56
Views
9
CrossRef citations to date
0
Altmetric
Original

Tyrosine Kinase Inhibitors as Cancer Therapy

Clinical Science Review

, M.D.
Pages 758-771 | Published online: 10 Aug 2003

References

  • Parker R.C., Varmus H.E., Bishop J.M. Cellular homologue (c-src) of the transforming gene of Rous sarcoma virus: isolation, mapping, and transcriptional analysis of c-src and flanking regions. Proc. Natl Acad. Sci. USA 1981; 78: 5842–5846
  • Davis R.L., Konopka J.B., Witte O.N. Activation of the c-abl oncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties. Mol. Cell Biol. 1985; 5: 204–213
  • Weiss A., Schlessinger J. Switching signals on or off by receptor dimerization. Cell 1998; 94: 277–280
  • Pawson T. SH2 and SH3 domains in signal transduction. Adv. Cancer Res. 1994; 64: 87–110
  • Schlessinger J. SH2/SH3 signaling proteins. Curr. Opin. Genet. Dev. 1994; 4: 25–30
  • van der Geer P., Pawson T. The PTB domain: a new protein module implicated in signal transduction. Trends Biochem. Sci. 1995; 20: 277–280
  • Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1998; 353: 583–605
  • Rodrigues G.A., Park M. Oncogenic activation of tyrosine kinases. Curr. Opin. Genet. Dev. 1994; 4: 15–24
  • Konopka J.B., Watanabe S.M., Singer J.W., Collins S.J., Witte O.N. Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration. Proc. Natl Acad. Sci. USA 1985; 82: 1810–1814
  • Chan L.C., Karhi K.K., Rayter S.I., Heisterkamp N., Eridani S., Powles R., Lawler S.D., Groffen J., Foulkes J.G., Greaves M.F., Wiedemann L.M. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 1987; 325: 635–637
  • Clark S.S., McLaughlin J., Crist W.M., Champlin R., Witte O.N. Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science 1987; 235: 85–88
  • Pendergast A.M., Gishizky M.L., Havlik M.H., Witte O.N. SH1 domain autophosphorylation of P210 BCR/ABL is required for transformation but not growth factor independence. Mol. Cell. Biol. 1993; 13: 1728–1736
  • Wetzler M., Talpaz M., Van Etten R.A., Hirsh-Ginsberg C., Beran M., Kurzrock R. Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation. J. Clin. Investig. 1993; 92: 1925–1939
  • McWhirter J.R., Galasso D.L., Wang J.Y. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol. Cell Biol. 1993; 13: 7587–7595
  • Nichols G.L., Raines M.A., Vera J.C., Lacomis L., Tempst P., Golde D.W. Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 1994; 84: 2912–2918
  • Oda T., Heaney C., Hagopian J.R., Okuda K., Griffin J.D., Druker B.J. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J. Biol. Chem. 1994; 269: 22925–22928
  • ten Hoeve J., Arlinghaus R.B., Guo J.Q., Heisterkamp N., Groffen J. Tyrosine phosphorylation of CRKL in philadelphia+leukemia. Blood 1994; 84: 1731–1736
  • Daley G.Q., Van Etten R.A., Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210 bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830
  • Elefanty A.G., Hariharan I.K., Cory S. bcr-abl, the hallmark of chronic myeloid leukemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J. 1990; 9: 1069
  • Kelliher M.A., McLaughlin J., Witte O.N., Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and bcr-abl. PNAS 1990; 87: 6649–6653
  • Janssen J.W., Ridge S.A., Papadopoulos P., et al. The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event. Br. J. Haematol. 1995; 90: 222–224
  • Peeters P., Raynaud S.D., Cools J., et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90: 2535–2540
  • Lacronique V., Boureux A., Valle V.D., et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312
  • Golub T.R., Barker G.F., Lovett M., Gilliland D.G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994; 77: 307–316
  • Morris S.W., Kirstein M.N., Valentine M.B., et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284
  • Shiota M., Nakamura S., Ichinohasama R., et al. Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK: a distinct clinicopathologic entity. Blood 1995; 86: 1954–1960
  • Macdonald D., Aguiar R.C., Mason P.J., Goldman J.M., Cross N.C. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia 1995; 9: 1628–1630
  • Aguiar R.C., Macdonald D., Mason P.J., Cross N.C., Goldman J.M. Myeloproliferative disorder associated with 8p11 translocations. Blood 1995; 86: 834–835
  • Chesi M., Nardini E., Brents L.A., et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat. Genet. 1997; 16: 260–264
  • Bongarzone I., Pierotti M.A., Monzini N., et al. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 1989; 4: 1457–1462
  • Grieco M., Santoro M., Berlingieri M.T., et al. PTC is novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60: 557–563
  • Klugbauer S., Demidchik E.P., Lengfelder E., Rabes H.M. Detection of a novel type of RET rearrangement (PTC5) in thyroid carcinomas after Chernobyl and analysis of the involved RET-fused gene RFG5. Cancer Res. 1998; 58: 198–203
  • Greco A., Pierotti M.A., Bongarzone I., Pagliardini S., Lanzi C., Della Porta G. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 1992; 7: 237–242
  • Beimfohr C., Klugbauer S., Demidchik E.P., Lengfelder E., Rabes H.M. NTRK1 re-arrangement in papillary thyroid carcinomas of children after the Chernobyl reactor accident. Int. J. Cancer 1999; 80: 842–847
  • Soman N.R., Correa P., Ruiz B.A., Wogan G.N. The TPR-MET oncogenic rearrangement is present and expressed in human gastric carcinoma and precursor lesions. Proc. Natl Acad. Sci. USA 1991; 88: 4892–4896
  • Knezevich S.R., McFadden D.E., Tao W., Lim J.F., Sorensen P.H. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 1998; 18: 184–187
  • Liu Q., Schwaller J., Kutok J., et al. Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. Embo. J. 2000; 19: 1827–1838
  • Ponder B.A. Mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2. Cancer Surv. 1995; 25: 195–205
  • Kahn M.A., Cote G.J., Gagel R.F. RET protooncogene mutational analysis in multiple endocrine neoplasia syndrome type 2B: case report and review of the literature. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 1996; 82: 288–294
  • Donis-Keller H., Dou S., Chi D., et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum. Mol. Genet. 1993; 2: 851–856
  • Mulligan L.M., Eng C., Healey C.S., et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat. Genet. 1994; 6: 70–74
  • Takahashi M. Oncogenic activation of the ret protooncogene in thyroid cancer. Crit. Rev. Oncog. 1995; 6: 35–46
  • Marsh D.J., Learoyd D.L., Andrew S.D., et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin. Endocrinol. (Oxf) 1996; 44: 249–257
  • Wong A.J., Ruppert J.M., Bigner S.H., et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA 1992; 89: 2965–2969
  • Frederick L., Wang X.Y., Eley G., James C.D. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000; 60: 1383–1387
  • Nagane M., Lin H., Cavenee W.K., Huang H.J. Aberrant receptor signaling in human malignant gliomas: mechanisms and therapeutic implications. Cancer Lett. 2001; 162(suppl)S17–S21
  • Kiyoi H., Towatari M., Yokota S., Hamaguchi M., Ohno R., Saito H., Naoe T. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998; 12: 1333–1337
  • Rombouts W.J., Blokland I., Lowenberg B., Ploemacher R.E. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications. Leukemia 2000; 14: 675–683
  • Nakahara M., Isozaki K., Hirota S., et al. A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology 1998; 115: 1090–1095
  • Taniguchi M., Nishida T., Hirota S., et al. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res. 1999; 59: 4297–4300
  • Boissan M., Feger F., Guillosson J.J., Arock M. c-Kit and c-kit mutations in mastocytosis and other hematological diseases. J. Leukoc. Biol. 2000; 67: 135–148
  • Kimura A., Nakata Y., Katoh O., Hyodo H. c-Kit point mutation in patients with myeloproliferative disorders. Leuk. Lymphoma 1997; 25: 281–287
  • Klapper L.N., Glathe S., Vaisman N., et al. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc. Natl Acad. Sci. USA 1999; 96: 4995–5000
  • King C.R., Kraus M.H., Aaronson S.A. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 1985; 229: 974–976
  • Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuire W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182
  • Yamauchi H., Stearns V., Hayes D.F. When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J. Clin. Oncol. 2001; 19: 2334–2356
  • Hayes D.F., Thor A.D. c-erbB-2 in breast cancer: development of a clinically useful marker. Semin. Oncol. 2002; 29: 231–245
  • Sedlacek H.H. Kinase inhibitors in cancer therapy: a look ahead. Drugs 2000; 59: 435–476
  • Kolibaba K.S., Druker B.J. Protein tyrosine kinases and cancer. Biochim. Biophys. Acta 1997; 1333: F217–F248
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1995; 1: 27–31
  • Cherrington J.M., Strawn L.M., Shawver L.K. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv. Cancer Res. 2000; 79: 1–38
  • Poon R.T., Fan S.T., Wong J. Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 2001; 19: 1207–1225
  • Shweiki D., Itin A., Soffer D., Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845
  • Kondo S., Asano M., Matsuo K., Ohmori I., Suzuki H. Vascular endothelial growth factor/vascular permeability factor is detectable in the sera of tumor-bearing mice and cancer patients. Biochim. Biophys. Acta 1994; 1221: 211–214
  • Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog. Horm. Res. 2000; 55: 15–35
  • Abdulrauf S.I., Edvardsen K., Ho K.L., Yang X.Y., Rock J.P., Rosenblum M.L. Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low-grade astrocytoma. J. Neurosurg. 1998; 88: 513–520
  • Johnson J.P., Bruce J.N. Angiogenesis in human gliomas: prognostic and therapeutic implications. EXS 1997; 79: 29–46
  • Shim J.W., Koh Y.C., Ahn H.K., Park Y.E., Hwang D.Y., Chi J.G. Expression of bFGF and VEGF in brain astrocytoma. J. Korean Med. Sci. 1996; 11: 149–157
  • Dirix L.Y., Vermeulen P.B., Hubens G., et al. Serum basic fibroblast growth factor and vascular endothelial growth factor and tumour growth kinetics in advanced colorectal cancer. Ann. Oncol. 1996; 7: 843–848
  • Ishigami S.I., Arii S., Furutani M., et al. Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br. J. Cancer 1998; 78: 1379–1384
  • Takahashi Y., Tucker S.L., Kitadai Y., et al. Vessel counts and expression of vascular endothelial growth factor as prognostic factors in node-negative colon cancer. Arch. Surg. 1997; 132: 541–546
  • Takanami I., Tanaka F., Hashizume T., Kodaira S. Vascular endothelial growth factor and its receptor correlate with angiogenesis and survival in pulmonary adenocarcinoma. Anticancer Res. 1997; 17: 2811–2814
  • Volm M., Koomagi R., Mattern J. Prognostic value of vascular endothelial growth factor and its receptor Flt-1 in squamous cell lung cancer. Int. J. Cancer 1997; 74: 64–68
  • Fontanini G., Vignati S., Lucchi M., et al. Neoangiogenesis and p53 protein in lung cancer: their prognostic role and their relation with vascular endothelial growth factor (VEGF) expression. Br. J. Cancer 1997; 75: 1295–1301
  • Toi M., Hoshina S., Takayanagi T., Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn. J. Cancer Res. 1994; 85: 1045–1049
  • Al-Obeidi F.A., Lam K.S. Development of inhibitors for protein tyrosine kinases. Oncogene 2000; 19: 5690–5701
  • Al-Obeidi F.A., Wu J.J., Lam K.S. Protein tyrosine kinases: structure, substrate specificity, and drug discovery. Biopolymers 1998; 47: 197–223
  • Baselga J., Tripathy D., Mendelsohn J., et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 1996; 14: 737–744
  • Cobleigh M.A., Vogel C.L., Tripathy D., et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 1999; 17: 2639–2648
  • Baselga J. Clinical trials of Herceptin® (trastuzumab). Eur. J. Cancer 2001; 37(Suppl 1)18–24
  • Mendelsohn J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer 2001; 8: 3–9
  • Ciardiello F. Epidermal growth factor receptor tyrosine kinase inhibitors and anticancer agents. Drugs 2000; 60: 25–32, discussion 41–2
  • Shin D.M., Donato N.J., Perez-Soler R., et al. Epidermal growth factor receptor-targeted therapy with C225 and cisplatin in patients with head and neck cancer. Clin. Cancer Res. 2001; 7: 1204–1213
  • Robert F., Ezekiel M.P., Spencer S.A., et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J. Clin. Oncol. 2001; 19: 3234–3243
  • Herbst R.S., Shin D.M. Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer 2002; 94: 1593–1611
  • Gordon M.S., Margolin K., Talpaz M., et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 2001; 19: 843–850
  • Margolin K., Gordon M.S., Holmgren E., et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J. Clin. Oncol. 2001; 19: 851–856
  • Chen H.X., Gore-Langton R.E., Cheson B.D. Clinical trials referral resource: current clinical trials of the anti-VEGF monoclonal antibody bevacizumab. Oncology 2001; 15: 1017–1026
  • Druker B.J., Talpaz M., Resta D.J., et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 2001; 344: 1031–1037
  • Buchdunger E., Cioffi C.L., Law N., et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 2000; 295: 139–145
  • Okuda K., Weisberg E., Gilliland D.G., Griffin J.D. ARG tyrosine kinase activity is inhibited by STI571. Blood 2001; 97: 2440–2448
  • Heinrich M.C., Griffith D.J., Druker B.J., Wait C.L., Ott K.A., Zigler A.J. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 2000; 96: 925–932
  • Joensuu H., Roberts P.J., Sarlomo-Rikala M., et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 2001; 344: 1052–1056
  • Blanke C.D., von Mehren M., Joensuu H., Roberts P.J., Eisenberg B., Heinrich M., Druker B., Tuveson D., Dimitrijevic S., Silberman S.L., Demetri G.D. Evaluation of the safety and efficacy of an oral molecularly targeted therapy, STI571 in patients with unresectable or metastatic gastrointestinal stromal tumors expressing c-KIT (CD117). Proc. Am. Sco. Clin. Oncol. 2001; 20(pt 1)1a
  • Van Oosterum A.T., Judson I., Verweij J., Di Paola E., van Glabbeke M., Dimitrijevic S., Nielsen O. STI571, an active drug in metastatic gastro intestinal stromal tumors an EORTC Phase I study. Proc. Am. Soc. Clin. Oncol. 2001; 20(pt. 1)1a
  • Ko Y.J., Small E.J., Kabbinavar F., et al. A multi-institutional Phase II study of SU101, a platelet-derived growth factor receptor inhibitor, for patients with hormone-refractory prostate cancer. Clin. Cancer Res. 2001; 7: 800–805
  • Eckhardt S.G., Rizzo J., Sweeney K.R., et al. Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J. Clin. Oncol. 1999; 17: 1095–1104
  • Baselga J., Averbuch S.D. ZD1839 (‘Iressa’) as an anticancer agent. Drugs 2000; 60: 33–40, discussion 41–2
  • Hidalgo M., Siu L.L., Nemunaitis J., et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J. Clin. Oncol. 2001; 19: 3267–3279
  • Mesters R.M., Padro T., Bieker R., et al. Stable remission after administration of the receptor tyrosine kinase inhibitor SU5416 in a patient with refractory acute myeloid leukemia. Blood 2001; 98: 241–243
  • Kuenen B.C., Rosen L., Smit E.F., Parson M.R., Levi M., Ruijter R., Huisman H., Kedde M.A., Noordhuis P., van der Vijgh W.J., Peters G.J., Cropp G.F., Scigalla P., Hoekman K., Pinedo H.M., Giaccone G. Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J. Clin. Oncol. 2002; 20: 1657–1667
  • Mellinghoff I.K., Sawyers C. Kinase Inhibitor Therapy in Cancer. PPO Updates. Lippincott, Williams and Wilkins, New York
  • Mahon F.X., Deininger M.W., Schultheis B., et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor ST1571: diverse mechanisms of resistance. Blood 2000; 96: 1070–1079
  • Gambacorti-Passerini C., Barni R., le Coutre P., et al. Role of alpha 1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor ST1571. J. Natl Cancer Inst. 2000; 92: 1641–1650
  • Gorre M.E., Mohammed M., Ellwood K., et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880
  • Kano Y., Akutsu M., Tsunoda S., et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007
  • Topaly J., Zeller W.J., Fruehauf S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 2001; 15: 342–347
  • Moulder S.L., Yakes M., Muthuswamy S.K., Bianco R., Simpson J.F., Arteaga C. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 2001; 24: 887–895

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.