338
Views
11
CrossRef citations to date
0
Altmetric
Research Article

pH Dependent Uptake of Loperamide Across the Gastrointestinal Tract: An In Vitro Study

&
Pages 449-459 | Published online: 25 May 2004

References

  • Dajani E., Bianchi R., Bloss J., Adelstein G., East P. The pharmacology of SC‐27166: a novel antidiarrhoeal agent. J. Pharmacol. Exp. Ther. 1977; 203: 512–526
  • Mackerer C., Broughham L., East P., Bloss J., Dajani E., Clay G. Antidiarrhoeal and central nervous system activities of SC‐27166 (2‐[3‐5‐Methyl‐1,3,4‐Oxadiazol‐2‐YL)‐3,3‐Diphenylpropyl]‐2‐Azabicyclo[2.2.2]Octane), a new antidiarrhoeal agent, resulting from binding to opiate receptor sites of the brain and myenteric plexus. J. Pharmacol. Exp. Ther. 1977; 203: 527–538
  • Awouters F., Megens A., Verlinden M., Schuurkes J., Niemegeers C., Janssen P. Loperamide survey of studies on mechanism of its antidiarrhoeal activity. Dig. Dis. Sci. 1993; 38: 977–995
  • Dehaven‐Hudkins D., Cortes Burgos L., Cassel J., Daubert J., Dehaven R., Mansson E., Nagasaka H., Yu G., Yaksh T. Loperamide (ADL 2‐1294), an opioid antihyperalgesic agent with peripheral selectivity. J. Pharmacol. Exp. Ther. 1999; 289: 494–502, [CSA]
  • Tsuji A., Tamai I. Blood–brain barrier function of P‐glycoprotein. Adv. Drug Deliv. Rev. 1997; 25: 287–298, [CSA], [CROSSREF]
  • Schinkel A. The physiological function of drug‐transporting P‐glycoproteins. Sem. Cancer Biol. 1997; 8: 161–170, [CSA], [CROSSREF]
  • Tsuji A., Tamai I. Carrier‐mediated intestinal transport of drugs. Pharm. Res. 1996; 13: 963–977, [CROSSREF]
  • Ingels F., Augustijns P. Biological, pharmaceutical, and analytical considerations with respect to the transport media used in the absorption screening system, Caco‐2. J. Pharm. Sci. 2003; 92(8)1545–1558, [CROSSREF]
  • Crowe A., Wong P. Potential roles of P‐gp and calcium channels in loperamide and diphenoxylate transport. Toxicol. Appl. Pharmacol. 2003; 193: 127–137, [CSA], [CROSSREF]
  • Ooms L., Degryse A., Janssen P. Mechanism of action of loperamide. Scand. J. Gastroenterol., Suppl. 1984; 96: 145–155, [CSA]
  • Schinkel A., Wagenaar E., Mol C., van Deemter L. P‐glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 1996; 97(11)2517–2524, [CSA]
  • Bailey C., Bryla P., Malick A. The use of the intestinal epithelial cell culture model, Caco‐2, in pharmaceutical development. Adv. Drug Deliv. Rev. 1996; 22: 85–103, [CSA], [CROSSREF]
  • Hosoya K., Kim K., Lee V. Age‐dependent expression of P‐glycoprotein gp170 in Caco‐2 cell monolayers. Pharm. Res. 1996; 13: 885–890, [CROSSREF]
  • Mizuuchi H., Katsura T., Ashida K., Hashimoto Y., Inui K. Diphenhydramine transport by pH‐dependent tertiary amine transport system in Caco‐2 cells. Am. J. Physiol.: Gasterointest. Liver Physiol. 2000; 278(4)G563–G569
  • Rubas W., Jezyk N., Grass G. Mechanism of dextran transport across rabbit intestinal tissue and a human colon cell‐line (CACO‐2). J. Drug Target. 1995; 3: 15–21, [CSA]
  • Crowe A., Lemaire M. In vitro and in situ absorption of SDZ‐RAD using a human intestinal cell line (Caco‐2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm. Res. 1998; 15(11)1666–1672, [CROSSREF]
  • Ambudkar S., Dey S., Hrycyna C., Ramachandra M., Pastan I., Gottesman M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999; 39: 361–398, [CSA], [CROSSREF]
  • Pannocchia A., Revelli S., Tamponi G., Giorgianni A., Todde R., Bosia A., Ghigo D. Reversal of doxorubicin resistance by the amiloride analogue EIPA in multidrug resistant human colon carcinoma cells. Cell Biochem. Funct. 1996; 14: 11–18, [CSA], [CROSSREF]
  • Wandel C., Kim R., Wood M., Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P‐glycoprotein. Anesthesiology 2002; 96: 913–920, [CSA], [CROSSREF]
  • Dantzig A., Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco‐2. Biochim. Biophys. Acta 1990; 1027: 211–217
  • Thwaites D., Cavet M., Hirst B., Simmons N. Angiotensin‐converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco‐2) Cells. Br. J. Pharmacol. 1995; 114: 981–986, [CSA]
  • Walter E., Kissel T., Amidon G. The intestinal peptide carrier: a potential transport system for small peptide derived drugs. Adv. Drug Deliv. Rev. 1996; 20: 33–58, [CSA], [CROSSREF]
  • Watson A., Levine S., Donowitz M., Montrose M. Kinetics and regulation of a polarized Na+ − H+ exchanger from Caco‐2 cells, a human intestinal cell line. Am. J. Physiol. 1991; 261: G229–G238
  • Dutt A., Heath L., Nelson J. P‐glycoprotein and organic cation secretion by the mammalian kidney. J. Pharmacol. Exp. Ther. 1994; 269: 1254–1260, [CSA]
  • Suzuki T., Oshimi M., Tomono K., Hanano M., Watanabe J. Investigation of transport mechanism of pentazocine across the blood–brain barrier using the in situ rat brain perfusion technique. J. Pharm. Sci. 2002; 91(11)2346–2353, [CROSSREF]
  • Emerich D., Snodgrass P., Pink M., Bloom F., Bartus R. Central analgesic actions of loperamide following transient permeation of the blood brain barrier with cereport (RMP‐7). Brain Res. 1998; 801: 259–266, [CROSSREF]
  • Tayrouz Y., Ganssmann B., Ding R., Klingmann A., Aderjan R., Burhenne J., Haefeli W., Mikus G. Ritonavir increases loperamide plasma concentrations without evidence for P‐glycoprotein involvement. Clin. Pharmacol. Ther. 2001; 70(5)405–414, [CSA]
  • Litovitz T., Clancy C., Korberly B., Temple A., Mann K. Surveillance of loperamide ingestions: an analysis of 216 poison centre reports. Clin. Toxicol. 1997; 35: 11–19
  • McCowat L., Cutting W., Steinke D., McDonald T. Treating diarrhoea: children deserve special attention. Br. Med. J. 1997; 315: 1378–1379
  • Motala C., Hill I., Mann M., Bowie M. Effect of loperamide on stool output and duration of acute infectious diarrhoea in infants. J. Pediatr. 1990; 117: 467–471
  • Ericsson C., Johnson P. Safety and efficacy of loperamide. Am. J. Med. 1990; 88: 6A–10S, [CROSSREF]
  • Sadeque A., Wandel C., He H., Shah S., Wood A. increased drug delivery to the brain by P‐glycoprotein inhibition. Clin. Pharmacol. Ther. 2000; 68: 231–237, [CSA], [CROSSREF]
  • Mizuuchi H., Katsura T., Hashimoto Y., Inui K. Transepithelial transport of diphenhydramine across monolayers of the human intestinal epithelial cell line Caco‐2. Pharm. Res. 2000; 17(5)539–545, [CROSSREF]
  • Karlsson J., Kuo S., Ziemniak J., Artursson P. Transport of celiprolol across human intestinal epithelial (Caco‐2) cells: mediation of secretion by multiple transporters including P‐glycoprotein. Br. J. Pharmacol. 1993; 110: 1009–1016, [CSA]
  • Balkovetz D., Miyamoto Y., Tiruppathi C., Mahesh V., Leibach F., Ganapathy V. Inhibition of brush–border membrane Na+ − H+ exchanger by loperamide. J. Pharmacol. Exp. Ther. 1987; 243: 150–154, [CSA]
  • Collett A., Higgs N., Sims E., Rowland M., Warhurst G. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P‐glycoprotein in rat intestine and the human colonic cell line Caco‐2. J. Pharmacol. Exp. Ther. 1999; 288: 171–178, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.