922
Views
0
CrossRef citations to date
0
Altmetric
Articles

Word Production Changes through Adolescence: A Behavioral and ERP Investigation of Referential and Inferential Naming

ORCID Icon & ORCID Icon
Pages 295-313 | Received 09 Mar 2022, Accepted 26 Jul 2022, Published online: 23 Aug 2022

References

  • Ala-Salomäki, H., Kujala, J., Liljeström, M., & Salmelin, R. (2021). Picture naming yields highly consistent cortical activation patterns: Test–retest reliability of magnetoencephalography recordings. NeuroImage, 227, 117651. doi:10.1016/j.neuroimage.2020.117651
  • Alario, F. X., & Ferrand, L. (1999). A set of 400 pictures standardized for French: Norms for name agreement, image agreement, familiarity, visual complexity, image variability, and age of acquisition. Behavior Research Methods, Instruments, & Computers, 31(3), 531–552. doi:10.3758/BF03200732
  • Aristei, S., Melinger, A., & Abdel Rahman, R. (2011). Electrophysiological chronometry of semantic context effects in language production. Journal of Cognitive Neuroscience, 23(7), 1567–1586. doi:10.1162/jocn.2010.21474
  • Atanasova, T., Fargier, R., Zesiger, P., & Laganaro, M. (2021). Dynamics of word production in the transition from adolescence to adulthood. Neurobiology of Language, 2(1), 1–21. doi:10.1162/nol_a_00024
  • Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to statistics using R. Cambridge, UK: Cambridge University Press.
  • Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., Reiss, A. L. (2005). White matter development during childhood and adolescence: A cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15(12), 1848–1854. doi:10.1093/cercor/bhi062
  • Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81(6), 1641–1660. doi:10.1111/j.1467-8624.2010.01499.x
  • Bonin, P., Peerman, R., Malardier, N., Méot, A., & Chalard, M. (2003). A new set of 299 pictures for psycholinguistic studies: French norms for name agreement, image agreement, conceptual familiarity, visual complexity, image variability, age of acquisition, and naming latencies. Behavior Research Methods, Instruments, & Computers, 35(1), 158–167. doi:10.3758/BF03195507
  • Bragard, A., Schelstraete, M.-A., Collette, E., & Grégoire, J. (2010). Évaluation du manque du mot chez l’enfant: Données développementales récoltées auprès d’enfants francophones de sept à 12 ans. European Review of Applied Psychology, 60(2), 113–127. doi:10.1016/j.erap.2009.11.003
  • Brennen, T., David, D., Fluchaire, I., & Pellat, J. (1996). Naming faces and objects without comprehension - A case study. Cognitive Neuropsychology, 13(1), 93–110. doi:10.1080/026432996382079
  • Brunet, D., Murray, M. M., & Michel, C. M. (2011). Spatiotemporal analysis of multichannel EEG: CARTOOL. Computational Intelligence and Neuroscience, (2011, 813870. doi:10.1155/2011/813870
  • Calzavarini, F. (2017). Inferential and referential lexical semantic competence: A critical review of the supporting evidence. Journal of Neurolinguistics, 44, 163–189. doi:10.1016/j.jneuroling.2017.04.002
  • Cassvan, A. (1994). Auditory Evoked Potentials. In J. A. Downey, S. J. Myers, E. G. Gonzalez, & J. S. Lieberman (Eds.), The physiological basis of rehabilitation medicine (2nd ed.). Oxford: Butterworth-Heinemann. 295–323.
  • Changeux, J. P., & Michel, C. M. (2004). Mechanisms of neural integration at the brain scale level: The neuronal workspace and microstate models. In S. Grillner & A. M. Grabyel (Eds.), Microcircuits: The interface between neurons and global brain function. Cambridge, MA: MIT Press. 347–370.
  • Chauveau, N., Franceries, X., Doyon, B., Rigaud, B., Morucci, J. P., & Celsis, P. (2004). Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three-dimensional resistor mesh model. Human Brain Mapping, 212(2), 86–97. doi:10.1002/hbm.10152
  • Cosper, S. H., Männel, C., & Mueller, J. L. (2020). In the absence of visual input: Electrophysiological evidence of infants’ mapping of labels onto auditory objects. Developmental Cognitive Neuroscience, 45, 100821. doi:10.1016/j.dcn.2020.100821
  • Creel, D. J. (2019). Visually evoked potentials. Handbook of Clinical Neurology, 160, 501–522.
  • Cycowicz, Y. M., Friedman, D., Rothstein, M., & Snodgrass, J. G. (1997). Picture naming by young children: Norms for name agreement, familiarity, and visual complexity. Journal of Experimental Child Psychology, 65(2), 171–237. doi:10.1006/jecp.1996.2356
  • D’Amico, S., Devescovi, A., & Bates, E. (2001). Picture naming and lexical access in Italian children and adults. Journal of Cognition & Development, 2(1), 71–105. doi:10.1207/S15327647JCD0201_4
  • Dale, P. S., & Fenson, L. (1996). Lexical development norms for young children. Behavior Research Methods, Instruments, & Computers, 28(1), 125–127. doi:10.3758/BF03203646
  • de Zubicaray, G. I., McMahon, K., Eastburn, M., & Pringle, A. (2006). Top-down influences on lexical selection during spoken word production: A 4T fMRI investigation of refractory effects in picture naming. Human Brain Mapping, 27(11), 864–873. doi:10.1002/hbm.20227
  • de Zubicaray, G. I., Wilson, S. J., McMahon, K. L., & Muthiah, S. (2001). The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping, 14(4), 218–227. doi:10.1002/hbm.1054
  • Durston, S., & Casey, B. J. (2006). What have we learned about cognitive development from neuroimaging? Neuropsychologia, 44(11), 2149–2157. doi:10.1016/j.neuropsychologia.2005.10.010
  • Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104(33), 13507–13512.
  • Fargier, R., Buerki, A., Pinet, S., Alario, F.-X., & Laganaro, M. (2018). Word onset phonetic properties and motor artifacts in speech production EEG recordings. Psychophysiology, 55(2), e12982. doi:10.1111/psyp.12982
  • Fargier, R., & Laganaro, M. (2017). Spatio-temporal dynamics of referential and inferential naming: Different brain and cognitive operations to lexical selection. Brain Topography, 30(2), 182–197. doi:10.1007/s10548-016-0504-4
  • Frangou, S., Modabbernia, A., Williams, S. C. R. et al. (2021). Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years. Human Brain Mapping 43, 431–451.
  • Frossard, J., & Renaud, O. (2021). Permutation tests for regression, ANOVA, and comparison of signals: The permuco package. Journal of Statistical Software, 99(15), 1–32. doi:10.18637/jss.v099.i15
  • Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863. doi:10.1038/13158
  • Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., Rapoport, J. L. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4-18. Cereb Cortex, 6(4), 551–560.
  • Harnishfeger, K. K. (1995). The development of cognitive inhibition: Theories, definitions, and research evidence. In F. N. Dempster & C. J. Brainerd (Eds.), Interference and inhibition in cognition (pp. 175–204). Cambridge, MA: Academic Press.
  • Harnishfeger, K. K., & Bjorklund, D. F. (1993). The ontogeny of inhibition mechanisms: A renewed approach to cognitive development. In M. L. Howe & R. Pasnak (Eds.), Emerging themes in cognitive development. New York, NY: Springer 28–49 .
  • Holcomb, P. J., Coffey, S. A., & Neville, H. J. (1992). Visual and auditory sentence processing: A developmental analysis using event-related brain potentials. Developmental Neuropsychology, 8(2–3), 203–241. doi:10.1080/87565649209540525
  • Indefrey, P. (2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 255. doi:10.3389/fpsyg.2011.00255
  • Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144. doi:10.1016/j.cognition.2002.06.001
  • Itier, R. J., & Taylor, M. J. (2004). Source analysis of the N170 to faces and objects. NeuroReport, 15(8), 1261–1265. doi:10.1097/01.wnr.0000127827.73576.d8
  • Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446. doi:10.1016/j.jml.2007.11.007
  • Jansen, R., Ceulemans, E., Grauwels, J., Maljaars, J., Zink, I., Steyaert, J., & Noens, I. (2013). Young children with language difficulties: A dimensional approach to subgrouping. Research in Developmental Disabilities, 34(11), 4115–4124. doi:10.1016/j.ridd.2013.08.028
  • Kail, R. (1991). Developmental change in speed of processing during childhood and adolescence. Psychological Bulletin, 109(3), 490–501. doi:10.1037/0033-2909.109.3.490
  • Kail, R. (1993). Processing time decreases globally at an exponential rate during childhood and adolescence. Journal of Experimental Child Psychology, 56(2), 254–265. doi:10.1006/jecp.1993.1034
  • Koenig, T., Kottlow, M., Stein, M., & Melie-García, L. (2011). Ragu: A free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Computational Intelligence and Neuroscience, 2011, 938925. doi:10.1155/2011/938925
  • Koenig, T., & Melie-García, L. (2010). A method to determine the presence of averaged event-related fields using randomization tests. Brain Topography, 23(3), 233–242. doi:10.1007/s10548-010-0142-1
  • Koenig, T., Stein, M., Grieder, M., & Kottlow, M. (2014). A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topography, 27(1), 72–83. doi:10.1007/s10548-013-0310-1
  • Koukou, M., & Lehmann, D. (1987). An Information processing perspective of psychophysiological measurements. Journal of Psychophysiology, 1, 109–112.
  • Kremin, H. (1988). Independence of access to meaning and phonology: Arguments for direct non-semantic pathways for the naming of written words and pictures. In G. Denes, C. Semenza, & P. Bisiacchi (Eds.), Perspectives on cognitive neuropsychology. London, UK: Routledge 231–252.
  • Kuhn, M. R., Schwanenflugel, P. J., Morris, R. D., Morrow, L. M., Woo, D. G., Meisinger, E. B., Stahl, S. A. (2006). Teaching children to become fluent and automatic readers. Journal of Literacy Research, 38(4), 357–387. doi:10.1207/s15548430jlr3804_1
  • Laganaro, M., Tzieropoulos, H., Fraunfelder, U. H., & Zesiger, P. (2015). Functional and time-course changes in single word production from childhood to adulthood. NeuroImage, 111, 204–214. doi:10.1016/j.neuroimage.2015.02.027
  • Laganaro, M., Valente, A., & Perret, C. (2012). Time course of word production in fast and slow speakers: A high density ERP topographic study. NeuroImage, 59(4), 3388–3881. doi:10.1016/j.neuroimage.2011.10.082
  • Lebel, C., & Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. Journal of Neuroscience, 31(30), 10937–10947. doi:10.1523/JNEUROSCI.5302-10.2011
  • Lehmann, D., & Skrandies, W. (1984). Spatial analysis of evoked potentials in man: A review. Progress in Neurobiology, 23(3), 227–250. doi:10.1016/0301-0082(84)90003-0
  • Lehmann, D., Strik, W. K., Henggeler, B., Koenig, T., & Koukkou, M. (1998). Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. International Journey Psychophysiology, 29(1), 1–11. doi:10.1016/S0167-8760(97)00098-6
  • Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30(6), 718–729. doi:10.1016/j.neubiorev.2006.06.001
  • Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75(5), 1357–1372. doi:10.1111/j.1467-8624.2004.00745.x
  • Maess, B., Friederici, A. D., Damian, M. F., Meyer, A. S., & Levelt, W. J. M. (2002). Semantic category interference in overt picture naming. Journal of Cognitive Neuroscience, 14(3), 455–462. doi:10.1162/089892902317361967
  • Marconi, D., Manenti, R., Catricalà, E., Della Rosa, P. A., Siri, S., & Cappa, S. F. (2013). The neural substrates of inferential and referential semantic processing. Cortex, 49(8), 2055–2066. doi:10.1016/j.cortex.2012.08.001
  • Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. doi:10.1016/j.jneumeth.2007.03.024
  • Miller, G. A. (1996). The science of words. New York: Scientific American Library.
  • Murray, M. M., Brunet, D., & Michel, C. (2008). Topographic ERP analyses: A step-by-step tutorial review. Brain Topography, 20(4), 249–269. doi:10.1007/s10548-008-0054-5
  • New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical database. Behavior Research Methods, Instruments, & Computers, 36(3), 516–524. doi:10.3758/BF03195598
  • Nippold, M. A. (2006). Language development in school-age children, adolescents, and adults. In K. Brown (Ed.), Encyclopedia of language & linguistics (2nd ed.). Oxford: Elsevier, 368–373.
  • Nippold, M. A., Hegel, S. L., Uhden, L. D., & Bustamante, S. (1998). Development of proverb comprehension in adolescents: implications for instruction. Journal of Children’s Communication Development, 19(2), 49–55. doi:10.1177/152574019801900206
  • Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tønnessen, P., & Walhovd, K. B. (2009). Heterogeneity in subcortical brain development: A structural magnetic resonance imaging study of brain maturation from 8 to 30 years. Journal of Neuroscience, 38(38), 11772–11782. doi:10.1523/JNEUROSCI.1242-09.2009
  • Pantazatos, S. P., Yanagihara, T. K., Zhang, X., Meitzler, T., & Hirsch, J. (2012). Frontal-occipital connectivity during visual search. Brain Connectivity, 2(3), 164–175. doi:10.1089/brain.2012.0072
  • Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68. doi:10.1016/j.tics.2004.12.008
  • Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci, 9(12), 947–957.
  • Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908–1911. doi:10.1126/science.283.5409.1908
  • Perrin, F., Pernier, J., Bertrand, O., Giard, M. H., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66(1), 75–81. doi:10.1016/0013-4694(87)90141-6
  • Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874–887. doi:10.1001/archneur.1994.00540210046012
  • Picton, T. W., & Taylor, M. J. (2007). Electrophysiological evaluation of human brain development. Developmental. Neuropsychology, 31, 249–278.
  • Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111(2), 220–236. doi:10.1016/S1388-2457(99)00236-9
  • Protopapas, A. (2007). CheckVocal: A program to facilitate checking the accuracy and response time of vocal responses from DMDX. Behavior Research Methods, 39(4), 859–862. doi:10.3758/BF03192979
  • R Development Core Team. (2005). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(5), 1763–1774. doi:10.1093/brain/119.5.1763
  • Riley, J. D., Chen, E. E., Winsell, J., Poggi Davis, E., Glynn, L. M., Baram, T. Z., Solodkin, A. (2018). Network specialization during adolescence: Hippocampal effective connectivity in boys and girls. NeuroImage, 175, 402–412. doi:10.1016/j.neuroimage.2018.04.013
  • Shao, Z., Roelofs, A., & Meyer, A. S. (2012). Sources of individual differences in the speed of naming objects and actions: The contribution of executive control. Quarterly Journal of Experimental Psychology, 65(10), 1927–1944. doi:10.1080/17470218.2012.670252
  • Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Wise, S. P. (2008). Neurodevelopmental Trajectories of the Human Cerebral Cortex. Journal of Neuroscience, 28(14), 3586–3594. doi:10.1523/JNEUROSCI.5309-07.2008
  • Silveri, M. C., & Colosimo, C. (1995). Hypothesis on the nature of comprehension deficit in a patient with transcortical mixed aphasia with preserved naming. Brain and Language, 49(1), 1–26. doi:10.1006/brln.1995.1019
  • Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2(10), 859–861. doi:10.1038/13154
  • Strijkers, K., Costa, A., & Thierry, G. (2010). Tracking lexical access in speech production: Electrophysiological correlates of word frequency and cognate effects. Cerebral Cortex, 20(4), 912–928. doi:10.1093/cercor/bhp153
  • Tamnes, C. K., Ostby, Y., Fjell, A. M., Westlye, L. T., Due-Tønnessen, P., & Walhovd, K. B. (2010). Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex, 20(3), 534–548. doi:10.1093/cercor/bhp118
  • Taylor, M. J., Edmonds, G. E., McCarthy, G., & Allison, T. (2001). Eyes first! Eye processing develops before face processing in children. NeuroReport, 12(8), 1671–1676. doi:10.1097/00001756-200106130-00031