1,161
Views
83
CrossRef citations to date
0
Altmetric
Research Article

ILLEGAL OR LEGITIMATE USE? PRECURSOR COMPOUNDS TO AMPHETAMINE AND METHAMPHETAMINE

Pages 15-44 | Published online: 15 Apr 2001

REFERENCES

  • Ellenhorn M., Schonwald S., Ordog G., Wasserberger J. Ellenhorn's Medical Toxicology—Diagnosis and Treatment of Human Poisoning. Williams & Wilkins, Baltimore, MD 1997
  • Physician's Desk Reference. 50th ed., Medical Economics Company, Montvale, NJ 1996
  • Cody J. Metabolic precursors to amphetamine and methamphetamine. Forensic Sci. Rev. 1993; 5: 109–127
  • Akintonwa D. A. Mechanistic biotransformations of some amphetamine drugs. J. Theoret. Biol. 1986; 120: 303–308
  • Caldwell J. Amphetamines and Related Stimulants: Chemical, Biological, Clinical and Sociological Aspects. CRC Press, Boca Raton, FL 1980
  • Caldwell J. The metabolism of amphetamines in mammals. Drug Metab. Rev. 1976; 5: 219–280
  • Cody J. Issues pertaining to monitoring the abuse of amphetamines in workplace drug testing. Forensic Sci. Rev. 1994; 6: 81–96
  • Foltz R., Fentiman A. GC/MS Assays for Abused Drugs in Body Fluids. NIDA Research Monograph 32, NIDA, U.S. Department of Health and Human Services, Rockville, MD 1980
  • Beckett A., Rowland M., Turner P. Influence of urinary pH on excretion of amphetamine. Lancet 1965; 1: 303
  • Beckett A. H., Rowland M. Urinary excretion of methylamphetamine in man. Nature 1965; 206: 1260–1261
  • Beckett A. H., Rowland M. Urinary excretion kinetics of amphetamine in man. J. Pharm. Pharmacol. 1965; 17: 628–639
  • Caldwell J., Dring L. G., Williams R. T. Metabolism of (14C)methamphetamine in man, the guinea pig and the rat. Biochem. J. 1972; 129: 11–22
  • Beckett A. H., Brookes L. G., Shenoy E. V. Urinary excretion of the drug and its main metabolite in man, after the administration of (plus or minus)-, (plus)- and (minus)-ethylamphetamine. J. Pharm. Pharmacol. 1969; 21(Suppl)151S
  • Beckett A. H., Haya K. The stereoselective metabolism of ethylamphetamine with fortified rabbit liver homogenates. Xenobiotica 1978; 8: 85–96
  • Beckett A. H., Shenoy E. V., Salmon J. A. The influence of replacement of the N-ethyl group by the cyanoethyl group on the absorption, distribution and metabolism of (plus or minus)-ethylamphetamine in man. J. Pharm. Pharmacol. 1972; 24: 194–202
  • Beckett A. H., Shenoy E. V. B. The effect of N-alkyl chain length and stereochemistry on the absorption, metabolism and urinary excretion of N-alkylamphetamines in man. J. Pharm. Pharmacol. 1973; 25: 793–799
  • Beckett A. H., Salmon J. A., Mitchard M. The relation between blood levels and urinary excretion of amphetamine under controlled acidic and under fluctuating urinary pH values using [14C] amphetamine. J. Pharm. Pharmacol. 1969; 21: 251–258
  • Davis J. M., Kopin I. J., Lemberger L., Axelrod J. Effects of urinary pH on amphetamine metabolism. Ann. NY Acad. Sci. 1971; 179: 493–501
  • Gunne L. M. The urinary output of d- and l-amphetamine in man. Biochem. Pharmacol. 1967; 16: 863–869
  • Wan S., Martin S., Azarnoff D. Kinetics, salivary excretion of amphetamine isomers, and effect of pH. Clin. Pharmacol. Therap. 1978; 23: 585–590
  • Baselt R., Cravey R. Disposition of Toxic Drugs and Chemicals in Man. Biomedical Publications, Davis, CA 1994
  • Dring L. G., Smith R. L., Williams R. T. The metabolic fate of amphetamine in man and other species. Biochem. J. 1970; 116: 425–435
  • Beckett A. H., al Sarraj S. M. The metabolism of (+)- and (−)-amphetamine and (+)- and (−)-dimethylamphetamine in rabbits in vivo. Biochem. J. 1972; 130: 14P
  • CodyJ T., Schwarzhoff R. Interpretation of methamphetamine and amphetamine enantiomer data. J. Anal. Toxicol. 1993; 17: 321–326
  • Hornbeck C. L., Czarny R. J. Retrospective analysis of some L-methamphetamine/L-amphetamine urine data. J. Anal. Toxicol. 1993; 17: 23–25
  • Hutchaleelaha A., Sukbuntherng J., Chow H. H., Mayersohn M. Disposition kinetics of d- and l-amphetamine following intravenous administration of racemic amphetamine to rats. Drug Metab. Dispos. 1994; 22: 406–411
  • Jori A., Caccia S., de Ponte P. Differences in the availability of d- and l-enantiomers after administration of racemic amphetamine to rats. Xenobiotica 1978; 8: 589–595
  • Cooke B. J. Chirality of methamphetamine and amphetamine from workplace urine samples. J. Anal. Toxicol. 1994; 18: 49–51
  • Kraemer T., Maurer H. H. Determination of amphetamine, methamphetamine and amphetamine-derived designer drugs or medicaments in blood and urine. J. Chromatogr. B 1998; 713: 163–187
  • Schlesser J. Drugs Available Abroad—Guide to Therapeutic Drugs Available and Approved Outside the U.S. MEDEX Books, Detroit, MI 1991
  • Meyer-Probst B., Vehreschild T. Influencing the lack of concentration in hyperkinetic school children with Aponeuron. Psychiatr. Neurol. Med. Psychol. 1976; 28: 491–499
  • Harris L. S. The stimulants and hallucinogens under consideration: A brief overview of their chemistry and pharmacology. Drug Alcohol Depend. 1986; 17: 107–118
  • Besserer K. Analysis of alpha-phenyl-alpha-N-(beta-phenylisopropyl)-aminoacetonitrile. Drug Res. 1972; 22: 1737–1738
  • Honecker H. Studies on the CNS-availability of amphetamine from amphetaminil. Int. J. Clin. Pharmacol. Biopharm. 1975; 12: 121–128
  • Remberg G., Marsel J., Doring G., Spiteller G. Amphetamine—A metabolite of AN 1. A contribution to the problems of doping analyses. Arch. Toxikol. 1972; 29: 153–157
  • Beyer K., Strassner W., Klinge D. Untersuchungen über Amphetaminil. Dtsch. Apoth. Ztg. 1971; 111: 677–680
  • Hoffmann H. Zur Frage der Stabilität von Amphetaminil. Dtsch. Apoth. Ztg. 1971; 111: 680–680
  • Honecker V H., Coper H. Stability of amphetaminil. 1. In-vitro studies. Drug Res. 1975; 25: 442–445
  • Silverstone T. Clinical use of appetite suppressants. Drug Alcohol Depend. 1986; 17: 151–167
  • Silverstone T. Appetite suppressants. A review. Drugs 1992; 43: 820–836
  • Beckett A. H., Tucker G. T., Moffat A. C. Routine detection and identification in urine of stimulants and other drugs, some of which may used to modify performance in sport. J. Pharm. Pharmacol. 1967; 19: 273–294
  • Budd R., Jain N. Metabolism and excretion of benzphetamine. J. Anal. Toxicol. 1978; 2: 241
  • Marsel J., Doring G., Remberg G., Spiteller G. Methamaphetamine—A metabolite of the anorectics; Benzphtamine and furfenorex. Z. Rechtsmed 1972; 70: 245–250
  • Inoue T., Suzuki S., Niwaguchi T. The metabolism of 1-phenyl-2-(N-methyl-N-benzylamino)propane (benzphetamine) in vitro in rat. Xenobiotica 1983; 13: 241–249
  • Niwaguchi T., Inoue T., Suzuki S. The metabolism of 1-phenyl-2-(N-methyl-N-benzylamino)propane (benzphetamine) in vivo in the rat. Xenobiotica 1982; 12: 617–625
  • Inoue T., Suzuki S. The metabolism of 1-phenyl-2-(N-methyl-N-benzylamino)propane (benzphetamine) and 1-phenyl-2-(N-methyl-N-furfurylamino)propane (furfenorex) in man. Xenobiotica 1986; 16: 691–698
  • Cody J. T., Valtier S. Detection of amphetamine and methamphetamine following administration of benzphetamine. J. Anal. Toxicol. 1998; 22: 299–309
  • Brooks J. P., Phillips M., Stafford D. T., Bell J. S. A case of benzphetamine poisoning. Am. J. Forensic Med. Pathol. 1982; 3: 245–247
  • Franceschini A., Duthel J. M., Vallon J. J. Specific detection of urinary sympathomimetic amines for control of anti-doping by gas chromatography–mass spectroscopy. J. Chromatogr. 1991; 541: 109–120
  • Kikura R., Nakahara Y. Hair analysis for drugs of abuse. XI. Disposition of benzphetamine and its metabolites into hair and comparison of benzphetamine use and methamphetamine use by hair analysis. Biol. Pharm. Bull. 1995; 18: 1694–1699
  • Young R., Darmani N. A., Elder E. L., Dumas D., Glennon R. A. Clobenzorex: Evidence for amphetamine-like behavioral actions. Pharmacol. Biochem. Behav. 1997; 56: 311–316
  • Tarver J. A. Amphetamine-positive drug screens from use of clobenzorex hydrochlorate. J. Anal. Toxicol. 1994; 18: 183
  • Glasson B., Benakis A., Thomasset M. Localisation, distribution, excretion and metabolism of the new, C14-labelled appetite depressant clobenzorex hydrochloride. Drug Res. 1971; 21: 1985–1992
  • Maurer H. H., Kraemer T., Ledvinka O., Schmitt C. J., Weber A. A. Gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass spectrometry (LC–MS) in toxicological analysis. Studies on the detection of clobenzorex and its metabolites within a systematic toxicological analysis procedure by GC–MS and by immunoassay and studies on the detection of alpha- and beta-amanitin in urine by atmospheric pressure ionization electrospray LC–MS. J. Chromatogr. B 1997; 689: 81–89
  • Nakahara Y., Kikura R. Hair analysis for drugs of abuse. XIII. Effect of structural factors on incorporation of drugs into hair: The incorporation rates of amphetamine analogs. Arch. Toxicol. 1996; 70: 841–849
  • Birkmayer W. Deprenyl (selegiline) in the treatment of Parkinson's disease. Acta Neurol. Scand. 1983; 5(Suppl)103–105
  • Knoll J. The pharmacology of (−)deprenyl. J. Neural Transmiss. 1986; 22(Suppl)75–89
  • Knoll J. The pharmacology of selegiline ((−)deprenyl). New aspects. Acta Neurol. Scand. 1989; 126(Suppl)83–91
  • Mann J. J., Aarons S. F., Wilner P. J., Keilp J. G., Sweeney J. A., Pearlstein T., Frances A. J., Kocsis J. H., Brown R. P. A controlled study of the antidepressant efficacy and side effects of (−)-deprenyl. A selective monoamine oxidase inhibitor. Arch. Gen. Psychiatry 1989; 46: 45–50
  • Salonen J. S. Determination of the amine metabolites of selegiline in biological fluids by capillary gas chromatography. J. Chromatogr. 1990; 527: 163–168
  • Philips S. R. Amphetamine, p-hydroxyamphetamine and beta-phenethylamine in mouse brain and urine after (−)- and (+)-deprenyl administration. J. Pharm. Pharmacol. 1981; 33: 739–741
  • Yoshida T., Yamada Y., Yamamoto T., Kuroiwa Y. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: Relationship of metabolism to (MAO) B inhibitory potency. Xenobiotica 1986; 16: 129–136
  • Karoum F., Chuang L. W., Eisler T., Calne D. B., Liebowitz M. R., Quitkin F. M., Klein D. F., Wyatt R. J. Metabolism of (−)deprenyl to amphetamine and methamphetamine may be responsible for deprenyl's therapeutic benefit: A biochemical assessment. Neurology 1982; 32: 503–509
  • Reynolds G. P., Elsworth J. D., Blau K., Sandler M., Lees A. J., Stern G. M. Deprenyl is metabolized to methamphetamine and amphetamine in man. Br. J. Clin. Pharmacol. 1978; 6: 542–544
  • Reynolds G. P., Riederer P., Sandler M. 2-Phenylethylamine and amphetamine in human brain: Effects of L- deprenyl in Parkinson's disease. Biochem. Soc. Trans. 1979; 7: 143–145
  • Reynolds G. P., Riederer P., Sandler M., Jellinger K., Seemann D. Amphetamine and 2-phenylethylamine in post-mortem Parkinsonian brain after (−)deprenyl administration. J. Neural Transmiss. 1978; 43: 271–277
  • Shulz R., Antonin K., Hoffmann E., Jedrychowski M., Nilsson E., Schick C., Bieck P. Clin. Pharmacol. Ther. 1989; 46: 528
  • Meeker J. E., Reynolds P. C. Postmortem tissue methamphetamine concentrations following selegiline administration. J. Anal. Toxicol. 1990; 14: 330–331
  • Juvancz Z., Ratonyi I., Toth A., Vajda M. Chromatographic determination of nanogram levels of 2-(methylpropargylamino)-1-phenylpropane (Jumex, Deprenyl) in plasma. J. Chromatogr. 1984; 286: 363–369
  • Cedarbaum J. Clinical pharmacokinetics of anti-parkinsonian drugs. Clin. Pharmacokinet. 1987; 13: 141–178
  • La Croix R., Pianezzola E., Strolin M. Benedetti, Sensitive high-performance liquid chromatographic method for the determination of the three main metabolites of selegiline (L-deprenyl) in human plasma. J. Chromatogr. B 1994; 656: 251–258
  • Lengyel J., Magyar K., Hollosi I., Bartok T., Bathori M., Kalasz H., Furst S. Urinary excretion of deprenyl metabolites. J. Chromatogr. A 1997; 762: 321–326
  • Maurer H. H., Kraemer T. Toxicological detection of selegiline and its metabolites in urine using fluorescence polarization immunoassay (FPIA) and gas chromatography–mass spectrometry (GC–MS) and differentiation by enantioselective GC–MS of the intake of selegiline from abuse of methamphetamine or amphetamine. Arch. Toxicol. 1992; 66: 675–678
  • Szebeni G., Lengyel J., Szekacs G., Magyar K., Gaal J., Szatmari I. Gas chromatographic procedure for simultaneous determination of selegiline metabolites, amphetamine, methamphetamine and demethyl–deprenyl in pig plasma. Acta Physiol. Hung. 1995; 83: 135–141
  • Reimer M. L., Mamer O. A., Zavitsanos A. P., Siddiqui A. W., Dadgar D. Determination of amphetamine, methamphetamine and desmethyldeprenyl in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. Biol. Mass. Spectrom. 1993; 22: 235–242
  • Heinonen E. H., Myllyla V., Sotaniemi K., Lamintausta R., Salonen J. S., Anttila M., Savijarvi M., Kotila M., Rinne U. K. Pharmacokinetics and metabolism of selegiline. Acta Neurol. Scand. 1989; 126(Suppl)93–99
  • Heinonen E. H., Anttila M. I., Lammintausta R. A. Pharmacokinetic aspects of l-deprenyl (selegiline) and its metabolites. Clin. Pharmacol. Ther. 1994; 56: 742–749
  • Kikura R., Nakahara Y. Hair analysis for drugs of abuse. IX. Comparison of deprenyl use and methamphetamine use by hair analysis. Biol. Pharm. Bull. 1995; 18: 267–272
  • Inoue T., Suzuki S. The metabolism of dimethylamphetamine in rat and man. Xenobiotica 1987; 17: 965–971
  • Makino Y., Higuchi T., Ohta S., Hirobe M. Identification and quantification of p-hydroxyethylamphetamine as a novel metabolite of ethylamphetamine in rat by gas chromatography–mass spectrometry. Forensic Sci. Int. 1989; 41: 83–91
  • Beckett A. H., Haya K. The identification and quantitation of the major metabolites of ethylamphetamine, produced by rabbit liver microsomal preparations. J. Pharm. Pharmacol. 1977; 29: 89–95
  • Delbeke F. T., Debackere M. The influence of diuretics on the excretion and metabolism of doping agents. III. Etilamfetamine. Drug Res. 1986; 36: 1413–1416
  • Nagai T., Kamiyama S., Matsushima K. Analysis of time-lapse changes of d- and l-enantiomers of racemic ethylamphetamine and stereoselective metabolism in rat urine by HPLC determination. J. Anal. Toxicol. 1995; 19: 225–228
  • Nagai T., Kanaya H., Matsushima K., Kamiyama S. Time-lapse changes of d- and l-enantiomers of racemic (dl)-ethylamphetamine in human urine. J. Anal. Toxicol. 1997; 21: 112–115
  • Reynolds J. The Martindale: The Extra Pharmacopoeia. Pharmaceutical Press, London 1996
  • Mrongovius R., Neugebauer M., Rucker G. Analgesic activity and metabolism in the mouse of morazone, famprofazone and related pyrazolones. Eur. J. Med. Chem. Chim. Therap. 1984; 19: 161–166
  • Neugebauer M. Some new urinary metabolites of famprofazone and morazone in man. J. Pharm. Biomed. Anal. 1984; 2: 53–60
  • Oh E. S., Hong S. K., Kang G. I. Plasma and urinary concentrations of methamphetamine after oral administration of famprofazone to man. Xenobiotica 1992; 22: 377–384
  • Yoo Y., Chung H., Choi H. Urinary methamphetamine concentration following famprofazone administration. J. Anal. Toxicol. 1994; 18: 265–268
  • Cody J. T. Enantiomeric composition of amphetamine and methamphetamine derived from the precursor compound famprofazone. Forensic Sci. Int. 1996; 80: 189–199
  • Shin H. S. Stereoselective metabolism of famprofazone in humans: N-dealkylation and beta- and p-hydroxylation. Chirality 1997; 9: 52–58
  • Musshoff F., Kraemer T. Identification of famprofazone ingestion. Int. J. Legal Med. 1998; 111: 305–308
  • Shin H. S., Park J. S., Park P. B., Yun S. J. Detection and identification of famprofazone and its metabolite in human urine. J. Chromatogr. B 1994; 661: 255–261
  • Mallol J., Pitarch L., Coronas R., Pons A. J. Determination of dl-fencamine in rat and human urine. Drug Res. 1974; 24: 1301–1304
  • Kristen G., Schaefer A., von Schlichtegroll A. Fenetylline: Therapeutic use, misuse and/or abuse. Drug Alcohol Depend. 1986; 17: 259–271
  • Ellison T., Levy L., Bolger J. W., Okun R. The metabolic fate of 3H-fenetylline in man. Eur. J. Pharmacol. 1970; 13: 123–128
  • Iffland R. Urine levels of fenethylline and amphetamine after administration of Captagon. Arch. Kriminol. 1982; 169: 81–88
  • Goenechea S., Brzezinka H. Detection and identification of a new metabolite of fenethylline. Arch. Kriminol. 1984; 173: 97–102
  • Nickel B., Niebch G., Peter G., von Schlichtegroll A., Tibes U. Fenetylline: New results on pharmacology, metabolism and kinetics. Drug Alcohol Depend. 1986; 17: 235–257
  • Rücker G., Neugebauer M., Heiden P. G. The biotransformation of fenetylline. Drug Res. 1988; 38: 497–501
  • Yoshimura H., Yoshimitsu T., Yamada H., Koga N., Oguri K. Metabolic fate of fenetylline in rat and man. Xenobiotica 1988; 18: 929–940
  • Tognoni G., Morselli P. L., Garattini S. Amphetamine concentrations in rat brain and human urine after fenproporex administration. Eur. J. Pharmacol. 1972; 20: 125–126
  • Nazarali A. J., Baker G. B., Coutts R. T., Pasutto F. M. Amphetamine in rat brain after intraperitoneal injection of N-alkylated analogues. Prog. Neuropsychopharmacol. Biol. Psychiatry 1983; 7: 813–816
  • Coutts R. T., Nazarali A. J., Baker G. B., Pasutto F. M. Metabolism and disposition of N-(2-cyanoethyl)amphetamine (fenproporex) and amphetamine: Study in the rat brain. Can. J. Physiol. Pharmacol. 1986; 64: 724–728
  • Cody J. T., Valtier S. Detection of amphetamine following administration of fenproporex. J. Anal. Toxicol. 1996; 20: 425–431
  • Boissier J. R., Hirtz J., Dumont C., Gerardin A. Metabolism of (+) N-methyl N-(furyl-2methyl) phenylisopropylamine cyclohexylsulfamate (furfenonex cyclohexylsulfamate) in rats. Ann. Pharm. Fr. 1968; 26: 215–226
  • Inoue T., Yasuda T., Suzuki S., Kishi T., Niwaguchi T. The metabolism of 1-phenyl-2-(N-methyl-N-furfurylamino)propane (furfenorex) in the rat in vivo and in vitro. Xenobiotica 1986; 16: 109–121
  • Beyer G., Huth K., Müller G. M., Niemoller H., Raisp I., Vorberg G. The treatment of obesity with the appetite curbing agent Mefenorex. Med. Welt. 1980; 31: 306–309
  • Blum J. E. Experimental studies with the new appetite depressant N-(3-chlorpropyl)-1-methyl-2-phenylethylamine hydrochloride (Ro 4-5282). Drug Res. 1969; 19: 748–755
  • Engel J., Kristen G., Schaefer A., von Schlichtegroll A. Mefenorex (Rondimen). Drug Alcohol Depend. 1986; 17: 229–234
  • Williams R., Caldwell J., Dring L. Comparative metabolism of some amphetamines in various species. Frontiers in Catecholamine Research, E. Usdin, S. Snyder. Pergamon Press, New York 1973; 927
  • Rendic S., Slavica M., Saric M. Medic. Urinary excretion and metabolism of orally administered mefenorex. Eur. J. Drug Metab. Pharmacokinet. 1994; 19: 107–117
  • Kraemer T., Vernaleken I., Maurer H. Studies on the metabolism and toxicological detection of the amphetamine-like anoretic mefenorex in human urine by gas chromatography–mass spectrometry and fluorescence polarization immunoassay. J. Chromatogr. B 1997; 702: 93–102
  • Vinar O., Klein D. F., Potter W. Z., Gause E. M. A survey of psychotropic medications not available in the United States. Neuropsychopharmacology 1991; 5: 201–217
  • Polgar M., Vereczkey L., Szporny L., Czira G., Tamas J., Baitz E. Gacs, Holly S. Metabolism of mesocarb in the rat. Xenobiotica 1979; 9: 511–519
  • Pyo H., Park S. J., Park J., Yoo J. K., Yoon B. Analysis of mesocarb analogues in urine and plasma of rats by high-performance liquid chromatography and thermospray liquid chromatography–mass spectrometry. J. Chromatogr. B 1996; 687: 261–269
  • Leary W. P., Asmal A. C., Williams P. Prenylamine lactate in the treatment of angina pectoris. Curr. Therap. Res. Clin. Exp. 1976; 19: 180–184
  • Lamers J. M., Cysouw K. J., Verdouw P. D. Slow calcium channel blockers and calmodulin. Effect of felodipine, nifedipine, prenylamine and bepridil on cardiac sarcolemmal calcium pumping ATPase. Biochem. Pharmacol. 1985; 34: 3837–3843
  • Manning A., Crome R., Isted K., Coltart D., Hearse D. Reperfusion-induced ventricular fibrillation. Modification by pharmacological agents. Adv. Mycardiol. 1985; 6: 515–528
  • Giannella E., Masini E., Palmerani B., Pistelli A., Mannaioni P. Modulation of anaphylactic histamine release by calcium channel agonists and antagonists. Agents Actions 1988; 23: 185–187
  • Gietl Y., Spahn H., Knauf H., Mutschler E. Single- and multiple-dose pharmacokinetics of R-(−)- and S-(+)-prenylamine in man. Eur. J. Clin. Pharmacol. 1990; 38: 587–593
  • Paar W. D., Brockmeier D., Hirzebruch M., Schmidt E. K., von Unruh G. E., Dengler H. J. Pharmacokinetics of prenylamine racemate and enantiomers in man. Drug Res. 1990; 40: 657–661
  • Remberg G., Eichelbaum M., Spiteller G., Dengler H. J. Metabolism of DL- [14C]prenylamine in man. Biomed. Mass Spectrom. 1977; 4: 297–304
  • Gietl Y., Spahn H., Mutschler E. Simultaneous determination of R- and S-prenylamine in plasma and urine by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1988; 426: 304–314
  • Gietl Y., Spahn H., Mutschler E. Enantioselective disposition of R-(−)- and S-(+)-prenylamine in the rat. Drug Res. 1989; 39: 853–856
  • Schmidt E. K., von Unruh G. E., Paar W. D., Dengler H. J. A gas chromatographic/mass spectrometric assay for prenylamine suitable for pharmacokinetic studies of the racemate and the enantiomers. Biol. Mass Spectrom. 1992; 21: 103–108
  • Hornke I., Hajdu P. Studies on the metabolism of prenylamine in rats. Drug Res. 1970; 20: 791–794
  • Palm D., Fengler H., Grobecker H. Urinary excretion of amphetamine in man after administration of prenylamine. Life Sci. 1969; 8: 247–257
  • Palm D., Grobecker H., Fengler H. Metabolism of prenylamine (Segontin), Naunyn Schmiedeberg's. Arch. Exp. Pathol. Pharmacol. 1968; 260: 185–186
  • Iwersen S., Schmoldt A. One fatal and one nonfatal intoxication with tranylcypromine. Absence of amphetamines as metabolites. J. Anal. Toxicol. 1996; 20: 301–304
  • Jefferson J. W. Is tranylcypromine really metabolized to amphetamine?. J. Clin. Psychiatry 1992; 53: 450–451
  • Mori A., Ishiyama I., Akita H., Suzuki K., Mitsuoka T., Oishi T. Formation of amphetamine from its nitro analogue by anaerobic intestinal bacteria. Xenobiotica 1990; 20: 629–634
  • Nakahara Y. Detection and diagnostic interpretation of amphetamines in hair. Forensic Sci. Int. 1995; 70: 135–153
  • Nakahara Y., Takahashi K., Kikura R. Hair analysis for drugs of abuse. X. Effect of physicochemical properties of drugs on the incorporation rates into hair. Biol. Pharm. Bull. 1995; 18: 1223–1227

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.