61
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Role of chemokines in fungal infections

&
Pages 41-50 | Published online: 09 Jul 2009

References

  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18: 217–242.
  • Zlotnik A, Yoshie 0. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–127.
  • O'Garra A, McEvoy LM, Zlotnik A. T-cell subsets: chemokine receptors guide the way. Curr Biol 1998; 8: R646–649.
  • Murphy PM, Baggiolini M, Charo IF, et aL International union of pharmacology. XXII. Nomenclature for chemokine recep-tors. Pharmacol Rev 2000; 52: 145–176.
  • Casadevall A, Perfect JR. Ecology of Cryptococcus neoformans. In: Cryptococcus neoformans. Washington, DC: ASM Press, 1998: 41–70.
  • Casadevall A, Perfect JR. Epidemiology. In: Cryptococcus neoformans. Washington, DC: ASM Press, 1998: 351–380.
  • Diamond RD. Cryptococcus neoformans. In: GL Mandell, JE Bennett, R Dolin, eds. Principles and Practice of Infectious Diseases. New York: Churchill Livingston, 1995: 2331–2340.
  • Huffnagle GB, McNeil LK. Dissemination of Cryptococcus neoformans to the central nervous system: role of chemokines, Thl immunity and leukocyte recruitment. J Neuroviro11999; 5: 76–81.
  • Huffnagle GB, Yates JL, Lipscomb MF. Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J Exp Med 1991; 173: 793–800.
  • Huffnagle GB, Lipscomb MF, Lovchik JA, et al. The role of CD4+ and CD8+ T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J Leukoc Biol 1994; 55: 35–42.
  • Salkowski CA, Balish E. Inflammatory responses to cryptococ-cosis in congenitally athymic mice. J Leukoc Biol 1991; 49:533–541.
  • Traynor TR, Kuziel WA, Toews GB, et aL CCR2 expression determines Ti versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol 2000; 164: 2021-2027.
  • Casadevall A, Perfect JR. Physical defenses and nonspecific immunity. In: Cryptococcus neoformans. Washington, DC: ASM Press, 1998: 177–222.
  • Huffnagle GB, Toews G. Mechanism of macrophage recruit-ment into infected lungs. In: Lipscomb MF, Russell SW, eds. Lung Macrophages and Dendritic Cells in Health and Disease. New York: Marcel Dekker, 1997: 373–407.
  • Huffnagle GB, Lipscomb NW. Cells and cytokines in pulmonary cryptococcosis. Res Immunol 1998; 149: 387–396.
  • Huang C, Levitz SM. Stimulation of macrophage inflammatory protein-lalpha, macrophage inflammatory protein-lbeta, and RANTES by Candida albi cans and Cryptococcus neoformans in peripheral blood mononuclear cells from persons with and without human immunodeficiency virus infection. J Infect Dis 2000; 181: 791–794.
  • Levitz SM, North EA, Jiang Y, et al. Variables affecting production of monocyte chemotactic factor 1 from human leukocytes stimulated with Cryptococcus neoformans. Infect Immun 1997; 65: 903–908.
  • Retini C, Vecchiarelli A, Monari C, et aL Capsular polysacchar-ide of Cryptococcus neoformans induces proinflammatory cytokine release by human neutrophils. Infect Immun 1996; 64: 2897–2903.
  • Vecchiarelli A, Retini C, Casadevall A, et al. Involvement of C3a and C5a in interleukin-8 secretion by human polymorpho-nuclear cells in response to capsular material of Cryptococcus neoformans. Infect Immun 1998; 66: 4324–4330.
  • Lipovsky MM, Gekker G, Hu S, et aL Cryptococcal glucur-onoxylomannan induces interleukin (IL)-8 production by hu-man microglia but inhibits neutrophil migration toward IL-8. J Infect Dis 1998; 177:260–263.
  • Chaka W, Heyderman R, Gangaidzo I, et aL Cytokine profiles in cerebrospinal fluid of human immunodeficiency virus-infected patients with cryptococcal meningitis: no leukocytosis despite high interleuldn-8 levels. University of Zimbabwe Meningitis Group. J Infect Dis 1997; 176: 1633–1636.
  • Huffnagle GB, Strider RM, Standiford TJ, et al. The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. J Immunol 1995; 155: 4790–4797.
  • Huffnagle GB. Role of cytokines in T cell immunity to a pulmonary Cryptococcus neoformans infection. Biol Signals 1996; 5: 215–222.
  • Huffnagle GB, Strider RM, McNeil LK, et al. Macrophage inflammatory protein-lalpha (MIP-lalpha) is required for the efferent phase of pulmonary cell-mediated immunity to a Cryptococcus neoformans infection. J Immunol 1997; 159:318–327.
  • Boring L, Gosling J, Monteclaro FS, et aL Molecular cloning and functional expression of murine JE (monocyte chemoattractant protein 1) and murine macrophage inflammatory protein 1 alpha receptors: evidence for two closely linked C-C chemokine receptors on chromosome 9. J Biol Chem 1996; 271:7551–7558.
  • Hoag KA, Lipscomb MF, Izzo AA, et aL IL-12 and IFN-gamma are required for initiating the protective Thl response to pulmonary cryptococcosis in resistant C.B-17 mice. Am J Respir Cell Mol Biol 1997; 17: 733–739.
  • Kawakami K, Qureshi MH, Zhang T, et aL Interferon-gamma (IFN-gamma)-dependent protection and synthesis of chemoat-tractants for mononuclear leucocytes caused by IL-12 in the lungs of mice infected with Cryptococcus neoformans. Clin Exp Immunol 1999; 117: 113–122.
  • Kawakami K, Tohyama M, Xie Q, et aL IL-12 protects mice against pulmonary and disseminated infection caused by Cryptococcus neoformans. Clin Exp Immunol 1996; 104: 208–214.
  • Mantovani A. The chemokine system: redundancy for robust outputs. Immunol Today 1999; 20: 254–257.
  • Schweickart VL, Epp A, Raport CJ, etal. CCR11 is a functional receptor for the monocyte chemoattractant protein family of chemokines. J Biol Chem 2000; 275: 9550–9556.
  • Hogaboam CM, Lukacs NW, Chensue SW, et al. Monocyte chemoattractant protein-1 synthesis by murine lung fibroblasts modulates CD4+ T cell activation. J Immunol 1998; 160:4606–4614.
  • Karpus WJ, Lukacs NW, Kennedy KJ, et aL Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol 1997; 158: 4129–4136.
  • Gu L, Tseng S, Homer RM, et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000; 404: 407–411.
  • Doyle HA, Murphy JW. Role of the C-C chemokine, TCA3, in the protective anticryptococcal cell-mediated immune response. J Immunol 1999; 162: 4824–4833.
  • Doyle HA, Murphy JW. MIP-1 alpha contributes to the anticryptococcal delayed-type hypersensitivity reaction and protection against Cryptococcus neoformans. J Leukoc Biol 1997; 61: 147–155. @ 2001 ISHAM, Medical Mycology, 39, 41-50
  • Huffnagle GB, Toews GB, Burdick MD, et al. Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J Immunol 1996; 157: 4529–4536.
  • Kawakami K, Qifeng X, Tohyama M, et al. Contribution of tumour necrosis factor-alpha (TNF-alpha) in host defence mechanism against Cryptococcus neoformans. Clin Exp Im-munol 1996; 106: 468–474.
  • Huffnagle GB, Strider RM, Kunkel SL, et aL The role of chemokines in pneumonia. In: Koch AE, Strieter RM, eds. Chemokines in Disease. Austin, TX: RG Landes, 1996: 151–168.
  • Strieter RM, Kunkel SL. Chemokines. In: RG Crystal, JB West, eds. The Lung. Philadelphia: Lippincott-Raven, 1997: 155–185.
  • Curtis JL, Huffnagle GB, Chen GH, et aL Experimental murine pulmonary cryptococcosis. Differences in pulmonary inflamma-tion and lymphocyte recruitment induced by two encapsulated strains of Cryptococcus neoformans. Lab Invest 1994; 71: 113126.
  • Huffnagle GB, Chen GH, Curtis JL, et al. Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Crypto-coccus neoformans. J Immunol 1995; 155: 3507–3516.
  • Kawakami K, Shibuya K, Qureshi MH, et al. Chemokine responses and accumulation of inflammatory cells in the lungs of mice infected with highly virulent Cryptococcus neoformany effects of interleukin-12. FEMS Immunol Med Microbiol 1999; 25: 391–402.
  • Stevens DA, Walsh TJ, Bistoni F, et aL Cytokines and mycoses Med Mycol 1998; 36: 174–182.
  • Vazquez-Torres A, Balish E. Macrophages in resistance to candidiasis. Microbiol Mol Biol Rev 1997; 61: 170–192.
  • Romani L. Immunity to Candida albicans: ml, Th2 cells and beyond. Curr Opin Microbiol 1999; 2: 363–367.
  • Murphy JW, Bistoni F, Deepe GS, et al. Type 1 and type 2 cytokines: from basic science to fungal infections. Med Mycol 1998; 36: 109–118.
  • Lal S, Mitsuyama M, Miyata M, et al. Pulmonary defence mechanism in mice. A comparative role of alveolar macro-phages and polymorphonuclear cells against infection with Candida albicans. J Clin Lab Immunol 1986; 19: 127–133.
  • Edwards JE Jr, Rotrosen D, Fontaine JW, et aL Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae. Blood 1987; 69: 1450–1457.
  • Kullberg BJ, Netea MG, Vonk AG, et aL Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. FEMS Immunol Med Microbiol 1999; 26: 299–307.
  • Sawyer RT, Harmsen AG. The relative contribution of resident pulmonary alveolar macrophage and inflammatory polymorpho-nuclear neutrophils in host resistance to pulmonary infection by Candida albicans. Mycopathologia 1989; 108: 95–105.
  • Romani L, Bistoni F, Puccetti P. Initiation of T-helper cell immunity to Candida albicans by IL-12: the role of neutrophils. Chem Immunol 1997; 68: 110–135.
  • Rosseau S, Hammerl P, Maus U, et aL Surfactant protein A down-regulates proinflammatory cytokine production evoked by Candida albicans in human alveolar macrophages and mono-cytes. J Immunol 1999; 163: 4495–4502.
  • Jiang Y, Russell TR, Graves DT, et aL Monocyte chemoat-tractant protein 1 and interleukin-8 production in mononuclear cells stimulated by oral microorganisms. Infect Immun 1996; 64: 4450–4455.
  • Castro M, Bjoraker JA, Rohrbach MS, et al. Candida albicans induces the release of inflammatory mediators from human peripheral blood monocytes. Inflammation 1996; 20: 107–122.
  • Yamamoto Y, Klein TW, Friedman H. Involvement of mannose receptor in cytokine interleukin-lbeta (IL-lbeta), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein lbeta (MIP-lbeta), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect Immun 1997; 65: 1077–1082.
  • Willcox MD, Webb BC, Thakur A, et aL Interactions between Candida species and platelets. J Med Microbiol 1998; 47: 103–110.
  • Hachicha M, Rathanaswami P, Naccache PH, et aL Regulation of chemokine gene expression in human peripheral blood neutrophils phagocytosing microbial pathogens. J Immunol 1998; 160: 449–454.
  • Filler SG, Pfunder AS, Spellberg BJ, et aL Candida albicans stimulates cytokine production and leukocyte adhesion mole-cule expression by endothelial cells. Infect Immun 1996; 64: 2609–2617.
  • Saavedra M, Taylor B, Lukacs N, et al. Local production of chemokines during experimental vaginal candidiasis. Infect Immun 1999; 67: 5820–5826.
  • Sobel JD, Hasegawa A, Debemardis F, et aL Selected animal models: vaginal candidosis, Pneumocystis pneumonia, dermato-phytosis and trichosporosis. Med Mycol 1998; 36: 129–136.
  • King AG, Johanson K, Frey CL, et al. Identification of unique truncated KC/GRO beta chemokines with potent hematopoietic and anti-infective activities. J Immunol 2000; 164: 3774–3782.
  • DeMarsh PL, Sucoloski SK, Frey CL, et al. Efficacy of the hematoregulatory peptide SK&F 107647 in experimental systemic Candida albicans infections in normal and immuno-suppressed mice. Immunopharmacology 1994; 27: 199–206.
  • Musso T, Calosso L, Zucca M, et al. Interleukin-15 activates proinflammatory and antimicrobial functions in polymorpho-nuclear cells. Infect Immun 1998; 66: 2640–2647.
  • Kurup VP, Grunig G, Knutsen AP, et aL Cytokines in allergic bronchopulmonary aspergillosis. Res Immunol 1998; 149: 466–477.
  • Cenci E, Mencacci A, d'Ostiani CF, et aL Cytokine- and T-helper-dependent immunity in murine aspergillosis. Res Im-munol 1998; 149:445–454.
  • Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000; 18: 593–620.
  • Kurup VP, Guo J, Murali PS, et aL Immunopathologicresponses to Aspergillus antigen in interleukin-4 knockout mice. J Lab Clin Med 1997; 130:567–575.
  • Hogaboam CM, Gallinat CS, Taub DD, et al. Immunomodula-tory role of C10 chemokine in a murine model of allergic bronchopulmonary aspergillosis. J Immunol 1999; 162: 6071–6079.
  • Roilides E, Katsifa H, Walsh TJ. Pulmonary host defences against Aspergillus fumigatus. Res Immunol 1998; 149:454–465.
  • Borger P, Koeter GH, Timmerman JA, et al. Proteases from Aspergillus fumigatus induce interleukin (IL)-6 and IL-8 production in airway epithelial cell lines by transcriptional mechanisms. J Infect Dis 1999; 180: 1267–1274.
  • Tomee JF, Wierenga AT, Hiemstra PS, et al. Proteases from Aspergillus fumigatus induce release of proinflammatory cyto-kines and cell detachment in airway epithelial cell lines. J Infect Dis 1997; 176:300–303.
  • Richardson MD, Patel M. Stimulation of neutrophil phagocy-tosis of Aspergillus fumigatus conidia by interleukin-8 and N-formylmethionyl-leucylphenylalatine. J Med Vet Mycol 1995; 33: 99–104.
  • Shahan TA, Sorenson WG, Paulauskis JD, et al. Concentration-and time-dependent upregulation and release of the cytokines MIP-2, KC, TNF, and MIP-lalpha in rat alveolar macrophages by fungal spores implicated in airway inflammation. Am J Respir Cell Mol Biol 1998; 18: 435–440.
  • Schelenz S, Smith DA, Bancroft GJ. Cytokine and chemokine responses following pulmonary challenge with Aspergillus fumigatus: obligatory role of TNF-alpha and GM-CSF in neutrophil recruitment. Med Mycol 1999; 37: 183–194.
  • Mehrad B, Strieter RM, Standiford TJ. Role of TNF-alpha in pulmonary host defense in murine invasive aspergillosis. J Immunol 1999; 162: 1633–1640.
  • Mehrad B, Strieter RM, Moore TA, et aL CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol 1999; 163: 6086–6094.
  • Gao JL, Wynn TA, Chang Y, et al. Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 1997; 185: 1959-1968.
  • Schliep TC, Yarrish RL. Pneumocystis carinii pneumonia. Semin Respir Infect 1999; 14: 333–343.
  • Martin WJ. Pneumocystis carinii: the art and science of survival in the hostile environment of the alveolar spaces. Semin Respir Infect 1998; 13: 348–352.
  • Beck JM, Harmsen AG. Lymphocytes in host defense against Pneumocystis carinii. Semin Respir Infect 1998; 13: 330–338.
  • Wright TW, Johnston CJ, Harmsen AG, et aL Chemokine gene expression during Pneumocystis carinii-driven pulmonary in-flammation. Infect Immun 1999; 67: 3452–3460.
  • Roths JB, Sidman CL. Both immunity and hyperresponsiveness to Pneumocystis carinii result from transfer of CD4+ but not CD8+ T cells into severe combined immunodeficiency mice. J Clin Invest 1992; 90: 673–678.
  • Wright TW, Johnston CJ, Harmsen AG, et aL Analysis of cytokine mRNA profiles in the lungs of Pneumocystis carinii-infected mice. Am J Respir Cell Mol Biol 1997; 17: 491–500.
  • Benfield TL, van Steenwijk R, Nielsen TL, et al. Interleukin-8 and eicosanoid production in the lung during moderate to severe Pneumocystis carinii pneumonia in AIDS: a role of interleukin-8 in the pathogenesis of P. carinii pneumonia. Respir Med 1995; 89: 285–290.
  • Lipschik GY, Doerfler ME, Kovacs JA, et al. Leukotriene B4 and interleukin-8 in human immunodeficiency virus-related pulmonary disease. Chest 1993; 104: 763–769.
  • Benfield TL, Vestbo J, Junge J, et aL Prognostic value of interleukin-8 in AIDS-associated Pneumocystis carinii pneumo-nia. Am J Respir Grit Care Med 1995; 151: 1058–1062.
  • Benfield TL, Kharazmi A, Larsen CG, et aL Neutrophil chemotactic activity in bronchoalveolar lavage fluid of patients with AIDS-associated Pneumocystis carinii pneumonia. Scand J Infect Dis 1997; 29: 367–371.
  • Benfield TL, Lundgren B, Shelhamer JH, et aL Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line. Eur J Clin Invest 1999; 29:717–722.
  • Lipschik GY, Treml JF, Moore SD. Pneumocystis carinii glycoprotein A stimulates interleukin-8 production and inflam-matory cell activation in alveolar macrophages and cultured monocytes. J Eukaryot Microbiol 1996; 43: 16S–17S.
  • Benfield TL, Lundgren B, Levine SJ, et al. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor alpha in monocytes. Infect Immun 1997; 65: 4790–4794.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.