188
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Molecular organization of the cell wall of Candida albicans

Pages 1-8 | Published online: 09 Jul 2009

References

  • Shepherd MG. Cell envelope of Candida albicans. CRC Crit Rev Microbiol 1987; 15: 7–25.
  • Chaffin WL, Lopez-Ribot JL, Casanova M, Gozalbo D, Martinez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 1998; 62: 130–180.
  • Fleet GH. 1991. Cell walls. In: Rose AH, Harrison JS, eds. TheYeasts. 2nd edn, Vol. 4. London: Academic Press: 199–277.
  • Brown JA, Catley BJ. Monitoring polysaccharide synthesis in Candida-albicans. Carbohydr Res 1992; 227: 195–202.
  • Mio T, Yamada-Okabe T, Yabe T, Nakajima T, Arisawa M, Yamada-Okabe H. Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. J Bacteriol 1997; 179: 2363–2372.
  • Braun PC, Calderone RA. Chitin synthesis in Candida albicans: comparison of yeast and hyphal forms. J Bacteriol 1978; 135: 1472–1477.
  • Shibata N, Ikuta K, Imai T, et al. Existence of branched side chains in the cell wall mannan of pathogenic yeast, Candida albicans. Structure-antigenicity relationship between the cell wall mannans of Candida albicans and Candida parapsilosis. J Biol Chem 1995; 270: 1113–1122.
  • Horisberger M, Clerc M-F. Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-tube forming cells of Candida albicans. Eur J Cell Biol 1988; 46: 444–452.
  • Smail EH, Briza P, Panagos A, Berenfeld L. Candida albicans cell walls contain the fluorescent cross-linking amino acid dityrosine. Infect Immun 1995; 63: 4078–4083.
  • Tokunaga M, Kusamichi M, Koike H. Ultrastructure of outermost layer of cell wall in Candida albicans observed by rapid-freezing technique. J Electron Microsc 1986; 35:237–246.
  • Yu L, Lee KK, Ens K, et al. Partial characterization of a Candida albicans fimbrial adhesin. Infect Immun 1994; 62: 2834–2842.
  • Kapteyn JC, Montijn RC, Vink E, et al. Retention of Saccharomyces cerevisiae cell wall proteins through a phos-phodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glyco biology 1996; 6: 337–345.
  • Kapteyn JC, Ram AF, Groos EM, et al. Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 1997; 179: 6279–6284.
  • Kapteyn JC, Van Egmond P, Sievi E, Van Den Ende H, Makarow M, Klis FM. The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta-1,6-glucan-defrient mutants. Mol Microbiol 1999; 31: 1835-1844.
  • Kapteyn JC, Van Den Ende H, Klis FM. The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1999; 1426: 373–383.
  • Kapteyn JC, ter Riet B, Vink E, et al. Low external pH inducesHOG/-dependent changes in the organization of the Sacchar-omyces cerevisiae cell wall. Mol Microbiol 2001; 39: 469–479.
  • Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E. Architecture of the yeast cell wall. The linkage between chitin and beta-(1->3)-glucan. J Biol Chem 1995; 270: 1170–1178.
  • Kollar R, Reinhold BB, Petrakova E, et al. Architecture of theyeast cell wall. Beta-(1->6)-glucan interconnects mannopro-tein, beta(1->)3-glucan, and chitin. J Biol Chem 1997; 272: 17762–17775.
  • Smits GJ, Kapteyn JC, van den Ende H, Klis FM. Cell wall dynamics in yeast. Curr Opin Microbiol 1999; 2: 348–352.
  • KapteynJC, Montijn RC, Dijkgraaf GJ, Klis FM. Identificationof beta-1,6-glucosylated cell wall proteins in yeast and hyphal forms of Candida albicans. Eur J Cell Biol 1994; 65: 402–407.
  • Kapteyn JC, Montijn RC, Dijkgraaf GJ, Van den Ende H, KlisFM. Covalent association of beta-1,3-glucan with beta-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J Bacteriol 1995; 177: 3788–3792.
  • Kapteyn JC, Hoyer LL, Hecht JE, et al. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 2000; 35: 601–611.
  • Surarit R, Gopal PK, Shepherd MG. Evidence for a glycosidiclinkage between chitin and glucan in the cell wall of Candida albicans. J Gen Microbiol 1988; 134: 1723–1730.
  • Kandasamy R, Vediyappan G, Chaffin WL. Evidence for the presence of Pir-like proteins in Candida albicans. FEMS Microbiol Lett 2000; 186:239–243.
  • Molloy C, Shepherd MG, Sullivan PA. Identification of envelope proteins of Candida albicans by vectorial iodination. Microbios 1989; 57: 73–83.
  • Casanova M, Lopez-Ribot JL, Martinez JP, Sentandreu R. Characterization of cell wall proteins from yeast and mycelial cells of Candida albicans by labelling with biotin: comparison with other techniques. Infect Immun 1992; 60: 4898–4906.
  • Sarthy AV, McGonigal T, Coen M, Frost DJ, Meulbroek JA, Goldman RC. Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta- glucosyltransferase. Microbiology 1997; 143:367–376.
  • Sentandreu M, Elorza MV, Sentandreu R, Fonzi WA. Cloningand characterization of PRAI, a gene encoding a novel pH-regulated antigen of Candida albicans. J Bacteriol 1998; 180: 282–289.
  • Lu CF, Kurjan J, Lipke PN. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol Cell Biol 1994; 14: 4825–4833.
  • De Nobel JG, Klis FM, Munnik T, Priem J, van den Ende H. An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe. Yeast 1990; 6: 483–490.
  • Casanova M, Lopez-Ribot JL, Monteagudo C, Llombart-Bosch A, Sentandreu R, Martinez JP. Identification of a 58-kilodalton cell surface fibrinogen-binding mannoprotein from Candida albicans. Infect Immun 1992; 60: 4221–4229.
  • Alloush HM, Lopez-Ribot JL, Masten BJ, Chaffin WL. 3-Phosphoglycerate kinase: a glycolytic enzyme protein present in the cell wall of Candida albicans. Microbiology 1997; 143: 321–330.
  • Eroles P, SentandreuM, Elorza MV, Sentandreu R. The highlyimmunogenic enolase and Hsp7Op are adventitious Candida albicans cell wall proteins. Microbiology 1997; 143:313–320.
  • Gil-Navarro I, Gil ML, Casanova M, O'Connor JE, Martinez JP, Gozalbo D. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 1997; 179:4992–4999. @ 2001 ISHAM, Medical Mycology, 39, Supplement 1, 1-8
  • Kapteyn JC, Dijkgraaf GJ, Montijn RC, Klis FM. Glucosyla-tion of cell wall proteins in regenerating spheroplasts of Candida albicans. FEMS Microbiol Lett 1995; 128: 271–277.
  • Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol 2001; 9: 176–180.
  • Lamarre C, Deslauriers N, Bourbonnais Y. Expression cloning of the Candida albicans CSAI gene encoding a mycelial surface antigen by sorting of Saccharomyces cerevisiae transformants with monoclonal antibody-coated magnetic beads. Mol Micro-biol 2000; 35: 444–453.
  • Staab JF, Sundstrom P. Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HIVP1 of Candida albicans. Yeast 1998; 14: 681–686.
  • Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwpl. Science 1999; 283: 1535–1538.
  • Bailey DA, Feldmann PJ, Bovey M, Gow NA, Brown AJ. The Candida albicans HYRI gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 1996; 178: 5353–5360.
  • Braun BR, Head WS, Wang MX, Johnson AD. Identification and characterization of TUP/-regulated genes in Candida albicans. Genetics 2000; 156: 31–44.
  • Eisenhaber B, Bork P, Eisenhaber F. Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 1999; 292: 741–758.
  • Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 1998; 33: 451–459.
  • Staab JF, Ferrer CA, Sundstrom P. Developmental expressionof a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J Biol Chem 1996; 271: 6298–6305.
  • Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM. In silicio identification of glycosyl-phosphatidylinosi-tol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 1997; 13: 1477–1489.
  • Marcilla A, Elorza MV, Mormeneo S, Rico H, Sentandreu R. Candida albicans mycelial wall structure: supramolecular complexes released by Zymolyase, chitinase and beta-mercap-toethanol. Arch Microbiol 1991; 155: 312–319.
  • Pavia J, Aguado C, Mormeneo S, Sentandreu R Secretion, interaction and assembly of two O-glycosylated cell wall antigens from Candida albicans. Microbiology 2001; 147: 1983–1991.
  • Bom LI, Dielbandhoesing SK, Harvey KN, Oomes SJ, Klis FM,Brul S. A new tool for studying the molecular architecture of the fungal cell wall: one-step purification of recombinant Trichoderma beta-(1-6)-glucanase expressed in Pichia pastoris. Biochim Biophys Acta 1998; 1425:419–424.
  • Hoyer LL, Fundyga R, Hecht JE, Kapteyn JC, Klis FM, Arnold J. Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics 2001; 157: 1555–1567.
  • Cormack BP, Ghori N, Falkow S. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 1999; 285: 578–582.
  • Mrsa V, Seidl T, Gentzsch M, Tanner W. Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 1997; 13: 1145–1154.
  • De Nobel JG, Klis FM, Priem J, Munnik T, van den Ende H. The glucanase-solublemannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 1990; 6: 491–499.
  • Masuoka J, Hazen KC. Differences in the acid-labile compo-nent of Candida albicans mannan from hydrophobic and hydrophilic yeast cells. Glyco biology 1999; 9: 1281–1286.
  • Fukazawa Y, Kagaya K. Molecular bases of adhesion of Candida albicans. J Med Vet Mycol 1997; 35: 87–99.
  • Alonso R, Llopis I, Flores C, Murgui A, Timoneda J. Differentadhesins for type IV collagen on Candida albicans: identifica-tion of a lectin-like adhesin recognizing the 7S(IV) domain. Microbiology 2001; 147: 1971–1981.
  • Vardar-Unlu G, McSharry C, Douglas LJ. Fucose-specific adhesins on germ tubes of Candida albicans. FEMS Immunol Med Microbiol 1998; 20: 55–67.
  • Hoyer LL, Hecht JE. The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 2001; 18:49–60.
  • Chen MH, Shen ZM, Bobin S, Kahn PC, Lipke PN. Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem 1995; 270: 26168–26177.
  • Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE Jr, Filler SG. Expression of the Candida albicans gene ALSI in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 1998; 66: 1783–1786.
  • Gaur NK, Klotz SA, Henderson RL. Overexpression of the Candida albicans ALAI gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans. Infect Immun 1999; 67: 6040–6047.
  • Sundstrom P. Adhesins in Candida albicans. Curr Op Micro-biol 1999; 2: 353–357.
  • Staebell M, Soll DR. Temporal and spatial differences in cell wall expansion during bud and mycelium formation in Candida albicans. J Gen Microbiol 1985; 131: 1467–1480.
  • Shaw JA, Mol PC, Bowers B, et al. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 1991; 114: 111–123.
  • Mormeneo S, Marcilla A, Iranzo M, Sentandreu R. Structural mannoproteins released by beta-elimination from Candida albicans cell walls. FEMS Microbiol Lett 1994; 123: 131–136.
  • Bouchara J-P, Tronchin G, Annaix V, Robert R, Senet J-M. Laminin receptors on Candida albicans germ tubes. Infect Immun 1990; 58: 48–54.
  • Leng P, Lee PR, Wu H, Brown AJ. Efgl, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol 2001; 183: 4090–4093.
  • De Groot PWJ, Ruiz C, Vazquez de Aldana CR, et al. A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2: 124–142.
  • Milner J. Candida albicans in electron microscopical presenta-tion. Mycoses 42 Suppl. 1: 5–11.
  • Southard SB, Specht CA, Mishra C, Chen-Weiner J, Robbins PW. Molecular analysis of the Candida albicans homolog of Saccharomyces cerevisiae MNN9, required for glycosylation of cell wall mannoproteins. J Bacteriol 1999; 181: 7439–7448.
  • Hector RF, Braun PC. Synergistic action of nikkomycins X andZ with papulacandin B on whole cells and regenerating protoplasts of Candida albicans. Antimicrob Agents Chemother 1986; 29: 389–394.
  • Popolo L, Vai M. Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phrl mutant. J Bacteriol 1998; 180: 163–166.
  • Hector RF, Schaller K. Positive interaction of nikkomycins andazoles against Candida albicans in vitro and in vivo. Anti-microb Agents Chemother 1992; 36: 1284–1289.
  • Vanden Bossche H. Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. In: McGinnis MR, ed. Current Topics In Medical Mycology, Vol 1. New York: Springer Verlag, 1985:313–351.
  • Navarro-Garcia F, Sanchez M, Pla J, Nombela C. Functional characterization of the MKCI gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 1995; 15: 2197–2206.
  • Navarro-Garcia F, Alonso-Monge R, Rico H, Pla J, Sentan-dreu R, Nombela C. A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 1998; 144: 411–424.
  • Alonso-Monge R, Navarro-Garcia F, Molero G, et al. Role of the mitogen-activated protein kinase Hoglp in morphogenesis and virulence of Candida albicans. J Bacteriol 1999; 181: 3058–3068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.