7
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Information Transfer in Microvascular Networks

&
Pages 377-387 | Published online: 10 Jul 2009

REFERENCES

  • Archer SL, Weir EK, Reeve HL, Michelakis E. (2000). Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 475:219–240.
  • Bassingthwaighte JB, King RB, Roger SA. (1989). Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 65:578–590.
  • Bayliss WM. (1902). On the local reactions of the arterial wall to changes of internal pressure. J Physiol (Lond) 28:220–231.
  • Beach JM, McGahren ED, Duling BR. (1998). Capillaries and arterioles are electrically coupled in hamster cheek pouch. Am J Physiol 275:H1489–H1496.
  • Beny JL. (1999). Information networks in the arterial wall. News Physiol Sci 14:68–73.
  • Berg BR, Cohen KD, Sarelius IH. (1997). Direct coupling between blood flow and metabolism at the capillary level in striated muscle. Am J Physiol 272: H2693–H2700.
  • Christ GJ, Spray DC, el Sabban M, Moore LK, Brink PR. (1996). Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ Res 79:631–646.
  • Cohen KD, Berg BR, Sarelius IH. (2000). Remote ar-teriolar dilations in response to muscle contraction under capillaries. Am J Physiol Heart Circ Physiol 278:H1916–H1923.
  • Collins DM, McCullough WT, Ellsworth ML. (1998). Conducted vascular responses: communication across the capillary bed. Microvasc Res 56:43–53.
  • Cornelissen AJ, Dankelman J, VanBavel E, Stassen HG, Spaan JA. (2000). Myogenic reactivity and resistance distribution in the coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 278: H1490–H1499.
  • Davis MJ, Hill MA. (1999). Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423.
  • de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, Willecke K, Pohl U. (2000). Impaired conduction of vasodilation along arterioles in connexin 40-deficient mice. Circ Res 86:649–655.
  • Dietrich HH. (1989). Effect of locally applied epi-nephrine and norepinephrine on blood flow and diameter in capillaries of rat mesentery. Microvasc Res 38:125–135.
  • Dietrich HH, Ellsworth ML, Sprague RS, Dacey RG Jr. (2000). Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol 278:H1294–H1298.
  • Dietrich HH, Kajita Y, Dacey RG Jr. (1996). Local and conducted vasomotor responses in isolated rat cerebral arterioles. Am J Physiol 271:H1109–H1116.
  • Dietrich HH, Tyml K. (1992). Microvascular flow response to localized application of norepinephrine on capillaries in rat and frog skeletal muscle. Microvasc Res 43:73–86.
  • Duling BR. (1972). Microvascular responses to alterations in oxygen tension. Circ Res 31:481–489.
  • Duling BR, Berne RM. (1970). Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27:669–678.
  • Duling BR, Berne RM. (1970). Propagated vasodila-tion in the microcirculation of the hamster cheek pouch. Circ Res 26:163–170.
  • Duling BR, Hogan RD, Langille BL, Lelkes P, Segal SS, Vatner SF, Weigelt H, Young MA. (1987). Vasomotor control: functional hyperemia and beyond. Fed Proc 46:251–263.
  • Fann JI, Sokoloff MH, Sarris GE, Yun KL, Kosek JC, Miller DC. (1990). The reversibility of canine vein-graft arterialization. Circulation 82:IV9–18.
  • Fleming BP, Gibbins IL, Morris JL, Gannon BJ. (1989). Noradrenergic and peptidergic innervation of the extrinsic vessels and microcirculation of the rat cremaster muscle. Microvasc Res 38:255–268.
  • Folkow B. (1949). Intravascular pressure as a factor regulating the tone of the small vessels. Acta Physiol Scand 17:289–310.
  • Folkow B. (1987). Structure and function of the arteries in hypertension. Am Heart J 114:938–948.
  • Friebel M, Klotz KF, Ley K, Gaehtgens P, Pries AR. (1995). Flow-dependent regulation of arteriolar diameter in rat skeletal muscle in situ: role of endothe-lium-derived relaxing factor and prostanoids. J Phys-iol (Lond) 483:715–726.
  • G–dde R, Kurz H. (2001). Structural and biophysical simulation of angiogenesis and vascular remodeling. Dev Dyn 220:387–401.
  • Gorczynski RJ, Klitzman B, Duling BR. (1978). Interrelations between contracting striated muscle and precapillary microvessels. Am J Physiol 235:H494– H504.
  • Groebe K. (1996). Precapillary servo control of blood pressure and postcapillary adjustment of flow to tissue metabolic status. A new paradigm for local perfusion regulation. Circulation 94:1876–1885.
  • Gustafsson F, Holstein-Rathlou N. (1999). Conducted vasomotor responses in arterioles: characteristics, mechanisms and physiological significance. Acta Physiol Scand 167:11–21.
  • Hacking WJG, VanBavel E, Spaan JAE. (1996). Shear stress is not sufficient to control growth of vascular networks: a model study. Am J Physiol 270: H364–H375.
  • Hammer LW, Ligon AL, Hester RL. (2001). Differential inhibition of functional dilation of small arte-rioles by indomethacin and glibenclamide. Hypertension 37:599–603.
  • Harrigan TP. (1997). Regulatory interaction between myogenic and shear-sensitive arterial segments: conditions for stable steady states. Ann Biomed Eng 25: 635–643.
  • Hester RL. (1990). Venular-arteriolar diffusion of adenosine in hamster cremaster microcirculation. Am J Physiol 258:H1918–H1924.
  • Hilton SM. (1959). A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J Physiol (Lond) 149:93–111.
  • Hulme JT, Coppock EA, Felipe A, Martens JR, Tamkun MM. (1999). Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ Res 85:489–497.
  • Jackson WF. (1987). Arteriolar oxygen reactivity: where is the sensor? Am J Physiol 253:H1120– H1126.
  • Jackson WF. (2000). Hypoxia does not activate ATP-sensitive K+ channels in arteriolar muscle cells. Microcirculation 7:137–145.
  • Jagger JE, Bateman RM, Ellsworth ML, Ellis CG. (2001). Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 280:H2833–H2839.
  • Johnson PC. (1980). The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV, Jr., editors. Handbook of Physiology, Section 2, The Cardiovascular System, Vol. II: Vascular Smooth Muscle. Bethesda, MD: American Physiological Society, 409–442.
  • Kamiya A, Bukhari R, Togawa T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46:127–137.
  • Klotz KF, Gaehtgens P, Pries AR. (1995). Does luminal release of EDRF contribute to downstream micro-vascular tone? Pflugers Arch 430:978–983.
  • Koller A, Kaley G. (1990). Endothelium regulates skeletal muscle microcirculation by a blood flow velocity sensing mechanism. Am J Physiol 258:H916– H920.
  • Kopyltsov AV, Groebe K. (1997). Mathematical modelling of local regulation of blood flow by veno-arterial diffusion of vasoactive metabolites. Adv Exp Med Biol 411:303–311.
  • Kuo L, Chilian WM, Davis MJ. (1991). Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am J Physiol 261:H1706– H1715.
  • LaBarbera M. (1990). Principles of design of fluid transport systems in zoology. Science 249:992–1000.
  • Langille BL, O'Donnell F. (1986). Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231: 405–407.
  • Liao JC, Kuo L. (1997). Interaction between adeno-sine and flow-induced dilation in coronary microvas-cular network. Am J Physiol 272:H1571–H1581.
  • Marshall JM. (1982). The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. J Physiol 332:169–186.
  • Mitchell D, Yu J, Tyml K. (1997). Comparable effects of arteriolar and capillary stimuli on blood flow in rat skeletal muscle. Microvasc Res 53:22–32.
  • Murray CD. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12:207– 214.
  • Oien AH, Aukland K. (1983). A mathematical analysis of the myogenic hypothesis with special reference to autoregulation of renal blood flow. Circ Res 52: 241–252.
  • Pohl U, de Wit C, Gloe T. (2000). Large arterioles in the control of blood flow: role of endothelium-depen-dent dilation. Acta Physiol Scand 168:505–510.
  • Price RJ, Skalak TC. (1995). A circumferential stress-growth rule predicts arcade arteriole formation in a network model. Microcirculation 2:41–51.
  • Pries AR, Reglin B, Secomb TW. (2001). Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol 281:H1015–H1025.
  • Pries AR, Secomb TW, Gaehtgens P. (1995). Design principles of vascular beds. Circ Res 77:1017–1023.
  • Pries AR, Secomb TW, Gaehtgens P. (1995). Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am J Physiol 269: H1713–H1722.
  • Pries AR, Secomb TW, Gaehtgens P. (1998). Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol 275: H349–H360.
  • Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. (1994). Resistance to blood flow in microvessels in vivo. Circ Res 75:904–915.
  • Quick CM, Young WL, Leonard EF, Joshi S, Gao E, Hashimoto T. (2000). Model of structural and functional adaptation of small conductance vessels to arterial hypotension. Am J Physiol Heart Circ Physiol 279:H1645–H1653.
  • Rivers RJ. (1995). Remote effects of pressure changes in arterioles. Am J Physiol 268:H1379–H1382.
  • Rivers RJ. (1997). Components of methacholine-initiated conducted vasodilation are unaffected by arteriolar pressure. Am J Physiol 272:H2895–H2901.
  • Rivers RJ. (1997). Cumulative conducted vasodilation within a single arteriole and the maximum conducted response. Am J Physiol 273:H310–H316.
  • Rivers RJ, Hein TW, Zhang C, Kuo L. (2001). Activation of barium-sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles. Circulation 104:1749–1753.
  • Rodbard S. (1975). Vascular caliber. Cardiology 60: 4–49.
  • Saito Y, Eraslan A, Lockard V, Hester RL. (1994). Role of venular endothelium in control of arteriolar diameter during functional hyperemia. Am J Physiol 267:H1227–H1231.
  • Sarelius IH, Cohen KD, Murrant CL. (2000). Role for capillaries in coupling blood flow with metabolism. Clin Exp Pharmacol Physiol 27:826–829.
  • Schretzenmayr A. (1933). liber kreislaufregulato-rische Vorgonge an den grossen Arterien bei der Muskelarbeit. Pfl–gers Arch Ges Physiol 232:743–748.
  • Secomb TW, Hsu R. (1994). Simulation of O2 transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am J Physiol 267:H1214–H1221.
  • Segal SS. (1991). Microvascular recruitment in hamster striated muscle: role for conducted vasodilation. Am J Physiol 261:H181–H189.
  • Segal SS, Damon DN, Duling BR. (1989). Propagation of vasomotor responses coordinates arteriolar resistances. Am J Physiol 256:H832–H837.
  • Segal SS, Duling BR. (1986). Flow control among microvessels coordinated by intercellular conduction. Science 234:868–870.
  • Segal SS, Jacobs TL. (2001). Role for endothelial cell conduction in ascending vasodilatation and exercise hyperaemia in hamster skeletal muscle. J Physiol 536: 937–946.
  • Segal SS, Welsh DG, Kurjiaka DT. (1999). Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. J Physiol 516:283–291.
  • Skalak TC, Price RJ. (1996). The role of mechanical stresses in microvascular remodeling. Microcirculation 3:143–165.
  • Song H, Tyml K. (1993). Evidence for sensing and integration of biological signals by the capillary network. Am J Physiol 265:H1235–H1242.
  • Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. (1997). Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037.
  • Tateishi J, Faber JE. (1995). ATP-sensitive K+ channels mediate alpha 2D-adrenergic receptor contraction of arteriolar smooth muscle and reversal of contraction by hypoxia. Circ Res 76:53–63.
  • Tateishi J, Faber JE. (1995). Inhibition of arteriole alpha 2- but not alpha 1-adrenoceptor constriction by acidosis and hypoxia in vitro. Am J Physiol 268: H2068–H2076.
  • Tigno XT, Ley K, Pries AR, Gaehtgens P. (1989). Venulo-arteriolar communication and propagated response: a possible mechanism for local control of blood flow. Pfl–gers Arch 414:450–456.
  • Tulis DA, Unthank JL, Prewitt RL. (1998). Flow-induced arterial remodeling in rat mesenteric vascu-lature. Am J Physiol 274:H874–H882.
  • Tyml K, Song H, Munoz P, Ouellette Y. (1997). Evidence for K+ channels involvement in capillary sensing and for bidirectionality in capillary communication. Microvasc Res 53:245–253.
  • Ursino M, Colantuoni A, Bertuglia S. (1998). Vaso-motion and blood flow regulation in hamster skeletal muscle microcirculation: A theoretical and experimental study. Microvasc Res 56:233–252.
  • VanTeeffelen JW, Segal SS. (2000). Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle. J Physiol 524 Pt 1:267–278.
  • Wagner AJ, Holstein-Rathlou NH, Marsh DJ. (1997). Internephron coupling by conducted vasomotor responses in normotensive and spontaneously hypertensive rats. Am J Physiol 272:F372–F379.
  • Welsh DG, Segal SS. (1998). Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am J Physiol 274:H178–H186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.