90009-W
  • Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101, 267–291. doi:10.1016/S0001-6918(99)00008-6
  • Filevich, E., Kühn, S., & Haggard, P. (2012). Intentional inhibition in human action: The power of ‘no’. Neuroscience & Biobehavioral Reviews, 36(4), 1107–1118. doi:10.1016/j.neubiorev.2012.01.006
  • Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9(12), 934–946. doi:10.1038/nrn2497
  • Haggard, P., Poonian, S., & Walsh, E. (2009). Representing the consequences of intentionally inhibited actions. Brain Research, 1286, 106–113. doi:10.1016/j.brainres.2009.06.020
  • Harper, J., Malone, S. M., & Bernat, E. M. (2014). Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clinical Neurophysiology, 125(1), 124–132. doi:10.1016/j.clinph.2013.06.025
  • Hofmann, W., Friese, M., & Strack, F. (2009). Impulse and self-control from a dual-systems perspective. Perspectives on Psychological Science, 4(2), 162–176. doi:10.1111/j.1745-6924.2009.01116.x
  • Hoyniak, C. (2017). Changes in the NoGo N2 event-related potential component across childhood: A systematic review and meta-analysis. Developmental Neuropsychology, 42, 1–24. doi:10.1080/87565641.2016.1247162
  • Kühn, S., Haggard, P., & Brass, M. (2009). Intentional inhibition: How the “veto-area” exerts control. Human Brain Mapping, 30(9), 2834–2843. doi:10.1002/hbm.v30:9
  • Lewis, M. D., & Stieben, J. (2004). Emotion regulation in the brain: Conceptual issues and directions for developmental research. Child Development, 75(2), 371–376. doi:10.1111/cdev.2004.75.issue-2
  • Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: A model and a method. Journal of Experimental Psychology, 10(2), 276–291. doi:10.1037//0096-1523.10.2.276
  • Luna, B., Padmanabhan, A., & O’Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72(1), 101–113. doi:10.1016/j.bandc.2009.08.005
  • Lynn, M. T., Demanet, J., Krebs, R. M., Van Dessel, P., & Brass, M. (2016). Voluntary inhibition of pain avoidance behavior: An fMRI study. Brain Structure and Function, 221(3), 1309–1320. doi:10.1007/s00429-014-0972-9
  • Lynn, M. T., Muhle-Karbe, P. S., & Brass, M. (2014). Controlling the self: The role of the dorsal frontomedian cortex in intentional inhibition. Neuropsychologia, 65, 247–254. doi:10.1016/j.neuropsychologia.2014.09.009
  • Nieuwenhuis, S., Yeung, N., Holroyd, C. B., Schurger, A., & Cohen, J. D. (2004). Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. Cerebral Cortex, 14(7), 741–747. doi:10.1093/cercor/bhh034
  • Parkinson, J., Garfinkel, S., Critchley, H., Dienes, Z., & Seth, A. K. (2017). Don’t make me angry, you wouldn’t like me when I’m angry: Volitional choices to act or inhibit are modulated by subliminal perception of emotional faces. Cognitive Affective and Behavioral Neuroscience, 17(2), 252–268. doi:10.3758/s13415-016-0477-5
  • Parkinson, J., & Haggard, P. (2014). Subliminal priming of intentional inhibition. Cognition, 130, 255–265. doi:10.1016/j.cognition.2013.11.005
  • Parkinson, J., & Haggard, P. (2015). Choosing to stop: Responses evoked by externally triggered and internally generated inhibition identify a neural mechanism of will. Journal of Cognitive Neuroscience, 27(10), 1948–1956. doi:10.1162/jocn_a_00830
  • Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147. doi:10.7150/ijms.2.147
  • Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalography and Clinical Neurophysiology, 60, 423–434. doi:10.1016/0013-4694(85)91017-X
  • Rigoni, D., & Brass, M. (2014). From intentions to neurons: Social and neural consequences of disbelieving in free will. Topoi, 33(1), 5–12. doi:10.1007/s11245-013-9210-y
  • Rueda, M. R., Posner, M. I., & Rothbart, M. K. (2005). The development of executive attention: Contributions to the emergence of self-regulation. Developmental Neuropsychology, 28(2), 573–594. doi:10.1207/s15326942dn2802_2
  • Rueda, M. R., Posner, M. I., Rothbart, M. K., & Davis-Stober, C. P. (2004). Development of the time course for processing conflict: An event-related potentials study with 4 year olds and adults. BMC Neuroscience, 5, 1–13. doi:10.1186/1471-2202-5-39
  • Salil, H. P., & Pierre, N. A. (2005). Characterization of n200 and p300: Selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147–154. doi:10.7150/ijms.2.147
  • Schel, M. A., Kühn, S., Brass, M., Haggard, P., Ridderinkhof, K. R., & Crone, E. A. (2014). Neural correlates of intentional and stimulus-driven inhibition: A comparison. Frontiers in Human Neuroscience, 8(27). doi:10.3389/fnhum.2014.00027
  • Schel, M. A., Ridderinkhof, K. R., & Crone, E. A. (2014). Choosing not to act: Neural bases of the development of intentional inhibition. Developmental Cognitive Neuroscience, 10, 93–103. doi:10.1016/j.dcn.2014.08.006
  • Segalowitz, S. J., Santesso, D. L., & Jetha, M. K. (2010). Electrophysiological changes during adolescence: A review. Brain and Cognition, 72, 86–100. doi:10.1016/j.bandc.2009.10.003
  • Severens, E., Simone Kühn, S., Hartsuiker, R. J., & Brass, M. (2012). Functional mechanisms involved in the internal inhibition of taboo words. Social Cognitive and Affective Neuroscience, 7(4), 431–435. doi:10.1093/scan/nsr030
  • Shulman, E. P., Smith, A. R., Silva, K., Icenogle, G., Duell, N., Chein, J., & Steinberg, L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103–117. doi:10.1016/j.dcn.2015.12.010
  • Steinberg, L., & Morris, A. S. (2001). Adolescent development. Journal of Cognitive Education and Psychology, 2(1), 55–87. doi:10.1891/1945-8959.2.1.55
  • Strang, N. M., & Pollak, S. D. (2014). Developmental continuity in reward-related enhancement of cognitive control. Developmental Cognitive Neuroscience, 10, 34–43. doi:10.1016/j.dcn.2014.07.005
  • Thilakarathne, D. J., & Treur, J. (2015). Modeling intentional inhibition of action. Biologically Inspired Cognitive Architectures, 14, 22–39. doi:10.1016/j.bica.2015.07.001
  • Thomas, K. M., & Nelson, C. A. (1996). Age-related changes in the electrophysiological response to visual stimulus novelty: A topographical approach. Electroencephalography and Clinical Neurophysiology, 98(4), 294–308.
  • Walsh, E., Kuhn, S., Brass, M., Wenke, D., & Haggard, P. (2010). EEG activations during intentional inhibition of voluntary action: An electrophysiological correlate of self-control? Neuropsychologia, 48(2), 619–626. doi:10.1016/j.neuropsychologia.2009.10.026
  • Xu, M., Fan, L., Li, Z., Qi, S., & Yang, D. (2019). Neural signatures of reactive and intentional inhibitions: An ERP study. Current Psychology. doi:10.1007/s12144-018-0090-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.