69
Views
2
CrossRef citations to date
0
Altmetric
Research Article

N-Glycosylation of yeast, with emphasis on Candida albicans

Pages 75-86 | Published online: 09 Jul 2009

References

  • Kruszewska JS, Saloheimo M, Migdalski A, Orlean P, Pennilä M, Palamarczyk G. Dolichol phosphate mannose synthase from the filamentous fungus Tichoderma reesei belongs to the human and Schizosaccharomyces pombe class of the enzyme. Glycobiology 2000; 10: 983–991.
  • Orlean P. Congential disorders of glycosylation caused by defects in mannose addition during N-linked oligosaccharide assembly. J Clin Invest 2000; 105: 131–132.
  • Shakin-Eshleman SH, Remaley AT, Eshleman JR, Wunner WH, Spitalnik SL. N-linked glycosylation of rabies virus glycoprotein. J Biol Chem 1992; 267: 10690–10698.
  • Varki A. Exploring the biological roles of glycans. In: Varki A,Cummings R, Esko J, Freeze H, Hart G, Marth J, eds. Essentials of Glycobiology. New York: Cold Spring Harbor Laboratory Press, 1999: 57–68.
  • Hansen JE, Lund 0, Tolstrup N, Gooley AA, Williams KL, Grunak S. NetOglya prediction of mucin type 0-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998; 15: 115–130.
  • Gemmill TR, Trimble RB. Overview of N- and 0-linked oligosaccharide structures found in various yeast species. Biochem Biophys Acta 1999; 1426:227–237.
  • Herscovics A, Orlean P. Glycoprotein biosynthesis in yeast. FASEB J 1993; 7:540–550.
  • Kukuruzinska MA, Bergh MLE, Jackson BJ. Protein glycosy-lation in yeast. Ann Rev Biochem 1987; 56: 915–944.
  • Kukuruzinska MA, Lennon-Hopkins K. ALG gene expression and cell cycle progression. Biochim Biophys Acta 1999; 1426: 359–372.
  • Kukuruzinska MA, Lennon K. Growth-related coordinate regulation of the early N-glycosylation in genes in yeast. Glyco biology 1994; 4: 437–443.
  • Orlean, P. Biogenesis of yeast wall and surface components. In:Pringle J, Broach J, Jones E, eds. Cell Cycle and Cell Biology. New York: Cold Spring Harbor Laboratory Press, 1997: 229–362.
  • Lipke PN, Ovalle R. Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 1998; 180:3735–3740.
  • Shepherd MG. Candida albicans: biology, genetics, and pathogenicity. Ann Rev Microbiol 1985; 39: 579–614.
  • Huffaker TC, Robbins, PW. Yeast mutants deficient in protein glycosylation. Proc Nail Acad Sci USA 1983; 80: 7466–7470.
  • Schekman R, Novick P. The secretory process and yeast cell-surface assembly. In: Strathem JH, Jones EW, Broach JR, eds. The Molecular Biology of the Yeast Saccharomyces: Metabo-lism and Gene Expression. New York: Cold Spring Harbor Laboratory Press 1982: 361–398.
  • Ballou CE. Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Meth Enzymol 1990; 185: 440–470.
  • Ballou L, Cohen RE, Ballou CE. Saccharomyces cerevisiae mutants that make mannoproteins with a truncated carbohy-drate outer chain. J Biol Chem 1980; 255: 5986–5991.
  • Raschke WC, Kern KA, Antalis C, Ballou CE. Genetic controlof yeast mannan structure. Isolation and characterization of mannan mutants. J Biol Chem 1973; 248: 4660–4666.
  • Knauer R, Lehle L. The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta 1999; 1426:259–273.
  • Kukuruzinska MA, Lennon K. Protein N-glycosylation: mole-cular genetics and functional significance. Grit Rev Oral Biol Med 1998; 9: 415–448.
  • Chaffin WL, Collins B, Marx JN, Cole GT, Morrow KJ. Characterization of mutant strains of Candida albicans deficient in expression of a surface determinant. Infect Immun 1993; 61: 3449–3458.
  • Whelan WL, Delga JM, Wadsworth E, et al. Isolation and characterization of cell surface mutants of Candida albicans. Infect Immun 1990; 58: 1552–1557.
  • Hazen KC, Hazen BW. Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans. Infect Immun 1992; 60: 1499–1508.
  • Douglas RH, Ballou CE. Isolation of Kluyveromyces lactis mannoprotein mutants by fluorescence-activated cell sorting. J Biol Chem 1980; 255: 5979–5985.
  • Manas P, Oliver° I, Avalos M, Hernandez LM. Isolation of new nonconditional Saccharomyces cerevisiae mutants defec-tive in asparagine-linked glycosylation. Glycobiology 1997; 7: 489–497.
  • Goins T, Cutler JE. Relative abundance of oligosaccharides inCandida species as determined by fluorophore-assisted carbo-hydrate electrophoresis. J Clin Microbiol. 2000; 38:2862–2869.
  • Bistoni F, Verducci G, Perito S, et al. Immunomodulation by alow-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanism of nonspecific anti-infectious protection. J Med Vet Mycol. 1988; 26: 285–299.
  • Sakaguchi 0, Suzuki S, Suzuki M, Sunayama H. Biochemical and immunochemical studies of fungi. VII. Immunochemical studies of mannans of Candida albicans and Saccharomyces cerevisiae. Japan J Microbiol 1967; 11: 119–128.
  • Shibata N, Ichikawa T, Tojo M, et al. Immunochemical study on the mannans of Candida albicans NIH A-207, NIH B-792, and J-1012 strains prepared by fractional precipitation with cetyltrimethylammonium bromide. Arch Biochem Biophys 1985; 243:338–348.
  • Stewart TS, Ballou CE. A comparison of yeast mannans and phosphomannans by acetolysis. Biochemistry 1968; 7: 1855–1863.
  • Suzuki S, Shibata N, Kobayashi H. Immunochemistry of Candida mannans. In: Latge JP, Boucias D, eds. Fungal Cell Wall and Immune Response. Berlin: Springer-Verlag, 1991: 111–121.
  • Caro LHP, Tettelin H, Vossen JH, Ram AFJ, Van den Ende H, Klis FM. In silicio identification of glycosyl-phosphatidyli-nositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 1997; 13: 1477–1489.
  • Casanova M, Chaffin WL. Phosphate-containing proteins and glycoproteins of the cell wall of Candida albicans. Infect Immun 1991; 59: 808–813.
  • Casanova M, Lopez-Ribot JL, Martinez JP, Sentandreau R. Characterization of cell wall proteins from yeast and mycelial cells of Candida albicans by labelling with biotin: comparison with other techniques. Infect Immun 1992; 60: 4898–4906.
  • Chaffin WL, Lopez-Ribot J-L, Casanova M, Gozalbo D, Martinez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Molec Biol Rev 1998; 62: 130–180.
  • Elorza MV, Marcilla A, Sanjuan R, Mormeneo S, Sentandreu R. Incorporation of specific wall proteins during yeast and mycelial protoplast regeneration in Candida albicans. Arch Microbiol 1994; 161: 145–151.
  • Glee PM, Masuoka J, Ozier WT, Hazen KC. Presence of multiple laminin- and fibronectin-binding proteins in cell wall extract of Candida albicans: influence of dialysis. J Med Vet MycoL 1996; 34:57–61.
  • Lopez-Ribot JL, Casanova M, Martinez JP, Sentandreu R. Characterization of cell wall proteins of yeast and hydrophobic mycelial cells of Candida albicans. Infect Immun 1991; 59: 2324–2332.
  • Lopez-Ribot JL, Chaffin WL. Members of the Hsp70 family of proteins in the cell wall of Saccharomyces cerevisiae. J Bacteriol 1996; 178:4724–4726.
  • Pardo M, Monteoliva L, Pla J, Sfinchez M, Gil C, Nombela C. Two-dimensional analysis of proteins secreted by Saccharo-myces cerevisiae regenerating protoplasts: a novel approach to study the cell wall. Yeast 1999; 15: 459–472.
  • Lehrer N, Segal E, Lis H, Gov Y. Effect of Candida albicans cell wall components on the adhesion of the fungus to human and murine vaginal mucosa. Mycopathologia 1988; 102: 115–121.
  • Tronchin G, Poulain D, Herbaut J, Biguet J. Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin.Fluorescence and ultrastructural studies. Eur J Cell Biol 1981; 26: 121–128.
  • Klis FM. Review: cell wall assembly in yeast. Yeast 1994; 10: 851–869.
  • Critchley IA, Douglas U. Isolation and partial characteriza-tion of an adhesin from Candida albicans. J Gen Microbiol 1987; 133: 629–636.
  • Gaur NK, Klotz SA. Expression, cloning, and characterization of a Candida albicans gene, ALAI, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 1997; 65: 5289–5294.
  • Gaur NK, Klotz SA, Henderson RL. Overexpression of the Candida albicans ALAI gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans. Infect Immun 1999; 67: 6040–6047.
  • Hostetter MK. Linkage of adhesion, morphogenesis, and virulence in Candida albicans. J Lab Clin Med 1998; 132: 258–263.
  • Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol 2001; 9: 176–180.
  • Sundstrom P. Adhesins in Candida albicans. Curr Opin Microbiol 1999; 2: 353–357.
  • Scherer S, Magee PT. Genetics of Candida albicans. Microbiol Rev 1990; 54: 226–241.
  • Whelan WL, Partridge RM, Magee PT. Heterozygosity and segregation in Candida albicans. Molec Gen Genet 1980; 180: 107–113.
  • Manning M, Snoddy CB, Fromtling RA. Comparative patho-genicity of auxotrophic mutants of Candida albicans. Can J Microbiol 1984; 30: 31–35.
  • Masuoka J, Hazen KC. Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity. Microbiology 1997; 143: 3015–3021.
  • Hernandez LM, Ballou L, Alvarado E, Tsai P-K, Ballou CE. Structure of the phosphorylated N-linked oligosaccharides from the mnn9 and mnn10 mutants of Saccharomyces cerevisiae. J Biol Chem 1989; 264: 13648–13659.
  • Hazen KC, W G LeMelle. Improved assay for surface hydrophobic avidity of Candida albicans cells. Appl Environ Microbiol 1990; 56: 1974–1976.
  • Hazen KC, Brawner DL, Riesselman MH, Jutila MA, Cutler JE. Differential adherence between hydrophobic and hydro-philic yeast cells of Candida albicans. Infect Immun 1991; 59: 907–912.
  • Suzuki A, Takata Y, Oshie A, et al. Detection of 0-1,2-mannosyltransferase in Candida albicans cells. FEBS Lett 1995; 373: 275–279.
  • Jigami Y, Odani T. Mannosylphosphate transfer to yeast mannan. Biochim Biophys Acta 1999; 1426:335–345.
  • Hazen KC, Hazen BW. Surface hydrophobic and hydrophilic protein alterations in Candida albicans. FEMS Microbiol Lett 1993; 107: 83–88.
  • Monodane T, Kusamichi M. Water molecules bound to fibrils by hydrogen bonds play an important role on the surface fibrillar structure of Candida albicans cells. Cell Mol Biol 1993; 39: 377–381.
  • Tokunaga M, Niimi M, Kusamichi M, Koike H. Initial attachment of Candida albicans cells to buccal epithelial cells. Demonstration of ultrastructure with the rapid-freezing tech-nique. Mycopathologia 1990; 111: 61–66.
  • Marrie TJ, Costerton JW. The ultrastructure of Candida albicans infections. Can J Microbiol 1981; 27: 1156–1164.
  • Cappellaro C, Baldermann C, Rachel R, Tanner W. Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and a-agglutinin. EMBO J 1994; 1320: 4744.
  • Masuoka J, Hazen KC. Differences in the acid-labile compo-nent of Candida albicans mannan from hydrophobic and hydrophilic yeast cells. Glyco biology 1999; 9: 1281–1286.
  • Crich D, Li H, Yao Q, Wink DJ, Sommer RD, Rheingold AL. Direct synthesis of 13-mannans. A hexameric (1-3)-13-D-Man-(1-4)-13-D-Man(113 subunit of the antigenc polysaccharides from Leptospira biflex and the octameric (1-2)-linked I3-D- amannan of the Candida albicans phospholipomannan. X-ray crystal structure of a protected tetramer.J Am Chem Soc 2001; 123: 5826–5828.
  • Masuoka J, Masuoka J, Hazen KC. Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J Bacteriol 2001; 183:3582–3588.
  • Shibata N, Ikuta K, Imai T, et al. Existence of branched side chains in the cell wall mannan of pathogenic yeast, Candida albicans structure-antigenicity relationship between the cell wall mannans of Candida albicans and Candida parapsilosis. J Biol Chem 1995; 270: 1113–1122.
  • Shibata N, Arai M, Haga E, etal. Structural identification of anepitope of antigenic factor 5 in mannans of Candida albicans NIH B-792 (Serotype B) and J-1012 (Serotype A) as beta-1,2-linked oligomannosyl residues. Infect Immun 1992; 60: 4100–4110.
  • Mozes N, Leonard AJ, Rouxhet PG. On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity. Biochim Biophys Acta 1988; 945: 324–334.
  • Shibata N, Fukasawa S, Kobayashi H, et al. Structural analysisof phospho-n-mannan-protein complexes isolated from yeast and mold form cells of Candida albicans NIH A-207 serotype A strain. Carbohyd Res 1989; 187:239–253.
  • Kobayashi H, Matsuda K, Ikeda T, etal. Structures of cell wallmannans of pathogenic Candida tropicalis IFO 0199 and IFO 1647 yeast strains. Infect Immun 1994; 62: 615–622.
  • Kobayashi H, Mitobe H, Takahashi K, Yamamoto T, Shibata N, Suzuki S. Structural study of a cell wall mannan-protein complex of the pathogenic yeast Candida glabrata IFO 0622 strain. Arch Biochem Biophys1992; 294: 662–669.
  • Han Y, Kanbe T, Chemiak R, Cutler JE. Biochemical characterization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun 1997; 65: 4100–4107.
  • Jouault T, LePage G, Bemigaud A, et al. 13-1,2-linked oligomannosides from Candida albicans act as signals for tumor necrosis factor alpha production. Infect Immun 1995; 63: 2378–2381.
  • Kanbe T, Han Y, Redgrave B, Riesselman MH, Cutler JE. Evidence that mannans of Candida albicans are responsible for adherence of yeast forms to spleen and lymph node tissue. Infect Immun 1993; 61: 2578–2584.
  • Berrouane YF, Hollis RJ, Pfaller MA. Strain variation among and antifungal susceptibilities of isolates of Candida krusei. J Clin Microbiol 1996; 34: 1856–1858.
  • Kurup VP, Fink JN, Scribner GH, Falk MJ Antigenic variability of Aspergillus fumigatus strains. Microbios 1997; 19: 191–204.
  • Lachke SA, Srikantha T, Tsai LK, Daniels K, Soll DR. Phenotypic switching in Candida glabrata involves phase-specific regulation of the metallothionein gene MT-II and the newly discovered hemolysin gene HLP. Infect Immun 2000; 68: 884–895.
  • Masel A, Braithwaite K, Irwin J, Manners J. Highly variable molecular karyotpyes in the plant pathogen Colletotrichum gloeosporioides Curr Gen 1990; 18: 81–86.
  • San-Blas G, Ordaz D, Yegres FJ. Histoplasma capsulatum: chemical variability of the yeast cell wall. S Afr Med J 1978; 16: 279–284.
  • Lu C-F, Kurjan J, Lipke PN. A pathway for cell wall anchorageof Saccharomyces cerevisiae a-agglutinin. Mol Cell Biol 1994; 14:4825–4833.
  • Lu C-F, Montijn RC, Brown JL, et al. Glycosyl phosphatidy-linositol-dependent cross-linking of a-agglutinin and 131,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 1995; 128: 333–340.
  • Van Der Vaart JM, van Schagen FS, Mooren ATA, Chapman JW, Klis FM, Verrips CT. The retention mechanism of cell wall proteins in Saccharomyces cerevisiae. Wall-bound CWP2p is 0-1,6-glucosylated. Biochim Biophys Acta1996; 1291:206–214.
  • Brul S, King A, Van Der Vaart JM, Chapman J, Klis F, Verips CT. The incorporation of mannoproteins in the cell wall of S cerevisiae and filamentous Ascomycetes. Antonie van Leeu-wenhoek 1997; 72: 229–237.
  • Kapteyn JC, Montijn RC, Vink E, et al. Retention of Saccharomyces cerevisiae cell wall proteins through a phos-phodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 1996; 6: 337–345.
  • Shahinian S, Bussey H. 13-1,6-glucan synthesis in Saccharo-myces cerevisiae. Mol Microbiol 2000; 35: 477–489.
  • Kapteyn JC, Hoyer LL, Hecht JE, et al. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 2000; 35: 601–611.
  • Fu Y, Ibrahim A, Sheppard DC, Yee-Chun C, et al. Candida albicans ALS1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. EMBO J 2001; submitted.
  • Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE, Filler SG.Expression of the Canddia albicans gene ALS1 in Sacchar-omyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 1998; 66: 1783–1786.
  • Kobayashi H, Giummelly P, Takahashi S, et al. Candida albicans serotype A strains grow in yeast extract-added Sabouraud liquid medium at pH 20, elaborating mannans without 0-1,2 linkage and phosphate group. Biochem Biophys Res Commun 1991; 175: 1003–1009.
  • Glee PM, Sundstrom P, Hazen KC. Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect Immun 1995; 63: 1373–1379.
  • Hoyer LL, Clevenger J, Hecht JE, Ehrhart El, Poulet FM. Detection of Als proteins on the cell wall of Candida albicans in murine tissues. Infect Immun 1999; 67: 4251–4255.
  • De Bemardis F, Santoni G, Boccanera M, et al. Local anticandidal immune responses in a rat model of vaginal infection by and protection against Candida albicans. Infect Immun 2000; 68: 3297–3304.
  • Naglik JR, Newport G, White TC, et al. In vivo analysis of secreted aspartyl proteinase expression in human oral candi-diasis. Infect Immun 1999; 67: 2482–2490.
  • Schaller M, Schafer W, Korting HC, Hube B. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 1998; 29: 605–615.
  • Staib P, Kretschmar M, Nichterlein T, et al. Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 1999; 32: 533–546.
  • Odds FC. Candida and Candidosis. London: Baillfere-Tindall, 1988.
  • Kobayashi H, Takahashi S-I, Shibata N, et al. Structural modification of cell wall mannans of Candida albicans serotype A strains grown in yeast extract-Sabouraud liquid medium under acidic conditions. Infect Immun 1994; 62: 968–973.
  • Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the duorophore 8-aminonaphthalene-1,3,6-trisulphoric acid. J Biochem 1990; 270: 705–713. @ 2001 ISHAM, Medical Mycology, 39, Supplement 1, 75–86
  • Jackson P. The analysis of flurophore-labeled glycans by high-resolution polyacrylamide gel electrophoresis. Anal Biochem 1994; 216:243–252.
  • Nitz M, Purse BW, Bundle DR. Synthesis of a 01,2-mannopyranosyl tetrasaccharide found in the phosphomannan antigen of Candida albicans. Organic Lett 2: 2939-2942.
  • Abeijon C, Yanagisawa K, Mandon EC, et al. Guanosine diphosphatase is required for protein and sphingolipid glyco-sylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 1993; 122:307–323.
  • Sagt CMJ, Kleizen B, Verwaal R, et al. Introduction of an N-glycosylation site increases secretion of heterologous proteins in yeasts. Appl Environ Microbiol 2000; 66: 4940–4944.
  • Ballou CE. Yeast cell wall and cell surface. In: Strathem JH, Jones EW, Broach JR, eds. The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. New York: Cold Spring Harbor Laboratory, 1982: 335–360.
  • Valentin E, Mormeneo S, Sentandreu M. The cell surface of Candida albicans during morphogenesis. In: Dimorphism in Human Pathogenic and Apathogenic Yeasts. Basel: Karer, 2000: 138–150.
  • Brzobohaty B, Kovfic L Factors enhancing genetic transforma-tion of intact yeast cells modify cell wall porosity. J Gen Microbiol 1986; 132:3093.
  • Canivenc-GanselE, Imhof I, Reggiori F, Burda P, Conzelmann A, Benachour A. GPI anchor biosynthesis in yeast: phos-phoethanolamineis attached to the a1,4-linkedmannose of the complete precursor glycophospholipid. Glycobiology 1998; 8: 761–770.
  • De Nobel JG, Klis FM, Munnik T, Priem J, Van den Ende H. An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis, and Schizosaccharomyces pombe. Yeast 1990; 6: 483–490.
  • De Nobel JG, Klis FM, Priem J, Munnik T, Van den Ende H. The glucanase-solublemannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 1990; 6: 491–499.
  • De Nobel JG, Klis FM, Ram A, et al. Cyclic variations in the permeability of the cell wall of Saccharomyces cerevisiae. Yeast 1991; 7: 589–598.
  • Scherrer R, Louden L, Gerhardt P. Porosity of the yeast cell wall and membrane. J Bacteriol 1974; 118:534–540.
  • Zlotnik H, Fernandez MP, Bowers B, Cabib E. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 1984; 159: 1018–1026.
  • Zlotnik H, Fernandez MP, Bowers B, Cabib E. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 1984; 159: 1018–1026.
  • Ottolenghi P. The uptake of bovine serum albumin by a strain of Saccharomyces, and its physio-pathologicalconsequences. C R Tray Lab Carlsberg 1967; 36: 95–111.
  • Schlenk F, Dainko JL. Action of ribonuclease preparations on viable yeast cells and protoplasts. J Bacteriol 1965; 89:428–436.
  • Kamaya T. Lytic action of lysozyme on Candida albicans. Mycopathologia Mycologia Applic 1970; 42: 197–207.
  • Marquis G, Garzon S, Strykowski H, Auger P, Benhamou N. Muramidase-mediated damage to candida yeast cells. Histo-chemical and immunochemical characterization of accumulat-ing wall-like material. J Submicrosc Cytol Pathol1993; 25:347–355.
  • Tobgi RS, Samaranayake LP, MacFarlane TW. In vitro susceptibility of Candida species to lysozyme. Oral Micro biol Immuno11988; 3: 35–39.
  • Wu T, Samaranayake LP, Leung WK, Sullivan PA. Inhibition of growth and secreted aspartyl proteinase production in Candida albicans by lysozyme. J Med Microbiol. 1999; 48:721–730.
  • Poulain D, Cailliez J-C, Dubremetz J-F. Secretion of glyco-proteins through the cell wall of Candida albicans. Eur J Cell Biol 1989; 50: 94–99.
  • Takamiya H, Vogt A, Batsford S, Kuttin ES, Muller J. Further studies on the immunoelectronmicroscopic localization of polysaccharide antigens on ultra-thin sections of Candida albicans. Mykosen 1985; 28: 17–32.
  • Molina M, Gil C, Pla J, Arroyo J, Nombela C Protein localisation approaches for understanding yeast cell wall biogenesis. Microscopy Res Technique 2000; 51: 601–612.
  • Poulain D, Tronchin G, Dubremetz JF, Biguet J. Ultrastruc-ture of the cell wall of Candida albicans blastospores: study of its constitutive layers by the use of a cytochemical technique revealing polysaccharides. Ann Microbio11978; 129A:142–153.
  • Braun PC. Nutrient uptake by Candida albicans: the influence of cell surface mannoproteins. Can J Microbiol. 1999; 45:353–359.
  • Ellepola ANB, Samaranayake LP. Adhesion of oral Candida albicans isolates to denture acrylic following limited exposure to antifungal agents. Arch Oral Biol 1998; 43: 999–1007.
  • Nikawa H, Nishimura H, Makihira S, Hamada T, Sadamori S, Samaranayake LP. Effect of serum concentration on Candida biofilm formation on acrylic surfaces. Mycoses 2000; 43: 139–143.
  • Webb BC, Thomas CJ, Harty DWS, Willcox MDP. Effective-ness of two methods of denture sterilization. J Oral Rehabilita-tion 1999; 25: 416–423.
  • Baillie GS, Douglas U. Role of dimorphism in the develop-ment of Candida albicans biofilms. J Med Microbiol 1999; 48: 671–679.
  • Nucci M, Colombo AL, Silveira F, et al. Risk factors for death in patients with candidemia. Infect Control Hosp Epidemiol 1998; 19: 846–850.
  • Richards MJ, Edwards JR, Culver DH, Gaynes RP, National Nosocomial Infections Surveillance System. Nosocomial infec-tions in coronary care units in the United States. Am J Cardiol 1998; 82: 789–793.
  • Schierholz JM, Rump AFE, Pulverer G, Beuth J. Anti-infective catheters: novel strategies to prevent nosocomial infections in oncology. Anticancer Res 1998; 18: 3629–3638.
  • Baine WB, Koenig MG, Goodman JS. Clearance of Candida albicans from the bloodstream of rabbits. Infect Immun 1974; 10: 1420–1425.
  • Bird DC, Sheagren JN, Wolff SM. Evaluation of reticuloen-dothelial system phagocytic activity during systemic Candida albicans infection in mice (34401). Proc Soc Exp Biol Med 1970; 133: 34–37.
  • Choi JH, Ko HM, Kim J-W, et al. Platelet-activating factor-induced early activation of NF-kB plays a crucial role for organ clearance of Candida albicans. J Immunol 2001; 166: 5139–5144.
  • Katz S, Merkel GJ, Folkening WJ, Rosenthal RS, Grosfeld JL. Blood clearance and organ localization of Candida albicans and E. coli following dual infection in rats. J Pediatr Surg 1993; 28: 329–333.
  • Sawyer RT, Harmsen AG. The relative contribution of resident pulmonary alveolar macrophage and inflammatory polymorphonuclear neutrophils in host resistance to pulmon-ary infection by Candida albicans. Mycopathologia 1989; 108: 95–105.
  • Sohnle PG, Hahn BL. The fate of individual organisms during clearance of experimental cutaneous Candida albicans infec-tions in mice. Acta Derm Venereol 1992; 72: 241–244.
  • Eng RHK, Bishburg E, Smith SM, Mangia A. Fungemia observations of peripheral tissue clearance in humans. J Med Vet Mycol 1992; 30: 471–475.
  • Poulain D, Robert R, Mesnard F, Sendid B, LePage G, Camus a D. Clearances of Candida albicans-derived a- and 13-linked mannose residues in sera from patients with Candidiasis. Eur J C1M Microbiol Infect Dis 1997; 16: 16–20.
  • Kanbe T, Jutila MA, Cutler JE. Evidence that Candida albicans binds via a unique adhesion system on phagocytic cells in the marginal zone of the mouse spleen. Infect Immun 1992; 60: 1972–1978.
  • Sawyer RT, Moon RJ, Beneke ES. Hepatic clearance of Candida albicans in rats. Infect Immun 1976; 14: 1248–1255.
  • Hostetter MK. Interactions of Candida albicans with eukar-yotic cells. Yeast integrins may be evolutionary precursors of mammalian integrins and perhaps hold a key to the yeast's pathogenic properties. ASM News 1994; 60: 370–374.
  • Klotz SA. Plasma and extracellular matrix proteins mediate in the fate of Candida albicans in the human host. Med Hypotheses 1994; 42: 328–334.
  • Masuoka J, Wu G, Glee PM, Hazen KC. Inhibition of Candida albicans attachment to extracellular matrix by antibodies which recognize hydrophobic cell wall proteins. FEMS Immunol Med Microbiol 1999; 24: 421–429.
  • Silva TMJ, Glee PM, Hazen KC. Influence of cell surface hydrophobicity on attachment of Candida albicans to extra-cellular matrix proteins. J Med Vet Mycol 1995; 33: 117–122.
  • Calderone RA. Recognition of endothelial cells by Candida albicans: role of complement-binding proteins. Can J Bo t 1995; 73: 1154–1159.
  • Glee PM, Cutler JE, Benson EE, Bargatze RF, Hazen KC. Inhibition of hydrophobic protein mediated Candida albicans attachment to endothelial cells during physiologic shear flow. Infect Immun 2001; 69: 2815–2820.
  • Mayer CL, Filler SG, Edwards JE. Candida albicans adherence to endothelial cells. Microvascular Res 1992; 43: 218–226.
  • Blasi E, Pitzurra L, Bartoliv, Puliti M, Bistoni F. Tumor necrosis factor as an autocrine and paracrine signal controlling the macrophage secretory response to Candida albicans. Infect Immun 1994; 62: 1199–1206.
  • Danley D, Polakoff J. Rapid killing of monocytes in vitro by Candida albicans yeast cells. Infect Immun 1986; 51: 307–313.
  • Karbassi A, Becker JM, Foster JS, Moore RN. Enhanced killing of Candida albicans by murine macrophages treated with macrophage colony-stimulating factor: evidence for augmented expression of mannose receptors. J Immunol 1987; 139:417–421.
  • Lehrer RI. The fungicidal mechanisms of human monocytes. I. Evidence for myeloperoxidase-linked and myeloperoxidase-independent candidacidal mechanisms. J C1M Invest 1975; 55: 338–346.
  • Marodi L, Korchak HM, Johnston RB. Mechanisms of host defense against Candida species: I. Phagocytosis by monocytes and monocyte-derived macrophages. J Immunol 1991; 146: 2783–2389.
  • Qian Q, Jutila MA, van Rooijen N, Cutler JE. Elimination of mouse splenic macrophages correlates with increased suscept-ibility to experimental disseminated candidiasis. J Immunol 1994; 152:5000–5008.
  • Vazquez-Torres A, Jones-Carson J, Balish E. Candidacidal activity of macrophages from immunocompetent and congeni-tally immunodeficient mice. J Infect Dis 1994; 170: 180–188.
  • Kanbe T, Cutler JE. Minimum chemical requirements for adhesin activity of the acid-stable part of Candida albicans cell wall phosphomannoprotein complex. Infect Immun 1998; 66: 5812–5818.
  • Li R-K, Cutler JE. Chemical definition of an epitope/adhesin molecule on Candida albicans. J Biol Chem 1993; 268: 18293–18299.
  • Garner RE, Rubanowice K, Sawyer RT, Hudson JA. Secretion of TNF-a by alveolar macrophages in response to Candida albicans mannan. J Leukocyte Biol. 1994; 55: 161–168.
  • Jouault T, Bemigaud A, LePage G, Trinel PA, Poulain D. The Candida albicans phospholipomannan induces in vitro produc-tion of tumour necrosis factor-a from human and murine macrophages. Immunol 1994; 83: 268–273.
  • Vecchiarelli A, Puliti M, Torosantucci A, Cassone A, Bistoni F. In vitro production of tumor necrosis factor by murine splenic macrophages stimulated with mannoprotein constitu-ents of Candida albicans cell wall. Cell Immunol. 1991; 134:65–76.
  • Kullberg BJ, Anaissie El. Cytokines as therapy for opportu-nistic fungal infections. Res Immunol 1998; 149: 478–488.
  • Srikrishna G, Toomre DK, Manzi A, et al. A novel anionic modification of N-glycans on mammalian endothelial cells is recognized by activated neutrophils and modulates acute inflammatory responses. J Immunol 2001; 166: 624–632.
  • Han Y, Cutler JE. Antibody response that protects against disseminated candidiasis. Infect Immun 1995; 63: 2714–2719.
  • Han Y, Riesselman M, Cutler JE. Protection against candi-diasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect Immun 2000; 68: 1649–1654.
  • Han Y, Morrison RP, Cutler JE. A vaccine and monoclonal antibodies that enhance mouse resistance to Candida albicans vaginal infection. Infect Immun 1998; 66: 5771–5776.
  • Han Y, Cutler JE. Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J Infect Dis 1997; 175: 1169–1175.
  • Jouault T, Delaunoy C, Sendid B, Ajana F, Poulain D. Differential humoral response against a- and 13-linked man-nose residues associated with tissue invasion by Candida albicans. Clin Diagn Lab Immunol 1997; 4: 328–333.
  • Han Y, Kozel TR, Zhang MX, MacGill RS, Carroll MC, Cutler JE. Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental hematogen-ously disseminated candidiasis. J Immunol 2001; 167: 1550–1557.
  • Cutler JE. Putative virulence factors of Candida albicans. Ann Rev Microbiol 1991; 45: 187–218.
  • Cutler JE, Kanbe T. Antigenic variability of Candida albicans. In: Borgers M, Hay R, Rinaldi MG, eds. Current Topics in Medical Mycology. Barcelona: Prous Sci. Pub. 1994: 5.
  • Hazen KC. Cell surface hydrophobicity of medically important fungi, especially Candida species. In: Doyle RJ, Rosenberg M, eds. Microbial Cell Surface Hydrophobicity. Washington: American Society for Microbiology, 1990: 249–295.
  • Magee PT. Variations in chromosome size and organization in Candida albicans and Candida stellatoidea. Trends Microbiol 1993; 9: 338–342.
  • Wickes BL, Petter R. Genomic variation in C. albicans. Curr Top Med Mycol 1996; 7: 71–86.
  • Goodwin TJD, Poulter RTM. The CARE-2 and Re1-2 repetitive elements of Candida albicans contain LTR frag-ments of a new retrotransposon. Gene 1998; 218: 85–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.