3,664
Views
440
CrossRef citations to date
0
Altmetric
Research Article

Nanoparticle Technology for Drug Delivery Across the Blood-Brain Barrier

, , &
Pages 1-13 | Published online: 14 Feb 2002

References

  • Butte A.M., Jones H.C., Abbot N.J. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J. Physiol. 1990; 429: 47–62
  • Smith Q.R. Advances in neurology. Alzheimer's Disease, R. Wurtman. Raven Press, New York 1990; Vol. 51: 217–222
  • Rapoport S.I., Ohno K., Fredericks W.R., Pettigrew K.D. Regional cerebrovascular permeability to [14C] sucrose after osmotic opening of the blood-brain barrier. Brain Research 1978; 150(3)653–657
  • Sanovich E., Bartus R.T., Friden P.M., Dean R.L., Le H.Q., Brightman M.W. Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res. 1995; 705(1–2)125–135
  • Greig N.H. Drug delivery to the brain by blood–brain barrier circumvention and drug modification. Implications of the Blood–Brain Barrier and its Manipulation, E.A. Neuwelt. Plenum Press, New York 1989; 311–367
  • Greig N.H., Daly E.M., Sweeney D.J., Rapoport S.I. Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain. Cancer Chemother. Pharmacol. 1990; 25(5)320–325
  • Takada Y., Vistica D.T., Greig N.H., Purdon D., Rapoport S.I., Smith Q.R. Rapid high affinity transport of a chemotherapeutic amino acid across the blood-brain barrier. Cancer Res. 1992; 52(8)2191–2196
  • Smith Q.R. Drug delivery to the brain and the role of carrier mediated transport. Frontiers in Cerebral Vascular Biology: Transport and Its Regulation, L.R. Drewes, A.L. Betz. Plenum Press, New York 1993; 83–93
  • Fromm M.F. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int. J. Clin. Pharmacol. Ther. 2000; 38(2)69–74
  • Olson L., Norberg A., Von Holst H. Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient—case report. J. Neural. Transm. 1992; 4: 79–95
  • Krewson C.E., Klarman M.L., Saltzman W.M. Distribution of nerve growth factor following direct delivery to brain interstitum. Brain Res. 1995; 680: 196–206
  • Kordower J.H., Winn S.R., Liu Y.T. The aged monkey basal forebrain: Rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc. Natl. Acad. Sci. USA 1994; 91(23)10898–10902
  • Blacklock J.B., Wright D.C., Dedrick R.L. Drug streaming during intra-arterial chemotherapy. J. Neurosurg. 1986; 64(2)284–91
  • Kreuter J. Nanoparticles and microparticles for drug and vaccine delivery. J. Anat. 1996; 189(3)503–505
  • Kreuter J. Nanoparticles. Encyclopedia of Pharmaceutical Technology, J. Swarbick, J.C. Boylan. Marcel Dekker, New York 1994; 165–190
  • Kreuter J. Large scale production problems and manufacturing of nanoparticles. Specialized Drug Delivery Systems, P. Tyle. Marcel Dekker, New York 1990; 257–266
  • Birrenbach G., Speiser P.P. Polymerized micelles and their use as adjuvants in immunology. J. Pharm. Sci. 1976; 65: 1763–1766
  • Khouri A.l., Fallouh N., Roblot-Treupel L., Fessi H., Devissageuet J.P.H., Puissieux F. Development of a new process for the manufacture of polyisobutyl-cyanoacrylate nanoparticles. Int. J. Pharm. 1986; 28: 125
  • Fessi H., Puisiuex F., Devissagauet J.P., Ammoury N., Benita S. Nanocapsule formulation by interfacial deposition following solvent displacement. Int. J. Pharm. 1989; 55: R1–R4
  • Burger J.J., Tomlinson E., Mulder J.W. Incorporation of water-soluble drugs in albumin microspheres. Int. J. Pharm. 1985; 23: 333–334
  • Zolle I., Hosain F., Rhodes B.A. Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation. J. Nucl. Med. 1970; 11: 73–79
  • Marty J.J., Oppenheim R.C., Speiser P.P. Nanoparticles–-A new colloidal drug delivery system. Pharm. Acta. Helva 1978; 53: 17–23
  • Schwarz C., Mehnert W., Lucks J.S. Solid lipid nanoparticles for controlled drug delivery: production, characterization and sterilization. J. Cont. Rel. 1994; 30: 83–96
  • Muller R.H., Mehnert W., Lucks J.S. Solid lipid nanoparticles—an alternative colloidal carrier for controlled drug delivery. Eur. J. Pharm. Biopharm. 1995; 41: 62–69
  • Gupta P.K., Hung C.T., Perrier D.G. Quantitation of the release of doxorubicin from colloidal drug forms using dynamic dialysis. Int. J. Pharm. 1986; 33: 137–146
  • Douglas S.J., Illum L., Davis S.S., Kreuter J. Particle size and distribution of poly(butyl-2-cyanoacrylate) nanoparticles. II. Influence of stabilizers. J. Colloidal Interface Sci. 1985; 103: 154
  • Berg U.E., Kreuter J., Speiser P.P. Influence of the particle size on the adjuvant effects of polybutylcyanoacrylate nanoparticles. Pharm. Ind. 1986; 48: 75–79
  • Fenart L., Casanova A., Dehouck B. Evaluation of effect of charge and lipid coating on ability of 60 nm nanoparticles to cross an in vitro model of the blood-brain barrier. J. Pharmacol. Exp. Ther. 1999; 291(3)1017–1022
  • Schroder U., Sommerfeld P., Ulrich S., Sabel B.A. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J. Pharm. Sci. 1998; 87: 1305–1307
  • Alyautidin R.N., Gother D., Petrov V. Analgesic activity of the hexapeptide dalagrin adsorbed on the surface of polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Euro. J. Pharm. Biopharm. 1995; 41: 44–48
  • Kreuter J., Alyautidin R., Kharkevich D.A., Ivanov A.A. Passage of peptides through the blood–brain barrier with colloidal particles (nanoparticles). Brain Res. 1995; 674(1)171–174
  • Borchardt G., Audus K.L., Shi F. Uptake of surfactant-coated poly-methyl-methylacrylate nanoparticles by bovine brain microvessel endothelial cell monolayers. Int. J. Pharmaceutics 1994; 110: 29–35
  • Ramge P., Unger R.E., Oltrogge J.B. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human, bovine, and murine primary brain capillary endothelial cells. Eur. J. Neuro. 2000; 12: 1935–1940
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv. Drug. Del. Rev. 2001; 47: 65–81
  • Schroder U., Sabel B.A. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalagrin injections. Brain Res. 1996; 710: 121–124
  • Alyautdin R.N., Tezikov B.E., Ramge P., Kharkevich D.A., Begley D.J., Kreuter J. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate-80 coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J. Microencapsulation 1998; 15(1)67–74
  • Gulyaev A.E., Gelperina S.E., Skidan I.N., Antropov A.S., Kivman G.Y., Kreuter J. Significant transport of doxorubicin into the brain with polysorbate-80 coated nanoparticles. Pharm. Res. 1999; 16: 1564–1569
  • Gelprina S.E., Smirnova Z.S., Khalansky A.S. Chemotherapy of brain tumors using doxorubicin bound to polysorbate-80 coated nanoparticles. In Proceedings of the 3rd World Meeting APV/APGI. Berlin, April, 3/62000, 441–442
  • Yang C.S., Lu F.L., Cai Y. Body distribution in mice of intravenously injected camphotothericin solid lipid nanoparticles and targeting effect on the brain. J. Cont. Rel. 1999; 59: 299–307
  • Grislain L., Couvrer P., Lenaerts V. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int. J. Pharm. 1983; 15: 333–345
  • Gupta P.K., Hung C.T. Targeted delivery of low dose doxorubicin hydrochloride administered via magnetic albumin microspheres in rats. J. Microencaps 1990; 7: 85–94
  • Pulfer S.K., Gallo J.M. Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. J. Drug Target. 1998; 6: 215–227
  • Troster S.D., Muller U., Kreuter J. Modification of the body distribution of poly(methyl methyl methylacrylate) nanoparticles by coating with surfactants. Int. J. Pharm. 1990; 61: 85–100
  • Olivier J.C., Fenart L., Chauvet R., Pariat C., Cecchelli R., Couet W. Indirect evidence that drug brain targeting using polysorbate-80 coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm. Res. 1999; 16(12)1836–1842
  • Weissleder R., Hahn P.F., Stark D.D. The diagnosis of splenic lymphoma by MR imaging: value of superparamagnetic iron oxide. Am. J. Roentgenol 1989; 152(1)175–180
  • Darius J., Meyer F.P., Sabel B.A., Schroeder U. Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J. Pharm. Pharmacol. 2000; 52(9)1043–1047
  • Fundaro A., Cavalli R., Bargoni A., Vighetto D., Zara G.P., Gasco M.R. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol. Res. 2000; 42(4)337–343

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.