2,168
Views
282
CrossRef citations to date
0
Altmetric
Research Article

Stimulus-Responsive “Smart” Hydrogels as Novel Drug Delivery Systems

, , , &
Pages 957-974 | Published online: 28 Aug 2002

REFERENCES

  • Hoffman A.S. Polymer Gels—Fundamentals and Biomedical Applications, D. DeRossi, K. Kajiwara, Y. Osad, A. Yamauchi. Plenum Press, New York 1991
  • Peppas N.A., Khare A.R. Preparation and Diffusion Behavior of Hydrogels in Controlled Release. Adv. Drug Del. Rev. 1993; 11: 1–35
  • Tanaka T. Dynamics of Critical Concentration Fluctuations in Gels. Phys. Rev. 1978; A17: 763–766
  • Tanaka T. Collapse of Gels and the Critical Endpoint. Phys. Rev. Lett. 1978; 40: 820–823
  • Tanaka T., Fillmore D.J. Kinetics of Swelling of Gels. J. Chem. Phys. 1979; 70: 1214–1218
  • Kim S.W. Temperature Sensitive Polymers for Delivery of Macromolecular Drugs. Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems, N. Ogata, S.W. Kim, J. Feijen. Springer, Tokyo 1996; 126–133
  • Philippova O.E., Hourdet D., Audebert R., Khokhlov A.R. Macromolecules 1997; 30: 8278–8285
  • Wen S., Stevenson W.T.K. Colloid. Polym. Sci. 1993; 271: 38
  • Park T.G., Hoffman A.S. J. Appl. Polym. Sci. 1992; 46: 659
  • Kataoka K., Koyo H., Tsuruta T. Macromolecules 1995; 28: 333–336
  • Heskins M., Guillet J.E. Solution Properties of Poly(N-Isopropylacrylamide). J. Macromol. Sci. Chem. 1968; A2: 1441–1455
  • Feil H., Bae Y.H., Feijen J., Kim S.W. Effect of Comonomer Hydrophilicity and Ionization on the Lower Critical Solution Temperature of N-Isopropylacrylamide Copolymer. Macromolecules 1995; 36: 125–133
  • Yoshida R., Sakai K., Okano T., Sakurai T., Bae Y.H., Kim S.W. Surface-Modulated Skin Layers of Thermal Responsive Hydrogels as On–Off Switches: I. Drug Release. J. Biomater. Sci. Polym. Ed. 1991; 3: 155–162
  • Yoshida R., Sakai K., Okano T., Sakurai Y. J. Biomater. Sci. Polym. Ed. 1992; 3: 243
  • Kaneko Y., Sakai K., Kikuchi A., Aoyagi T., Sakurai Y., Okano T. Pulsed Drug Release Using Fast Responsive Comb-Type Grafted Polymeric Gel. Int. Symp. Contr. Rel. Bioact. Mater. 1996; 23: 223–324
  • Kaneko Y., Sakai K., Kikuchi A., Aoyagi T., Sakurai Y., Okano T. Oscillating Drug Release in the Deswelling Process of Temperature-Responsive Comb-Type Grafted Poly(N-Isopropylacrylamide) Hydrogel. Int. Symp. Contr. Rel. Bioact. Mater. 1997; 24: 543–544
  • Gutowska A., Bark J.K., Kwon I.C., Bae Y.H., Kim S.W. Squeezing Hydrogels for Controlled Drug Delivery. J. Contr. Rel. 1997; 48: 141–148
  • Priest J.H., Murray S.L., Nelson R.J., Hoffman A.S. LCST of Aqueous Copolymer of N-Isopropylacrylamide and Other N-Substituted Acrylamides. Reversible Polymer Gels and Related Systems, F. Rosso. ACS Press, Washington, DC 1987; 255–264
  • Okano T., Bae Y.H., Kim S.W. Insulin Permeation Through Temperature Sensitive Hydrogels. Proc. Am. Chem. Soc. Meeting, New York, 1986
  • Bae Y.H., Okano T., Hsu R., Kim S.W. Thermo-sensitive Polymers as On–Off Switches for Drug Release. Makromol. Chem. Rapid Commun. 1987; 8: 481–485
  • Dinarvand R., D'Emanuele A. A Comparison of Drug Release from Thermosensitive Microspheres and Discs. Int. Symp. Contr. Rel. Bioact. Mater. 1992; 19: 373–374
  • Dinarvand R., D'Emanuele A. The Use of Thermosensitive Hydrogels for On–Off Release of Molecules. J. Contr. Rel. 1995; 36: 221–227
  • Lowe T.L., Virtanen J., Tenhu H. Interactions of Drugs and Spin Probes with Hydro-phobically Modified Polyelectrolyte Hydrogels Based on N-Isopropylacrylamide. Polymer 1999; 40: 2595–2603
  • Dong L.C., Hoffman A.S. Novel Approach for Preparation of pH-Sensitive Hydrogels for Enteric Drug Delivery. J. Contr. Rel. 1991; 15: 141–152
  • Ganorkar C.R., Baudys M., Kim S.W. J. Biomater. Sci. Polym. Ed. 2000; 11: 45–54
  • Ganorkar C.R., Gutowska A., Liu F., Baudys M., Kim S.W. Polymer Molecular Weight Alters Properties of pH-/Temperature-Sensitive Polymeric Beads. Pharm. Res. 1999; 16: 819–827
  • Ganorkar C.R., Liu F., Baudys M., Kim S.W. Modulating Insulin-Release Profiles from pH/Thermosensitive Polymeric Beads Through Polymer Molecular Weight. J. Contr. Rel. 1999; 59: 287–298
  • Serres A., Baudys M., Kim S.W. Temperature and pH-Sensitive Polymers for Human Calcitonin Delivery. Pharm. Res. 1996; 13: 196–201
  • Kim Y.H., Bae Y.H., Kim S.W. pH/Temperature Sensitive Polymers for Macromolecular Drug Loading and Release. J. Contr. Rel. 1994; 28: 143–152
  • Peppas N.A., Vakkalanka S.K., Brezil C.S. Unique Swelling-Controlled Release Systems Based on Temperature Sensitive Terpolymer for Fiberinolytic Enzyme Delivery. Int. Symp. Contr. Rel. Bioact. Mater. 1996; 23: 267–268
  • Zhang J., Peppas N.A. Novel pNIPAAm/PMAA Interpenetrating Polymer Networks. Int. Symp. Contr. Rel. Bioact. Mater. 1998; 25: 870–871
  • Chung J.E., Yokoyama M., Yamato M., Aoyagi T., Sakuri Y., Okano T. Thermo-responsive Drug Delivery from Polymeric Micelles Constructed Using Block Copolymer of Poly(N-Isopropylacrylamide) and Poly-(Butylmethacrylate). J. Contr. Rel. 1999; 62: 115–127
  • Kori F., Sakai K., Aoyagi T., Yokoyama M., Sakurai Y., Okano T. Preparation and Characterization of Thermally Responsive Block copolymer Micelles Comprising Poly(N-Isopropylacrylamide-b-dl-Lactide). J. Contr. Rel. 1998; 55: 87–98
  • Kono K., Hayashi H., Takagishi T. Temperature-Controlled Release and Fusion of Liposomes Bearing Poly(N-Isopropylacrylamide). Int. Symp. Contr. Rel. Bioact. Mater. 1996; 23: 783–784
  • Okahata Y., Noguchi H., Seki T. Thermoselective Permeation from a Polymer-Grafted Capsules Membranes. Macromolecules 1986; 19: 493–494
  • Ichikawa H., Fukumori Y. A Novel Positive Thermosensitive Controlled-Release Microcapsule with Membrane of Nano-sized Poly(N-Isopropylacrylamide) Gel Dispersed in Ethyl Cellulose Matrices. J. Contr. Rel. 2000; 63: 107–109
  • Wu X.Y., Lee P.I. Preparation and Characterization of Thermal- and pH-Sensitive Nanospheres. Pharm. Res. 1993; 10: 1544–1547
  • Lee W.F., Hsu C.H. Thermoreversible Hydrogels. VII. Synthesis and Swelling Behavior of Poly(N-Isopropylacrylamide-co-3-Methyl-1-Vinylimidazolium Iodide) Hydrogels. J. Appl. Polym. Sci. 1999; 74: 3242–3253
  • Hoffman A.S., Chen G., Wu X., Ding Z., Matsuura J.E., Gombotz W.R. Stimuli Responsive Polymers Grafted onto Polyacrylic Acid and Chitosan Backbones as Bioadhesive Carriers for Mucosal Drug Delivery. Frontiers in Biomedical Polymer Applications, R.M. Ottenbrite. Technomic Publishing, Lancaster, PA 1999; 17–29
  • Hoffman A.S., Wu X., Ding Z., Schiller M., Ron E. Novel Drug Carriers Based on Physical Gels of Pluronic® Polyethers Grafted to Chitosan Backbones: Syntheses and Solution Properties. Int. Symp. Contr. Rel. Bioact. Mater. 1997; 24: 563–564
  • Hoffman A.S., Matsura J.E., Wu X., Gombotz W.R. Release of Cytokine from Physical Hydrogels of Pluronic® Polyethers Grafted to Chitosan Backbones. Int. Symp. Contr. Rel. Bioact. Mater. 1997; 24: 126–127
  • Yoshida M., Asano M., Kumakura M. A New Temperature-Sensitive Hydrogel with α-Amino acid Groups as Side Chain of Polymer. Eur. Polym. J. 1989; 12: 1197–1202
  • Yuk S.H., Cho S.H. Thermocontrol of Solute Transport Using Temperature-Sensitive Polymer Membrane. Int. Symp. Contr. Rel. Bioact. Mater. 1997; 24: 521–522
  • Miyazaki S., Suisha F., Kawasaki N., Shirakawa M., Yamatoya K., Attwood D. Thermally Reversible Xyloglucan Gels as Vehicle for Rectal Drug Delivery. J. Contr. Rel. 1998; 56: 75–83
  • Peppas L.B., Peppas N.A. Solute and Penetrant Diffusion in Swellable Polymer. IX. The Mechanism of Drug Release from pH-Sensitive Swelling-Controlled Systems. J. Contr. Rel. 1989; 8: 267–274
  • Bettini R., Colombo P., Peppas N.A. Solubility Effect on Drug Transport Through pH-Controlled Release Systems: Transport of Theophylline and Metoclopramide Monohydrochloride. J. Contr. Rel. 1995; 37: 105–111
  • am Ende M.T., Peppas N.A. Transport of Ionizable Drugs and Proteins in Crosslinked Poly(Acrylic Acid) and Poly(Acrylic Acid-co-2-Hydroxyethyl Methacrylate) Hydrogels. II. Diffusion and Release Studies. J. Contr. Rel. 1997; 48: 47–56
  • Khare A.R., Peppas N.A. Characterization of Water Structure in Relation to Release Behavior of Drugs from pH-Sensitive Hydrogels. Int. Symp. Contr. Rel. Bioact. Mater. 1991; 19: 200–201
  • Ranijha N.M., Doelker E. Solute Release Behavior from pH-Sensitive Acrylic Hydrogels for Colonic Drug Delivery. Symp. Contr. Rel. Bioact. Mater. 1998; 25: 886–887
  • Negishi M., Hiroki A., Horikoshi Y., Miyajima M., Asano M., Karakai R., Yoshida M. Swelling and Ketoprofen Release Characteristics of Thermo- and pH-Responsive Copolymer Gels. Drug Dev. Ind. Pharm. 1999; 25: 437–444
  • Yilmazturk B., Ulubayram K., Hasirci N. Controlled Release of Proteins from pH-Responsive Hydrogels. Symp. Contr. Rel. Bioact. Mater. 1999; 26: 1038–1039
  • Yao K.D., Sun S. pH-Stimulus Response of Complex-Formation Poly[(Ethylene Glycol-co-Propylene Glycol)-g-Acrylamide]:cr-Poly(Acrylic Acid). Polym. Int. 1993; 32: 19–22
  • Yuk S.H., Cho S.H., Lee H.B. pH-Sensitive Drug Delivery Systems Using O/W Emulsion. J. Contr. Rel. 1995; 37: 69–74
  • Kono K., Kawakama K., Morimoto K., Takagishi T. Effect of Hydrophobic Units on the pH-Responsive Release Properties of Polyelectrolyte Complex Capsules. J. Appl. Polym. Sci. 1999; 72: 1763–1773
  • Bektorova E., Bimendina L. Interpolymer Complexes. Adv. Polym. Sci. 1981; 41: 99–147
  • Lowman A.M., Peppas N.A. Analyses of Complexation and Decomplexation of Phenomenon in Polyelectrolyte Networks. Macromolecules 1997; 30: 4959–4965
  • Lowman A.M., Peppas N.A. Oscillatory Drug and Protein Release by a Complexation/Decomplexation Mechanism. Symp. Contr. Rel. Bioact. Mater. 1996; 23: 745–746
  • Lowman A.M., Morishita M., Kajita M., Nagai T., Peppas N.A. Oral Delivery of Insulin Using pH-Sensitive Complexation Gels. J. Pharm. Sci. 1999; 88: 933–936
  • Torres-Lugo M., Peppas N.A. Molecular Design and In Vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin. Macromolecules 1999; 32: 6646–6651
  • Eichenbaum G.H., Kiser P.F., Shah D., Simon S.A., Needham D. Investigation of the Swelling Response and Drug Loading of Ionic Microgels: The Dependence on Functional Group Composition. Macromolecules 1999; 32: 8996–9006
  • Kiser P.F., Wilson G., Needham D. Lipid-Coated Microgels for the Triggered Release of Doxirubicin. J. Contr. Rel. 2000; 68: 9–22
  • Siegel R.A., Firestone B.A. pH-Dependent Equilibrium Swelling Properties of Hydrophobic Polyelectrolyte Copolymer Gels. Macromolecules 1988; 21: 3254–3259
  • Siegel R.A., Falamarazin M., Firestone B.A., Moxley B.C. pH-Controlled Release from Hydrophobic/Polyelectrolyte Copolymer Hydrogels. J. Contr. Rel. 1988; 8: 179–182
  • Siegel R.A., Johannes I., Hunt I.C.A., Firestone B.A. Buffer Effects on Swelling Kinetics in Polybasic Gels. Pharm. Res. 1992; 9: 76–81
  • Firestone B.A., Siegel R.A. Kinetics and Mechanism of Water in Hydrophilic. Ionic Copolymer Gels. J. Appl. Polym. Sci. 1991; 43: 901–914
  • Falamarzian M., Varshosaz J. Effect of Structural Changes on Swelling Kinetics of Polybasic/Hydrophobic pH-Sensitive Hydrogels. Drug Dev. Ind. Pharm. 1998; 24: 667–669
  • Albin G., Horbett T.A., Ratner B.D. Glucose Sensitive Membranes for Controlled Delivery of Insulin: Insulin Transport. J. Contr. Rel. 1985; 2: 153–164
  • Albin G., Horbett T.A., Miller S.R., Ricker N.L. Theoretical and Experimental Study of Glucose Sensitive. J. Contr. Rel. 1987; 6: 267–291
  • Klumb L.A., Horbett T.A. J. Contr. Rel. 1992; 18: 59–80
  • Hariharan D., Peppas N.A. Swelling Controlled Drug Release Cationic Polymers. Symp. Contr. Rel. Bioact. Mater. 1991; 23: 367–368
  • Podual K., Doyle III F.J., Peppas N.A. Preparation and Dynamic Response of Cationic Copolymer Hydrogels Containing Glucose Oxidase. Polymer 2000; 41: 3975–3983
  • Podual K., Doyle III F.J., Peppas N.A. Dynamic Behavior of Glucose Oxidase-Containing Microparticles of Poly(Ethylene)-Grafted Cationic Hydrogels in an Environment of Changing pH. Biomaterials 2000; 21: 1439–1450
  • Hassan C.M., Peppas N.A. Novel Ethylene Glycol-Containing pH-Sensitive Hydrogels for Drug Delivery Applications. Molecular Gates” for Insulin. Symp. Ser., ACS. 1999; 728: 54–69
  • Gupta K.C., Ravi Kumar M.N.V. Preparation, Characterization and Release Profiles of pH Sensitive Chitosan Beads. Polym. Int. 2000; 49: 141–146
  • Qu X., Wirsen A., Albertsson A. Structural Change and Swelling Mechanism of pH Sensitive Hydrogels Based on Chitosan and d,l-Lactic Acid. J. Appl. Polym. Sci. 1999; 74: 3186–3192
  • Pillya V., Fassihi R. In Vitro Release Modulation from Crosslinked Pellets for Site-Specific Drug Delivery to the Gastrointestinal Tract I. Comparison of pH-Responsive Drug Release and Associated Kinetics. J. Contr. Rel. 1999; 59: 229–242
  • Soppimath K.S., Kulkarni P.V., Aminabhavi T.M. pH-Sensitive Corboxylated Guar Gum-g-Acrylamide Microgels as Stimulus Responsive Drug Delivery Systems. Symp. Contr. Rel. Bioact. Mater. 2001; 28: 6006
  • Soppimath K.S., Kulkarni A.R., Aminabhavi T.M. Chemically Modified Polyacrylamide-g-Guar Gum Based Cross-Linked Anionic Microgels as pH-Sensitive Drug Delivery System: Preparation and Characterization. J. Contr. Rel. 2001; 75: 331–345
  • Dorski C.M., Doyle F.J., Peppas N.A. Preparation and Characterization of Glucose-Sensitive p(MAA-g-EG) Hydrogels. Polym. Mater. Sci. Proc. 1997; 76: 281–282

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.