Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 18, 2001 - Issue 5
766
Views
123
CrossRef citations to date
0
Altmetric
Original

NEURAL BASIS AND BIOLOGICAL FUNCTION OF MASKING BY LIGHT IN MAMMALS: SUPPRESSION OF MELATONIN AND LOCOMOTOR ACTIVITY

Pages 737-758 | Published online: 07 Jul 2009

REFERENCES

  • Klein D. C., Moore R. Y., Reppert S. M. Suprachiasmatic Nucleus: The Mind's Clock. Oxford University Press, OxfordUK 1991
  • Hastings M., Maywood E. S. Circadian Clocks in the Mammalian Brain. Bioessays 2000; 22(1)23–31
  • Lowrey P. L., Takahashi J. S. Genetics of the Mammalian Circadian System: Photic Entrainment, Circadian Pacemaker Mechanisms, and Posttranslational Regulation. Annu. Rev. Genet. 2000; 34: 533–562
  • Moore R. Y., Lenn N. J. A Retinohypothalamic Projection in the Rat. J. Comp. Neurol. 1972; 146: 1–14
  • Morin L. P. The Circadian Visual System. Brain Res. Rev. 1994; 67: 102–127
  • Takahashi J. S., DeCoursey P. J., Bauman L., Menaker M. Spectral Sensitivity of a Novel Photoreceptive System Mediating Entrainment of Mammalian Circadian Rhythms. Nature 1984; 308(5955)186–188
  • Freedman M. S., Lucas R. J., Soni B., von Schantz M., Munoz M., David-Gray Z., Foster R. Regulation of Mammalian Circadian Behavior by Non-rod, Noncone, Ocular Photoreceptors. Science 1999; 284(5413)502–504
  • Selby C. P., Thompson C., Schmitz T. M., Van Gelder R. N., Sancar A. Functional Redundancy of Cryptochromes and Classical Photoreceptors for Nonvisual Ocular Photoreception in Mice. Proc. Natl. Acad. Sci. USA 2000; 97(26)14697–14702
  • Aschoff J. Exogenous and Endogenous Components in Circadian Rhythms. Cold Spring Harbor Symp. Quant. Biol. 1960; 25: 11–28
  • Minors D., Waterhouse J., Rietveld W. Constant Routines and “Purification” Methods: Do They Measure the Same Thing?. Biol. Rhythms Res. 1996; 27(2)166–174
  • Rensing L. Is “Masking” an Appropriate Term?. Chronobiol. Int. 1989; 6(4)297–300
  • Lewy A. J., Wehr T. A., Goodwin F. K., Newsome D. A., Markey S. P. Light Suppresses Melatonin Secretion in Humans. Science 1980; 210(4475)1267–1269
  • Badia P., Myers B., Boecker M., Culpepper J., Harsh J. R. Bright Light Effects on Body Temperature, Alertness, EEG and Behavior. Physiol. Behav. 1991; 50(3)583–588
  • Czeisler C. A., Shanahan T. L., Klerman E. B., Martens H., Brotman D. J., Emens J. S., Klein T., Rizzo J. F., III. Suppression of Melatonin Secretion in Some Blind Patients by Exposure to Bright Light. N. Engl. J. Med. 1995; 332: 6–11
  • Cajochen C., Zeitzer J. M., Czeisler C. A., Dijk D. Dose-Response Relationship for Light Intensity and Ocular and Electroencephalographic Correlates of Human Alertness. Behav. Brain Res. 2000; 115(1)75–83
  • Tosini G. Melatonin Circadian Rhythm in the Retina of Mammals. Chronobiol. Int. 2000; 17(5)599–612
  • Tosini G., Menaker M. Circadian Rhythms in Cultured Mammalian Retina. Science 1996; 272(5260)419–421
  • Arendt J. Melatonin and the Mammalian Pineal Gland. Chapman and Hall, London 1995
  • Klein D. C., Weller J. L. Rapid Light-Induced Decrease in Pineal Serotonin N-Acetyltransferase Activity. Science 1972; 177(48)532–533
  • Rollag M. D., Panke E. S., Trakulrungsi W., Trakulrungsi C., Reiter R. J. Quantification of Daily Melatonin Synthesis in the Hamster Pineal Gland. Endocrinology 1980; 106(1)231–236
  • Benshoff H. M., Brainard G. C., Rollag M. D., Lynch G. R. Suppression of Pineal Melatonin in Peromyscus leucopus by Different Monochromatic Wavelengths of Visible and Near-Ultraviolet Light (UV-A). Brain Res. 1987; 420(2)397–402
  • Deveson S. L., Arendt J., Forsyth I. A. Sensitivity of Goats to a Light Pulse During the Night as Assessed by Suppression of Melatonin Concentrations in the Plasma. J. Pineal Res. 1990; 8(2)169–177
  • Arendt J., Ravault J. P. Suppression of Melatonin Secretion in Ile-de-France Rams by Different Light Intensities. J. Pineal Res. 1988; 5(3)245–250
  • Reiter R. J., Hurlbut E. C., Brainard G. C., Steinlechner S., Richardson B. A. Influence of Light Irradiance on Hydroxyindole-O-Methyltransferase Activity, Serotonin-N-Acetyltransferase Activity, and Radioimmunoassayable Melatonin Levels in the Pineal Gland of the Diurnally Active Richardson's Ground Squirrel. Brain Res. 1983; 288(1–2)151–157
  • Saboureau M., Vivien-Roels B., Pévet P. Pineal Melatonin Concentrations During Day and Night in the Adult Hedgehog: Effect of a Light Pulse at Night and Superior Cervical Ganglionectomy. J. Pineal Res. 1991; 11: 92–98
  • Illnerová H., Vanecek J. Response of Rat Pineal Serotonin N-Acetyltransferase to One Minute Light Pulse at Different Night Times. Brain Res. 1979; 167: 431–434
  • Vollrath L., Seidel A., Huesgen A., Manz B., Pollow K., Leiderer P. One Millisecond of Light Suffices to Suppress Nighttime Pineal Melatonin Synthesis in Rats. Neurosci. Lett. 1989; 98(3)297–298
  • Illnerová H., Vanecek J., Krecek J., Wetterberg L., Saaf J. Effect of One Minute Exposure to Light at Night on Rat Pineal Serotonin N-Acetyltransferase and Melatonin. J. Neurochem. 1979; 32(2)673–675
  • Kennaway D. J., Rowe S. A. Impact of Light Pulses on 6-Sulphatoxymelatonin Rhythms in Rats. J. Pineal Res. 1994; 16(2)65–72
  • Brainard G. C., Richardson B. A., Hurlbut E. C., Steinlechner S., Matthews S. A., Reiter R. J. The Influence of Various Irradiances of Artificial Light, Twilight, and Moonlight on the Suppression of Pineal Melatonin Content in the Syrian Hamster. J. Pineal Res. 1984; 1(2)105–119
  • Petterborg L. J., Kjellman B. F., Thalen B. E., Wetterberg L. Effect of a 15 Minute Light Pulse on Nocturnal Serum Melatonin Levels in Human Volunteers. J. Pineal Res. 1991; 10(1)9–13
  • Zeitzer J. M., Dijk D. J., Kronauer R., Brown E., Czeisler C. Sensitivity of the Human Circadian Pacemaker to Nocturnal Light: Melatonin Phase Resetting and Suppression. J. Physiol. 2000; 526(Pt. 3)695–702
  • Dawson D., Encel N. Melatonin and Sleep in Humans. J. Pineal Res. 1993; 15: 1–12
  • Zhdanova I. V., Lynch H. J., Wurtman R. J. Melatonin: A Sleep-Promoting Hormone. Sleep 1997; 20(10)899–907
  • Sack R. L., Hughes R. J., Edgar D. M., Lewy A. J. Sleep-Promoting Effects of Melatonin: At What Dose, in Whom, Under What Conditions, and by What Mechanisms?. Sleep 1997; 20(10)908–915
  • Klein D. C., Moore R. Y. Pineal N-Acetyltransferase and Hydroxyindole-Omethyl-transferase: Control by the Retinohypothalamic Tract and the Suprachiasmatic Nucleus. Brain Res. 1979; 174: 245–262
  • Brainard G. C., Podolin P. L., Leivy S. W., Rollag M. D., Cole C., Barker F. M. Near-Ultraviolet Radiation Suppresses Pineal Melatonin Content. Endocrinology 1986; 119: 2201–2205
  • Campbell S. S., Murphy P. J. Extraocular Circadian Phototransduction in Humans. Science 1998; 279(5349)396–399
  • Jagota A., Olcese J., Harinarayana Rao S., Gupta P. D. Pineal Rhythms Are Synchronized to Light-Dark Cycles in Congenitally Anophthalmic Mutant Rats. Brain Res. 1999; 825(1–2)95–103
  • Meijer J. H., Thio B., Albus H., Schaap J., Ruijs A. C. Functional Absence of Extraocular Photoreception in Hamster Circadian Rhythm Entrainment. Brain Res. 1999; 831(1–2)337–339
  • Campbell S. S., Murphy P. J., Sunhner A. G. Extraocular Phototransduction and Circadian Timing Systems in Vertebrates: A Review of the Literature. Chronobiol Int. 2001; 18(2)137–172
  • Blackshaw S., Snyder S. H. Developmental Expression Pattern of Phototransduction Components in Mammalian Pineal Implies a Light-Sensing Function. J. Neurosci. 1997; 17(21)8074–8082
  • Cardinali D. P., Larin F., Wurtman R. J. Action Spectra for Effects of Light on Hydroxyindole-O-methyl Transferases in Rat Pineal, Retina and Harderian Gland. Endocrinology 1972; 91(4)877–886
  • Brainard G. C., Richardson B. A., King T. S., Reiter R. J. The Influence of Different Light Spectra on the Suppression of Pineal Melatonin in the Syrian Hamster. Brain Res. 1984; 294: 333–339
  • Podolin P. L., Rollag M., Brainard G. The Suppression of Nocturnal Pineal Melatonin in the Syrian Hamster: Dose-Response Curves at 500 and 360 nm. Endocrinology 1987; 121: 266–270
  • Jacobs G. H., Neitz J., Deegan J. F. Retinal Receptors in Rodents Maximally Sensitive to Ultraviolet Light. Nature 1991; 353(6345)655–656
  • Foster R. G., Provencio I., Hudson D., Fiske S., De Grip W., Menaker M. Circadian Photoreception in the Retinally Degenerated Mouse (rd/rd). J. Comp. Physiol. A. 1991; 169: 39–50
  • Provencio I., Wong S., Lederman A. B., Argamaso S. M., Foster R. G. Visual and Circadian Responses to Light in Aged Retinally Degenerate Mice. Vision Res. 1994; 34(14)1799–806
  • Goto M., Ebihara S. The Influence of Different Light Intensities on Pineal Melatonin Content in the Retinal Degenerate C3H Mouse and the Normal CBA Mouse. Neurosci. Lett. 1990; 108: 267–272
  • Lucas R. J., Foster R. G. Neither Functional Rod Photoreceptors nor Rod or Cone Outer Segments Are Required for the Photic Inhibition of Pineal Melatonin. Endocrinology 1999; 140(4)1520–1524
  • Lucas R. J., Freedman M. S., Munoz M., Garcia-Fernandez J. M., Foster R. G. Regulation of the Mammalian Pineal by Non-rod, Non-cone, Ocular Photoreceptors. Science 1999; 284(5413)505–507
  • Moore R. Y. Retinohypothalamic Projection in Mammals: A Comparative Study. Brain Res. 1973; 49: 403–409
  • Mintz E. M., Albers H. E. Microinjection of NMDA into the SCN Region Mimics the Phase Shifting Effect of Light in Hamsters. Brain Res. 1997; 758(1–2)245–249
  • Mintz E. M., Marvel C. L., Gillespie C. F., Price K. M., Albers H. E. Activation of NMDA Receptors in the Suprachiasmatic Nucleus Produces Light-like Phase Shifts of the Circadian Clock In Vivo. J. Neurosci. 1999; 19(12)5124–5130
  • Colwell C. S., Max M., Hudson D., Menaker M. Excitatory Amino Acid Receptors May Mediate the Effects of Light on the Reproductive System of the Golden Hamster. Biol. Reprod. 1991; 44(4)604–608
  • Ohi K., Takashima M., Nishikawa T., Takahashi K. N-Methyl-aspartate Receptor Participates in Neuronal Transmission of Photic Information Through the Retinohypothalamic Tract. Neuroendocrinology 1991; 53(4)344–348
  • Takeuchi Y., Takashima M., Katoh Y., Nishikawa T., Takahashi K. N-Methyl-d-aspartate, Quisqualate and Kainate Receptors Are All Involved in Transmission of Photic Stimulation in the Suprachiasmatic Nucleus in Rats. Brain Res. 1991; 563: 127–131
  • Kalsbeek A., Drijfhout W. J., Westerink B. H., van Heerikhuize J. J., van der Woude T. P., van der Vliet J., Buijs R. M. GABA Receptors in the Region of the Dorsomedial Hypothalamus of Rats Are Implicated in the Control of Melatonin and Corticosterone Release. Neuroendocrinology 1996; 63(1)69–78
  • Kalsbeek A., Cutrera R. A., Van Heerikhuize J. J., Van Der Vliet J., Buijs R. M. GABA Release from Suprachiasmatic Nucleus Terminals Is Necessary for the Light-Induced Inhibition of Nocturnal Melatonin Release in the Rat. Neuroscience 1999; 91(2)453–461
  • Klein D. C., Weller J. L., Moore R. Y. Melatonin Metabolism: Neural Regulation of Pineal Serotonin: Acetyl Coenzyme A N-Acetyltransferase Activity. Proc. Natl. Acad. Sci. USA 1971; 68(12)3107–3110
  • Deguchi T., Axelrod J. Control of Circadian Change of Serotonin N-Acetyltransferase Activity in the Pineal Organ by the Beta-Adrenergic Receptor. Proc. Natl. Acad. Sci. USA 1972; 69(9)2547–2550
  • Brownstein M., Axelrod J. Pineal Gland: 24-Hour Rhythm in Norepinephrine Turnover. Science 1974; 184(133)163–165
  • Gastel J. A., Roseboom P. H., Rinaldi P. A., Weller J. L., Klein D. C. Melatonin Production: Proteasomal Proteolysis in Serotonin N-Acetyltransferase Regulation. Science 1998; 279(5355)1358–1360
  • Niijima A., Nagai K., Nagai N., Nakagawa H. Light Enhances Sympathetic and Suppresses Vagal Outflows and Lesions Including the Suprachiasmatic Nucleus Eliminate These Changes in Rats. J. Auton. Nerv. Syst. 1992; 40(2)155–160
  • Buijs R. M., Wortel J., Van Heerikhuize J. J., Feenstra M. G., Ter Horst G. J., Romijn H. J., Kalsbeek A. Anatomical and Functional Demonstration of a Multisynaptic Suprachiasmatic Nucleus Adrenal (Cortex) Pathway. Eur. J. Neurosci. 1999; 11(5)1535–1544
  • Amir S., Shizgal P., Rompre P. P. Glutamate Injection into the Suprachiasmatic Nucleus Stimulates Brown Fat Thermogenesis in the Rat. Brain Res. 1989; 498(1)140–144
  • Amir S. Blocking NMDA Receptors or Nitric Oxide Production Disrupts Light Transmission to the Suprachiasmatic Nucleus. Brain Res. 1992; 586(2)336–339
  • Scheer F. A., van Doornen L. J., Buijs R. M. Light and Diurnal Cycle Affect Human Heart Rate: Possible Role for the Circadian Pacemaker. J. Biol. Rhythms. 1999; 14(3)202–212
  • Scheer F. A., Ter Horst G. J., van Der Vliet J., Buijs R. M. Physiological and Anatomic Evidence for Regulation of the Heart by Suprachiasmatic Nucleus in Rats. Am. J. Physiol. 2001; 280(3)H1391–H1399
  • Cipolla-Neto J., Bartol I., Seraphim P. M., Afeche S. C., Scialfa J. H., Peracoli A. M. The Effects of Lesions of the Thalamic Intergeniculate Leaflet on the Pineal Metabolism. Brain Res. 1995; 691(1–2)133–141
  • Mikkelsen J. D., Møller M. A Direct Neural Projection from the Intergeniculate Leaflet of the Lateral Geniculate Nucleus to the Deep Pineal Gland of the Rat, Demonstrated with Phaseolus vulgaris Leucoagglutinin. Brain Res. 1990; 520: 342–346
  • Honma S., Kanematsu N., Katsuno Y., Honma K.-I. Light Suppression of Nocturnal Pineal and Plasma Melatonin in Rats Depends on Wavelength and Time of Day. Neurosci. Lett. 1992; 147: 201–204
  • Kanematsu N., Honma S., Katsuno Y., Honma K.-I. Immediate Response to Light of Rat Pineal Melatonin Rhythm: Analysis by In Vivo Microdialysis. Am. J. Physiol. 1994; 266: R1849–R1855
  • Meijer J. H., Watanabe K., Détári L., Schaap J. Circadian Rhythm in Light Response in Suprachiasmatic Nucleus Neurons of Freely Moving Rats. Brain Res. 1996; 741(1–2)352–355
  • Nelson D. E., Takahashi J. Comparison of Visual Sensitivity for Suppression of Pineal Melatonin and Circadian Phase-Shifting in the Golden Hamster. Brain Res. 1991; 554: 272–277
  • Hashimoto S., Nakamura K., Honma S., Tokura H., Honma K.-I. Melatonin Rhythm Is Not Shifted by Lights that Suppress Nocturnal Melatonin in Humans Under Entrainment. Am. J. Physiol. 1996; 270: R1073–R1077
  • Meijer J. H., Groos G. A., Rusak B. Luminance Coding in a Circadian Pacemaker: The Suprachiasmatic Nucleus of the Rat and the Hamster. Brain Res. 1986; 382(1)109–118
  • Borbely A. A., Huston J. P. Effects of Two-Hour Light-Dark Cycles on Feeding, Drinking and Motor Activity of the Rat. Physiol Behav. 1974; 13(6)795–802
  • Borbely A. A. Effects of Light on Sleep and Activity Rhythms. Prog. Neurobiol. 1978; 10(1)1–31
  • Redlin U., Mrosovsky N. Masking of Locomotor Activity in Hamsters. J. Comp. Physiol. A. 1999; 184(4)429–437
  • Gander P. H., Moore-Ede M. C. Light-Dark Masking of Circadian Temperature and Activity Rhythms in Squirrel Monkeys. Am. J. Physiol. 1983; 245(6)R927–R934
  • Rajaratnam S., Redman J. Light-Dark Entrainment of Circadian Activity Rhythms of the Diurnal Indian Palm Squirrel (Funambulus pennanti). Biol. Rhythm Res. 1999; 30(4)445–466
  • Kas M. Sleep and Circadian Timekeeping in Octodon degus. Ph.D. thesis, University of Groningen, GroningenThe Netherlands 1999; 170
  • Mistlberger R. E., Antle M. C. Behavioral Inhibition of Light-Induced Circadian Phase Resetting Is Phase and Serotonin Dependent. Brain Res. 1998; 786(1–2)31–38
  • Song X., Rusak B. Acute Effects of Light on Body Temperature and Activity in Syrian Hamsters: Influence of Circadian Phase. Am. J. Physiol. 2000; 278(5)R1369–R1380
  • Hasegawa H., Yazawa T., Tanaka H., Yasumatsu M., Otokawa M., Aihara Y. Effects of Ambient Light on Body Temperature Regulation in Resting and Exercising Rats. Neurosci Lett. 2000; 288(1)17–20
  • Erkert H. G. Der Einfluss des Mondlichtes auf die Aktivitätsperiodik nachtaktiver Säugetiere. Oecologia Berlin 1974; 14: 269–287
  • Erkert H. G., Gröber J. Direct Modulation of Activity and Body Temperature of Owl Monkeys (Aotis lemurensis griseimembra) by Low Light Intensities. Folia Primatol. 1986; 47: 171–188
  • Daly M., Behrends P. R., Wilson M. I. Activity Patterns of Kangaroo Rats—Granivores in a Desert Habitat. Activity Patterns in Small Mammals, S. Halle, N. Stenseth. Springer-Verlag, Berlin 2000; 145–158
  • Campbell S. S., Dawson D. Enhancement of Nighttime Alertness and Performance with Bright Ambient Light. Physiol Behav. 1990; 48(2)317–320
  • Myers B. L., Badia P. Immediate Effects of Different Light Intensities on Body Temperature and Alertness. Physiol Behav. 1993; 54(1)199–202
  • Mrosovsky N., Foster R. G., Salmon P. A. Thresholds for Masking Responses to Light in Three Strains of Retinally Degenerate Mice. J. Comp. Physiol. A. 1999; 184(4)423–428
  • Mrosovsky N. In Praise of Masking: Behavioural Responses of Retinally Degenerate Mice to Dim Light. Chronobiol Int. 1994; 11(6)343–348
  • Mrosovsky N., Salmon P. A., Foster R. G., McCall M. A. Responses to Light After Retinal Degeneration. Vision Res. 2000; 40(6)575–578
  • Mrosovsky N., Hampton R. Spatial Responses to Light in Mice with Severe Retinal Degeneration. Neurosci. Lett. 1997; 222: 1–3
  • Mrosovsky N. Further Characterization of the Phenotype of mCry1/mCry2-Deficient Mice. Chronbiol. Int. 2001; 18(4)613–625
  • Provencio I., Cooper H. M., Foster R. G. Retinal Projections in Mice with Inherited Retinal Degeneration: Implications for Circadian Photoentrainment. J. Comp. Neurol. 1998; 395(4)417–439
  • Stephan F. K., Zucker I. Circadian Rhythms in Drinking Behavior and Locomotor Activity of Rats Are Eliminated by Hypothalamic Lesions. Proc. Natl. Acad. Sci. USA. 1972; 69(6)1583–1586
  • Ibuka N., Inouye S.-I., Kawamura H. Analysis of Sleep-Wakefulness Rhythms in Male Rats After Suprachiasmatic Nucleus Lesions and Ocular Enucleation. Brain Res. 1977; 122: 33–47
  • Aguilar-Roblero R., García-Hernández F., Aguilar R., Arankowsky-Sandoval G., Drucker-Colín R. Suprachiasmatic Nucleus Transplants Function as an Endogenous Oscillator Only in Constant Darkness. Neurosci. Lett. 1986; 69: 47–52
  • Fuller C. A., Lydic R., Sulzman F., Albers H., Tepper B., Moore-Ede M. C. Circadian Rhythm of Body Temperature Persists After Suprachiasmatic Lesions in the Squirrel Monkey. Am. J. Physiol. 1981; 241: R385–R391
  • Mistlberger R. E. Nonphotic Entrainment of Circadian Activity Rhythms in Suprachiasmatic Nuclei-Ablated Hamsters. Behav. Neurosci. 1992; 106: 192–202
  • Boer G. J., Griffioen H. A., Duindam H., Van der Woude T. P., Rietveld W. J. Light/Dark-Induced Effects on Behavioral Rhythms in Suprachiasmatic Nucleus- Lesioned Rats Irrespective of the Presence of Functional Suprachiasmatic Nucleus Brain Implants. J. Interdiscipl. Cycle Res. 1993; 24(2)118–136
  • Redlin U., Mrosovsky N. Masking by Light in Hamsters with SCN Lesions. J. Comp. Physiol. A 1999; 184(4)439–448
  • Sisk C. L., Stephan F. K. Central Visual Pathways and the Distribution of Sleep in 24-hr and 1-hr Light-Dark Cycles. Physiol. Behav. 1982; 29(2)231–239
  • Wachulec M., Li H., Tanaka H., Peloso E., Satinoff E. Suprachiasmatic Nuclei Lesions Do Not Eliminate Homeostatic Thermoregulatory Responses in Rats. J. Biol. Rhythms 1997; 12(3)226–234
  • van der Horst G. T., Muijtjens M., Kobayashi K., Takano R., Kanno S., Takao M., de Wit J., Verkerk A., Eker A. P., van Leenen D., Buijs R., Bootsma D., Hoeijmakers J. H., Yasui A. Mammalian Cry1 and Cry2 Are Essential for Maintenance of Circadian Rhythms. Nature 1999; 398(6728)627–630
  • Vitaterna M. H., Selby C. P., Todo T., Niwa H., Thompson C., Fruechte E. M., Hitomi K., Thresher R. J., Ishikawa T., Miyazaki J., Takahashi J. S., Sancar A. Differential Regulation of Mammalian Period Genes and Circadian Rhythmicity by Cryptochromes 1 and 2. Proc. Natl. Acad. Sci. USA 1999; 96(21)12114–12119
  • DeCoursey P. J., Krulas J. R. Behavior of SCN-Lesioned Chipmunks in Natural Habitat: A Pilot Study. J. Biol. Rhythms 1998; 13(3)229–244
  • DeCoursey P. J., Walker J. K., Smith S. A. A Circadian Pacemaker in Free-Living Chipmunks: Essential for Survival?. J. Comp. Physiol. A 2000; 186(2)169–180
  • Redlin U., Vrang N., Mrosovsky N. Enhanced Masking Response to Light in Hamsters with IGL Lesions. J. Comp. Physiol. A 1999; 184(4)449–456
  • Edelstein K., Mrosovsky N. Dorsal Lateral Geniculate Lesions Prevent the Enhancement But Not the Suppression of Locomotor Activity by Light in the Mouse. Abstracts of the Seventh Meeting of the Society for Research on Biological Rhythms. Amelia Island, Fl May 10–13, 2000; 121
  • Redlin U., Cooper H., Mrosovsky N. Increased Masking Response to Light After Ablation of the Visual Cortex in Rodents, Submitted
  • Kavanau J. L. Behavior of Captive White-Footed Mice. Science 1967; 155(770)1623–1639
  • Miller A. M., Obermeyer W. H., Behan M., Benca R. M. The Superior Colliculus- Pretectum Mediates the Direct Effects of Light on Sleep. Proc. Natl. Acad. Sci. USA 1998; 95(15)8957–8962
  • Miller A. M., Miller R. B., Obermeyer W. H., Behan M., Benca R. M. The Pretectum Mediates Rapid Eye Movement Sleep Regulation by Light. Behav. Neurosci. 1999; 113(4)755–765
  • Scalia F. The Termination of Retinal Axons in the Pretectal Region of Mammals. J. Comp. Neurol. 1972; 145(2)223–257
  • Morin L. P., Blanchard J. H. Neuropeptide Y and Enkephalin Immunoreactivity in Retinorecipient Nuclei of the Hamster Pretectum and Thalamus. Vis. Neurosci. 1997; 14(4)765–777
  • Trejo L. J., Cicerone C. M. Cells in the Pretectal Olivary Nucleus Are in the Pathway for the Direct Light Reflex of the Pupil in the Rat. Brain Res. 1984; 300(1)49–62
  • Clarke R. J., Ikeda H. Luminance and Darkness Detectors in the Olivary and Posterior Pretectal Nuclei and Their Relationship to the Pupillary Light Reflex in the Rat. I. Studies with Steady Luminance Levels. Exp. Brain Res. 1985; 57(2)224–232
  • Mikkelsen J. D., Vrang N. A Direct Pretectosuprachiasmatic Projection in the Rat. Neuroscience 1994; 62: 497–505
  • Morin L. P., Blanchard J. H. Interconnections Among Nuclei of the Subcortical Visual Shell: The Intergeniculate Leaflet Is a Major Constituent of the Hamster Subcortical Visual System. J. Comp. Neurol. 1998; 396(3)288–309
  • Marchant E. G., Morin L. P. The Hamster Circadian Rhythm System Includes Nuclei of the Subcortical Visual Shell. J. Neurosci. 1999; 19(23)10482–10493
  • Lu J., Shiromani P., Saper C. B. Retinal Input to the Sleep-Active Ventrolateral Preoptic Nucleus in the Rat. Neuroscience 1999; 93(1)209–214

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.