71
Views
1
CrossRef citations to date
0
Altmetric
Research Article

HISTORY OF DRUG METABOLISM RESEARCH IN JAPAN*

&
Pages 45-79 | Published online: 15 Apr 2001

REFERENCES

  • Tsukamoto H., Takabatake E., Yoshimura H. Metabolism of drugs. I. The metabolic fate of ethylhexabital (5-cyclohexenyl-5-ethylbarbituric acid). Pharm. Bull. 1954; 2: 201–205
  • Yamamota A., Yoshimura H., Tsukamoto H. Metabolism of drugs. XXVIII. Metabolic fate of meprobamate. Chem. Pharm. Bull. 1962; 10: 522–528
  • Tsukamoto H., Yoshimura H., Tatsumi K. Metabolism of drugs. XXXIX. Further studies on carbamate N-glucuronide formation in animal body. Chem. Pharm. Bull. 1963; 11: 1134–1139
  • Uno T., Ueda M. Studies on the metabolism of sulfathiazole. IV. A new sulfathiazole glucuronic acid conjugate in the human urine. Chem. Pharm. Bull. 1963; 11: 709–712
  • Akaghi M., Uematsu T., Aoki I., Sakata M. Structure of p-ethoxyphenylurea-N-glucuronide. Chem. Pharm. Bull. 1963; 11: 1214–1215
  • Kato R. A treatment, carried out 48 hr before, with various substances can decrease the pharmacological effect of phenobarbital. Atti. Soc. Lombarda Sci. Med. Biol. 1959; 14: 777–780, (in Italian)
  • Kato R. Modification of pharmacological action of some drugs in animals pretreated 48 hr before, with other drugs. Atti. Soc. Lombarda Sci. Med. Biol. 1959; 14: 783–786, (in Italian)
  • Kato R. Some characteristics of decrease in sensitivity to phenobarbital in animals pretreated with phenaglycodol. Atti. Soc. Lombarda Sci. Med. Biol. 1959; 14: 781–783, (in Italian)
  • Kato R. Induced increase of meprobamate metabolism in rats treated with phenobarbital or phenaglycodol. Med. Exp. 1960; 3: 95–100
  • Kato R. Modifications of the toxicity of strychnine and octomethylpyrophosphoramide (OMPA) induced by pretreatment with phenaglycodol and thiopental. Arzneim. Forsch. 1961; 11: 797–798
  • Kato R., Chiesara E. Increase of pentobarbitone metabolism induced in rats pretreated with some centrally acting compounds. Br. J. Pharmacol. 1962; 18: 29–38
  • Kato R., Chiesara E., Vassanelli P. Factors influencing induction of hepatic microsomal drug-metabolizing enzymes. Biochem. Pharmacol. 1962; 11: 211–220
  • Kato R., Chiesara E., Vassanelli P. Increased activity of microsomal strychnine-metabolizing enzyme induced by phenobarbital and other drugs. Biochem. Pharmacol. 1962; 11: 913–922
  • Kato R., Vassanelli P., Chiesara E. Inhibition of pentobarbital and meprobamate metabolism by some inducers of drug-metabolizing enzymes. Experientia 1962; 18: 453–456
  • Kato R., Chisara E., Vassanelli P. Stimulating effect of some inhibitors of the drug metabolisms (SKF 525 A, Lilly 18947, Lilly 32391 and MG 3062) on excretion of ascorbic acid and drug metabolisms. Med. Exp. 1962; 6: 254–260
  • Kato R., Chiesara E., Vassanelli P. Mechanism of potentiation of barbiturates and meprobamate actions by imipramine. Biochem. Pharmacol. 1963; 12: 357–364
  • Kato R., Chiesara E., Vassanelli P. Further studies on the inhibition and stimulation of microsomal drug-metabolizing enzymes of rat liver by various compounds. Biochem. Pharmacol. 1964; 13: 69–83
  • Kato R., Chiesara E., Frontino G. Influence of sex difference on the pharmacological action and metabolism of some drugs. Biochem. Pharmacol. 1962; 11: 221–227
  • Kato R., Chiesara E., Vassanelli P. Metabolic differences of strychnine in the rat in relation to sex. Jpn. J. Pharmacol. 1962; 12: 26–33
  • Kato R., Vassanelli P., Frontino G., Chiesara E. Variation in the activity of liver microsomal drug-metabolizing enzymes in rats in relation to the age. Biochem. Pharmacol. 1964; 13: 1037–1051
  • Kato R., Chiesara E., Frontino G. Induced increase of meprobamate metabolism in rats pretreated with phenobarbital or phenaglycodol in relation to age. Experientia 1961; 17: 520–523
  • Kato R., Takanaka A. Metabolism of drugs in old rats. I. Activities of NADPH-linked electron transport and drug-metabolizing enzyme systems in liver microsomes of old rats. Jpn. J. Pharmacol. 1968; 18: 381–388
  • Kato R., Takanaka A. Effect of phenobarbital on electron transport system, oxidation and reduction of drugs in liver microsomes of rats of different age. J. Biochem. 1968; 63: 406–408
  • Kato R., Vassanelli P., Frontino G. Metabolic factors determining a higher resistance to strychnine in guinea pigs. Arch. Int. Pharmacodyn. 1963; 144: 416–422
  • Kato R., Chiesara E., Vassanelli P. Metabolic differences of carisoprodol in the rat in relation to sex. Med. Exp. 1961; 4: 387–392
  • Kato R., Gillette J. R. Effect of starvation on NADPH-dependent enzymes in liver microsomes of male and female rats. J. Pharmacol. Exp. Ther. 1965; 150: 279–284
  • Kato R., Gillette J. R. Sex differences in the effects of abnormal physiological states on the metabolism of drugs by rat liver microsomes. J. Pharmacol. Exp. Ther. 1965; 150: 285–291
  • Kato R. This week's citation classic. Current Content 1984; 46: 16
  • Kato R. Hepatic microsomal drug-metabolizing enzyme-determinant of efficacy and toxicity of drugs. Farumashia 1965; 1: 161
  • Kato R., Loeb L., Gelboin H. V. Increased sensitivity of microsomes from phenobarbital-treated rats to synthetic messenger RNA (polyuridylic acid): Lack of effect on ribosomes. Nature 1965; 205: 668–669
  • Kato R., Jondorf W. R., Loeb L. A., Ben T., Gelboin H. V. Studies on the mechanism of drug-induced microsomal enzyme activities. V. Phenobarbital stimulation of endogenous messenger RNA and polyuridylic acid-directed L-[14C]-phenylalanine incorporation. Mol. Pharmacol. 1966; 2: 171–186
  • Kato R. Possible role of P-450 in the oxidation of drugs in liver microsomes. J. Biochem. 1966; 59: 574–583
  • Kato R., Takahashi A. Thyroid hormone and activities of drug-metabolizing enzymes and electron transport systems of rat liver microsomes. Mol. Pharmacol. 1968; 4: 109–120
  • Kato R., Takanaka A., Onoda K. Substrate interaction with P-450 and drug hydroxylation by liver microsomes of rats under physiologically abnormal states. J. Biochem. 1969; 66: 739–741
  • Kato R., Onoda K., Sasajima M. Effects of morphine treatment and starvation on the substrate interaction with P-450 in the oxidation of drugs by liver microsomes. Jpn. J. Pharmacol. 1970; 20: 194–209
  • Kato R., Onoda K., Takayanagi M. Species and sex differences in the substrate-induced spectral change of P-450 in relation to the activity of drug oxidation in liver microsomes. Jpn. J. Pharmacol. 1970; 20: 157–163
  • Kato R., Takanaka A., Onoda K. Species and sex differences in aminopyrine N-demethylating activity of liver microsomes under unphysiological conditions. Jpn. J. Pharmacol. 1968; 18: 516–517
  • Kato R., Onoda K. I., Takanaka A. Species differences in the effect of morphine administration or adrenalectomy on the substrate interactions with cytochrome P-450 and drug oxidations by liver microsomes. Biochem. Pharmacol. 1971; 20: 1093–1099
  • Kato R. Sex-related differences in drug metabolism. Drug Metab. Rev. 1974; 3: 1–32
  • Kato R., Takahashi A., Oshima T., Hosoya E. Effect of morphine administration on the hydroxylation of steroid hormones by rat liver microsomes. J. Pharmacol. Exp. Ther. 1970; 174: 211–220
  • Kato R., Takahashi A., Omori Y. Effects of thyroxine and thyroidectomy on the hydroxylation of testosterone by liver microsomes from male and female rats. Biochem. Biophys. Acta 1970; 208: 116–124
  • Kato R., Takahashi A. Decreased hydroxylation of steroid hormones by liver microsomes from rats bearing Walker carcinosarcoma 256. Cancer Res. 1970; 30: 2346–2352
  • Kato R., Oshima T., Tomizawa S. Toxicity and metabolism of drugs in relation to dietary protein. Jpn. J. Pharmacol. 1968; 18: 356–366
  • Kato R. Diet, drugs and poisons. Current Content 1991; 34: 10
  • Kamataki T., Maeda K., Yamazoe Y., Nagai T., Kato R. Partial purification and characterization of cytochrome P-450 responsible for the occurrence of sex difference in drug metabolism in the rat. Biochem. Biophys. Res. Commun. 1981; 103: 1–7
  • Kamataki T., Maeda K., Yamazoe Y., Nagai T., Kato R. Sex difference of cytochrome P-450 in the rat: Purification, characterization, and quantitation of constitutive forms of cytochrome P-450 from liver microsomes of male and female rats. Arch. Biochem. Biophys. 1983; 225: 758–770
  • Kamataki T., Shimada M., Maeda K., Kato R. Pituitary regulation of sex-specific forms of cytochrome P-450 in liver microsomes of rats. Biochem. Biophys. Res. Commun. 1985; 130: 1247–1253
  • Kamataki T., Maeda K., Shimada M., Nagai T., Kato R. Neonatal testosterone imprinting of hepatic microsomal drug metabolism and a male-specific form of cytochrome P-450 in the rat. J. Biochem. 1984; 96: 1939–1942
  • Kamataki T., Maeda K., Shimada M., Kitani K., Nagai T., Kato R. Age-related alteration in the activities of drug-metabolizing enzymes and contents of sexspecific forms of cytochrome P-450 in liver microsomes from male and female rats. J. Pharmacol. Exp. Ther. 1985; 233: 222–228
  • Yamazoe Y., Shimada M., Kamataki T., Kato R. Effects of hypophysectomy and growth hormone treatment on sex-specific forms of cytochrome P-450 in relation to drug and steroid metabolisms in rat liver microsomes. Jpn. J Pharmacol. 1986; 42: 371–382
  • Yamazoe Y., Shimada M., Murayama N., Kawano S., Kato R. The regulation by growth hormone of microsomal testosterone 6β-hydroxylase in male rat livers. J. Biochem. 1986; 100: 1095–1097
  • Kato R., Yamazoe Y. Hormonal regulation of sex-specific forms of cytochrome P-450 involved in hydroxylation of steroid and drugs. Microsomes and Drug Oxidations, J. Miners, D. J. Birkett, R. Drew, M. L. McManus. Taylor & Francis, London 1988; 140–147
  • Kato R., Yamazoe Y. Hormonal regulation of cytochrome P450 in rat liver. Handbook of Experimental Pharmacology, Vol. 105 Cytochrome P450, J. B. Schenkman, H. Greim. Springer-Verlag, Berlin 1993; 447–450
  • Yamazoe Y., Murayama N., Shimada M., Yamauchi K., Kato R. Cytochrome P450 in livers of diabetic rats: Regulation by growth hormone and insulin. Arch. Biochem. Biophys. 1989; 268: 567–575
  • Shimada M., Murayama N., Yamazoe Y., Hashimoto H., Ishikawa H., Kato R. Age- and sex-related alterations of microsomal drug- and testosterone-oxidizing cytochrome P450 in Sprague Dawley strain-derived dwarf rats. J. Pharmacol. Exp. Ther. 1995; 275: 972–977
  • Yamazoe Y., Manabe S., Murayama N., Kato R. Regulation of hepatic sulfotransferase catalyzing the activation of N-hydroxyarylamide and N-hydroxyarylamine by growth hormone. Mol. Pharmacol. 1987; 32: 536–541
  • Yamazoe Y., Gong D., Murayama N., Abu-Zeid M., Kato R. Regulation of hepatic cortisol sulfotransferase in rats by pituitary growth hormone. Mol. Pharmacol. 1989; 35: 707–712
  • Yamazoe Y., Shimada M., Murayama N., Kato R. Suppression of levels of phenobarbital-inducible rat liver cytochrome P-450 by pituitary hormone. J. Biol. Chem. 1987; 262: 7423–7428
  • Yamazoe Y., Ishii K., Kamataki T., Kato R., Sugimura T. Isolation and characterization of active metabolites of tryptophan pyrolysate mutagen. TRP-P-2, formed by rat liver microsomes. Chem. Biol. Interact. 1980; 30: 125–138
  • Mita S., Ishii K., Yamazoe Y., Kamataki T., Kato R., Sugimura T. Evidence for the involvement of N-hydroxylation of 3-amino-1-methyl-5H-pyrido[4,3-b]indole by cytochrome P-450 in the covalent binding to DNA. Cancer Res. 1981; 41: 3610–3614
  • Kamataki T., Maeda K., Yamazoe Y., Matsuda N., Ishii K., Kato R. A high-spin form of cytochrome P-450 highly purified from polychlorinated biphenyl-treated rats. Catalytic characterization and immunochemical quantitation in liver microsomes. Mol. Pharmacol. 1983; 24: 146–155
  • Ishii K., Ando M., Kamataki T., Kato R., Nagao M. Metabolic activation of mutagenic tryptophan pyrolysis products (Trp-P-1 and Trp-P-2) by a purified cytochrome P-450-dependent monooxygenase system. Cancer Lett. 1980; 9: 271–276
  • Ishii K., Yamazoe Y., Kamataki T., Kato R. Metabolic activation of glutamic acid pyrolysis products, 2-amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole and 2-amino-dipyrido[1,2-a:3′,2′-d]imidazole, by purified cytochrome P-450. Chem. Biol. Interact 1981; 38: 1–13
  • Saito K., Yamazoe Y., Kamataki T., Kato R. Mechanism of activation of proximate mutagens in Ames' tester strains: The acetyl-CoA dependent enzyme in Salmonella typhimurium TA98 deficient in TA98/1,8-DNP6 catalyzes DNA-binding as the cause of mutagenicity. Biochem. Biophys. Res. Commun. 1983; 116: 141–147
  • Saito K., Yamazoe Y., Kamataki T., Kato R. Syntheses of hydroxyamino, nitroso and nitro derivatives of Trp-P-2 and Glu-P-1, amino acid pyrolysate mutagens, and their direct mutagenicities towards Salmonella typhimurium TA98 and TA98NR. Carcinogenesis 1983; 4: 1547–1550
  • Saito K., Shinohara A., Kamataki T., Kato R. Metabolic activation of mutagenic N-hydroxyarylamines by O-acetyltransferase in Salmonella typhimurium TA98. Arch. Biochem. Biophys. 1985; 239: 286–295
  • Saito K., Shinohara A., Kamataki T., Kato R. N-Hydroxyarylamine O-acetyltransferase in hamster liver: Identity with arylhydroxamic acid N, O-acetyltransferase and arylamine N-acetyltransferase. J. Biochem. 1986; 99: 1689–1697
  • Shinohara A., Saito K., Yamazoe Y., Kamataki T., Kato R. DNA binding of N-hydroxy-Trp-P-2 and N-hydroxy-Glu-P-1 by acetyl-CoA dependent enzyme in mammalian liver cytosol. Carcinogenesis 1985; 6: 305–307
  • Yamazoe Y., Shimada M., Shinohara A., Saito K., Kamataki T., Kato R. Catalysis of the covalent binding of 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole to DNA by a L-proline- and adenosine triphosphate-dependent enzyme in rat hepatic cytosol. Cancer Res. 1985; 45: 2495–2500
  • Shinohara A., Saito K., Yamazoe Y., Kamataki T., Kato R. Acetyl coenzyme A dependent activation of N-hydroxy derivatives of carcinogenic arylamines: Mechanism of activation, species difference, tissue distribution, and acetyl donor specificity. Cancer Res. 1986; 46: 4362–4367
  • Kato R., Yamazoe Y. Metabolic activation and covalent binding to nucleic acids of carcinogenic heterocyclic amines from cooked foods and amino acid pyrolysates. Jpn. J. Cancer Res. 1987; 78: 297–311
  • Abu-Zeid M., Yamazoe Y., Kato R. Sulfotransferase-mediated DNA binding of N-hydroxyarylamines(amide) in liver cytosols from human and experimental animals. Carcinogenesis 1992; 13: 1307–1314
  • Nagata K., Ozawa S., Miyata M., Shimada M., Gong D. W., Yamazoe Y., Kato R. Isolation and expression of a cDNA encoding a male-specific rat sulfotransferase that catalyzes activation of N-hydroxy-2-acetylaminofluorene. J. Biol. Chem. 1993; 268: 24,720–24,725
  • Yamazoe Y., Abu-Zeid M., Gong D. W., Staiano N., Kato R. Enzymatic acetylation and sulfation of N-hydroxyarylamines in bacteria and rat livers. Carcinogenesis 1989; 10: 1675–1679
  • Kawakubo Y., Manabe S., Yamazoe Y., Nishikawa T., Kato R. Properties of cutaneous acetyltransferase catalyzing N- and O-acetylation of carcinogenic arylamines and N-hydroxyarylamine. Biochem. Pharmacol. 1988; 37: 265–270
  • Kato R., Yamazoe Y. N-Hydroxyarylamine O-acetyltransferase in mammalian livers and salmonella. Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes, C. M. King, L. J. Romano, D. Schuetzle. Elsevier Science, New York 1988; 125–136
  • Ozawa S., Abu-Zeid M., Kawakubo Y., Toyama S., Yamazoe Y., Kato R. Monomorphic and polymorphic isozymes of arylamine N-acetyltransferases in hamster liver: Purification of the isozymes and genetic basis of N-acetylation polymorphism. Carcinogenesis 1990; 11: 2137–2144
  • Abu-Zeid M., Nagata K., Miyata M., Ozawa S., Fukuhara M., Yamazoe Y., Kato R. An arylamine acetyltransferase (AT-I) from Syrian golden hamster liver: Cloning, complete nucleotide sequence, and expression in mammalian cells. Mol. Carcinogen. 1991; 4: 81–88
  • Kato R., Yamazoe Y. Molecular mechanisms of polymorphism in acetylating enzymes for arylamines and N-hydroxyarylamines in hamster liver. Drug Metab. Rev. 1995; 27: 241–256
  • Nagata K., Ozawa S., Miyata M., Shimada M., Yamazoe Y., Kato R. Primary structure and molecular basis of polymorphic appearance of an acetyltransferase (AT-II)/in hamsters. Pharmacogenetics 1994; 4: 91–100
  • Ando M., Shindo Y., Fujita M., Ozawa S., Yamazoe Y., Kato R. A new Salmonella tester strain expressing a hamster acetyltransferase shows high sensitivity for arylamines. Mutat. Res. 1993; 292: 155–163
  • Ozawa S., Nagata K., Gong D. W., Yamazoe Y., Kato R. Nucleotide sequence of a full-length cDNA (PST-1) for aryl sulfotransferase from rat liver. Nucl. Acids Res. 1990; 18: 4001
  • Ozawa S., Nagata K., Gong D. W., Yamazoe Y., Kato R. Expression and functional characterization of a rat sulfotransferase (ST1A1) cDNA for sulfations of phenolic substrates in COS-1 cells. Jpn. J. Pharmacol. 1993; 61: 153–156
  • Ozawa S., Chou H. C., Kadlubar F. F., Nagata K., Yamazoe Y., Kato R. Activation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine by cDNA-expressed human and rat arylsulfotransferases. Jpn. J. Cancer Res. 1994; 85: 1220–1228
  • Ozawa S., Nagata K., Yamazoe Y., Kato R. Formation of 2-amino-3-methylimidazo[4,5-f]quinoline- and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-sulfamates by cDNA-expressed mammalian phenol sulfotransferases. Jpn. J. Cancer Res. 1995; 86: 264–269
  • Yamazoe Y., Nagata K., Ozawa S., Kato R. Structural similarity and diversity of sulfotransferases. Chem Biol. Interact. 1994; 92: 107–117
  • Kamataki T., Sugiura Y., Yamazoe Y., Kato R. Purification and properties of cytochrome P-450 and NADPH-cytochrome c (P-450) reductase from human liver microsomes. Biochem. Pharmacol. 1979; 28: 1993–2000
  • Kawano S., Kamataki T., Yasumori T., Yamazoe Y., Kato R. Purification of human liver cytochrome P-450 catalyzing testosterone 6β-hydroxylation. J. Biochem. 1987; 102: 493–501
  • Yasumori T., Kawano S., Nagata K., Shimada M., Yamazoe Y., Kato R. Nucleotide sequence of a human liver cytochrome P-450 related to the rat male specific form. J. Biochem. 1987; 102: 1075–1082
  • Yasumori T., Murayama N., Yamazoe Y., Abe A., Nogi Y., Fukasawa T., Kato R. Expression of a human P-450IIC gene in yeast cells using galactose-inducible expression system. Mol. Pharmacol. 1989; 35: 443–449
  • Yasumori T., Murayama N., Yamazoe Y., Kato R. Polymorphism in hydroxylation of mephenytoin and hexobarbital stereoisomers in relation to hepatic P-450 human-2. Clin. Pharmacol. Ther. 1990; 47: 313–322
  • Yasumori T., Li Q. H., Yamazoe Y., Ueda M., Tsuzuki T., Kato R. Lack of low Km diazepam N-demethylase in livers of poor metabolizers for S-mephenytoin 4′-hydroxylation. Pharmacogenetics 1994; 4: 323–331
  • Kato R., Yamazoe Y. The importance of substrate concentration in determining cytochromes P450 therapeutically relevant in vivo. Pharmacogenetics 1994; 4: 359–362
  • Miyata M., Nagata K., Shimada M., Yamazoe Y., Kato R. Structure of a gene and cDNA of a major constitutive form of testosterone 6β-hydroxylase (P450/6βA) encoding CYP3A2: Comparison of the cDNA with P450PCN2. Arch. Biochem. Biophys. 1994; 314: 351–359
  • Miyata M., Nagata K., Yamazoe Y., Kato R. Transcriptional elements directing a liver-specific expression of P450/6βA(CYP3A2) gene-encoding testosterone 6β-hydroxylase. Arch. Biochem. Biophys. 1995; 318: 71–79
  • Murayama N., Shimada M., Yamazoe Y., Sogawa K., Nakayama K., Fujii-Kuriyama Y., Kato R. Distinct effects of phenobarbital and its N-methylated derivative on liver cytochrome P450 induction. Arch. Biochem. Biophys. 1996; 328: 184–192
  • Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 1964; 239: 2370–2378
  • Omura T., Sato R. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization purification, and properties. J. Biol. Chem. 1964; 239: 2379–2385
  • Imai Y., Sato R. Studies on the substrate interactions with P-450 in drug hydroxylation by liver microsomes. J. Biochem. 1967; 62: 239–249
  • Imai Y., Sato R. A gel-electrophoretically homogeneous preparation of cytochrome P-450 from liver microsomes of phenobarbital-pretreated rabbits. Biochem. Biophys. Res. Commun. 1974; 60: 8–14
  • Imai Y. The roles of cytochrome b5 in reconstituted monooxygenase systems containing various forms of hepatic microsomal cytochrome P-450. J. Biochem. 1981; 89: 351–362
  • Imai Y. Cytochrome P-450 related to P-4504 from phenobarbital-treated rabbit liver: Molecular cloning of cDNA and characterization of cytochrome P-450 obtained by its expression in yeast cells. J. Biochem. 1987; 101: 1129–1139
  • Ohta D., Matsu-ura Y., Sato R. Expression and characterization of a rabbit liver cytochrome P450 belonging to P450IIB subfamily with the aid of the baculovirus expression vector system. Biochem. Biophys. Res. Commun. 1991; 175: 394–399
  • Uno T., Imai Y. Further studies on chimeric P450 2C2/2C14 having testosterone 16β-hydroxylase activity which is absent in the parental P450s. J. Biochem. 1992; 112: 155–162
  • Kuriyama Y., Omura T. Different turnover behavior of phenobarbital-induced and normal NADPH–cytochrome c reductases in rat liver microsomes. J. Biochem. 1971; 69: 659–669
  • Harada N., Omura T. Selective induction of two different molecular species of cytochrome P-450 by phenobarbital and 3-methylchoranthrene. J. Biochem. 1981; 89: 237–248
  • Kuwahara S., Harada N., Yoshioka H., Miyta T., Omura T. Purification and characterization of four forms of cytochrome P-450 from liver microsomes of phenobarbital-treated and 3-methylcholanthrene-treated rats. J. Biochem. 1984; 95: 703–714
  • Morohashi K., Yoshioka H., Sogawa K., Fujii-Kuriyama Y., Omura T. Induction of mRNA coding for phenobarbital-inducible form of microsomal cytochrome P-450 in rat liver by administration of 1,1-di(p-chlorophenyl)-2,2-dichloroethylene and phenobarbital. J. Biochem. 1984; 95: 949–957
  • Matsumoto T., Emi Y., Kawabata S., Omura T. Purification and characterization of three male-specific and one female-specific forms of cytochrome P-450 from rat liver microsomes. J. Biochem. 1986; 100: 1359–1371
  • Yoshioka H., Morohashi K., Sogawa K., Miyata T., Kawajiri K., Hirose T., Inayama S., Fujii-Kuriyama Y., Omura T. Structural analysis and specific expression of microsomal cytochrome P-450(M-1) mRNA in male rat livers. J. Biol. Chem. 1987; 262: 1706–1711
  • Mannering G. J., Kuwahara S., Omura T. Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent monooxidase system of hepatic microsomes. Biochem. Biophys. Res. Commun. 1974; 57: 476–481
  • Kuwahara S., Omura T. Different requirement for cytochrome b5 in NADPH-supported O-deethylation of p-nitrophenetole catalyzed by two types of microsomal cytochrome P450. Biochem. Biophys. Res. Commun. 1980; 96: 1562–1568
  • Kamataki T., Kitagawa H. Effects of lipid peroxidation on activities of drug-metabolizing enzymes in liver microsomes of rats. Biochem. Pharmacol. 1973; 22: 3199–3207
  • Kuo C. K., Hanioka N., Hoshikawa Y., Oguri K., Yoshimura H. Species difference of site-selective glucuronidation of morphine. J. Pharmacobiodyn. 1991; 14: 187–193
  • Osborne R., Joel S., Trew D., Slevin M. Analgesic activity of morphine-6-glucuronide. Lancet 1988; 1: 828
  • Ishii Y., Oguri K., Yoshimura H. Purification and characterization of a morphine UDP-glucuronyltransferase isoform from untreated rat liver. Biol. Pharm. Bull. 1993; 16: 754–758
  • Yamada H., Yuno K., Oguri K., Yoshimura H. Multiplicity of liver microsomal flavin-containing monooxygenase in the guinea pig: Its purification and characterization. Arch. Biochem. Biophys. 1990; 280: 305–312
  • Yamada H., Honda S., Oguri K., Yoshimura H. A rabbit liver constitutive form of cytochrome P450 responsible for amphetamine deamination. Arch. Biochem. Biophys. 1989; 273: 26–33
  • Yoshimura H., Yoshihara S., Ozawa N., Miki M. Possible correlation between induction modes of hepatic enzymes by PCBs and their toxicity in rats. Ann. NY Acad. Sci. 1979; 320: 179–192
  • Ariyoshi N., Oguri K., Koga N., Yoshimura H., Funae Y. Metabolism of highly persistent PCB congener, 2,4,5,2′,4′,5′-hexachlorobiphenyl, by human CYP2B6. Biochem. Biophys. Res. Commun. 1995; 212: 455–460
  • Fujisaki H., Mise M., Ishii Y., Yamada H., Oguri K. Strychnine and brucine as the potent inducers of drug metabolizing enzymes in rat liver: Different profiles from phenobarbital on the induction of cytochrome P450 and UDP-glucuronosyltransferase. J. Pharmacol. Exp. Ther. 1994; 268: 1024–1031
  • Yamada H., Minematsu Y., Nakamura T., Mise M., Fujisaki H., Oguri K. Brucine as a potent inducer of CYP2B3, the third member of the CYP2B subfamily P450 in rats. Biol. Pharm. Bull. 1996; 19: 291–293
  • Fujii-Kuriyama Y., Mizukami Y., Kawajiri K., Sogawa K., Muramatsu M. Primary structure of a cytochrome P-450: Coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver. Proc. Natl. Acad. Sci. USA 1982; 79: 2793–2797
  • Kawajiri K., Gotoh O., Sogawa K., Tagashira Y., Muramatsu M., Fujii-Kuriyama Y. Coding nucleotide sequence of 3-methylcholanthrene-inducible cytochrome P-450d cDNA from rat liver. Proc. Natl. Acad. Sci. USA 1984; 81: 1649–1653
  • Gotoh O., Fujii-Kuriyama Y. Evolution, structure, and gene regulation of cytochrome P-450. Frontiers in Biotransformation, K. Ruckpaul. Akademie-Verlag, Berlin 1989; 195–243
  • Morohashi K., Fujii-Kuriyama Y., Okada Y., Sogawa K., Hirose T., Inayama S., Omura T. Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450(SCC) of bovine adrenal cortex. Proc. Natl. Acad. Sci. USA 1984; 81: 4647–4651
  • Morohashi K., Yoshioka H., Gotoh O., Okada Y., Yamamoto K., Miyata T., Sogawa K., Fujii-Kuriyama Y., Omura T. Molecular cloning and nucleotide sequence of DNA of mitochondrial cytochrome P-450(11 beta) of bovine adrenal cortex. J. Biochem. 1987; 102: 559–568
  • Lorence M. C., Trant J. M., Mason J. I., Bhasker C. R., Fujii-Kuriyama Y., Estabrook R. W., Waterman M. R. Expression of a full-length cDNA encoding bovine adrenal cytochrome P450C21. Arch. Biochem. Biophys. 1989; 273: 79–88
  • Gotoh O., Tagashira Y., Iizuka T., Fujii-Kuriyama Y. Structural characteristics of cytochrome P-450 Possible location of the heme-binding cysteine in determined amino-acid sequences. J. Biochem. 1983; 93: 807–817
  • Sogawa K., Gotoh O., Kawajiri K., Fujii-Kuriyama Y. Distinct organization of methylcholanthrene- and phenobarbital-inducible cytochrome P-450 genes in the rat. Proc. Natl. Acad. Sci. USA 1984; 81: 5066–5070
  • Fujisawa-Sehara A., Yamane M., Fujii-Kuriyama Y. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: Its possible translocation to nucleus. Proc. Natl. Acad. Sci. USA 1988; 85: 5859–5863
  • Yanagida A., Sogawa K., Yasumoto K. I., Fujii-Kuriyama Y. A novel cis-acting DNA element required for a high level of inducible expression of the rat P-450c gene. Mol. Cell. Biol. 1990; 10: 1470–1475
  • Ema M., Sogawa K., Watanabe N., Chujoh Y., Matsushita N., Gotoh O., Funae Y., Fujii-Kuriyama Y. cDNA cloning and structure of mouse putative Ah receptor. Biochem. Biophys. Res. Commun. 1992; 184: 246–253
  • Imataka H., Sogawa K., Yasumoto K., Kikuchi Y., Sasano K., Kobayashi A., Hayami M., Fujii-Kuriyama Y. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J. 1992; 11: 3663–3671
  • Matsushita N., Sogawa K., Ema M., Yoshida A., Fujii-Kuriyama Y. A factor binding to the xenobiotic responsive element (XRE) of P-4501A1 gene consists of at least two helix–loop–helix proteins. Ah receptor and Arnt. J. Biol. Chem. 1993; 268: 21,002–21,006
  • Hoffman E. C., Reyes H., Chu F. F., Sander F., Conley L. H., Brooks B. A., Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 1991; 252: 954–958
  • Ema M., Ohe N., Suzuki M., Mimura J., Sogawa K., Ikawa S., Fujii-Kuriyama Y. Dioxin binding activities of polymorphic forms of mouse and human arylhydrocarbon receptors. J. Biol. Chem. 1994; 269: 27,337–27,343
  • Tatsumi K., Kitamura S., Yamada H. Sulfoxide reductase activity of liver aldehyde oxidase. Biochim. Biophys. Acta 1983; 747: 86–92
  • Kitamura S., Wada Y., Tatsumi K. NAD(P)H-dependent reduction of nicotinamide N-oxide by an unique enzyme system consisting of liver microsomal NADPH-cytochrome c reductase and cytosolic aldehyde oxidase. Biochem. Biophys. Res. Commun. 1984; 125: 1117–1122
  • Tatsumi K., Ishigai M. Oxime-metabolizing activity of liver aldehyde oxidase. Arch. Biochem. Biophys. 1987; 253: 413–418
  • Hirao Y., Kitamura S., Tatsumi K. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Carcinogenesis 1994; 15: 739–743
  • Kitamura S., Sugihara K., Tatsumi K. Reductase activity of aldehyde oxidase toward the carcinogen N-hydroxy-2-acetylaminofluorene and the related hydroxamic acids. Biochem. Mol. Biol. Int. 1994; 34: 1197–1203
  • Kitamura S., Tatsumi K. Purification of NADPH-linked alpha, beta-ketoalkene double bond reductase from rat liver. Arch. Biochem. Biophys. 1990; 282: 183–187
  • Maynert E. W., Foreman R. L., Watabe T. Epoxides as obligatory intermediates in the metabolism of olefins to glycols. J. Biol. Chem. 1970; 245: 5234–5238
  • Oesch F. Mammalian epoxide hydrases: Inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 1973; 3: 305–340
  • Watabe T., Komatsu T., Kobayashi K., Isobe M., Ozawa N., Saitoh Y. The obligatory intermediacy of 16,17 alpha- and 16,17 beta-epoxides in the biotransformation of androsta-5,16-dien-3 beta-ol to androst-5-ene-3 beta, 16 alpha, 17 beta- and -3 beta, 16 beta, 17 alpha-triols by male rat liver microsomes. J. Biol. Chem. 1985; 260: 8716–8720
  • Ogura K., Sohtome T., Sugiyama A., Okuda H., Hiratsuka A., Watabe T. Rat liver cytosolic hydroxysteroid sulfotransferase (sulfotransferase a) catalyzing the formation of reactive sulfate esters from carcinogenic polycyclic hydroxymethylarenes. Mol. Pharmacol. 1990; 37: 848–854
  • Ogura K., Kajita J., Narihata H., Watabe T., Ozawa S., Nagata K., Yamazoe Y., Kato R. cDNA cloning of the hydroxysteroid sulfotransferase STa sharing a strong homology in amino acid sequence with the senescence marker protein SMP2 in rat livers. Biochem. Biophys. Res. Commun. 1990; 166: 1494–1500
  • Watabe T., Ogura K., Satsukawa M., Okuda H., Hiratsuka A. Molecular cloning and functions of rat liver hydroxysteroid sulfotransferases catalysing covalent binding of carcinogenic polycyclic arylmethanols to DNA. Chem. Biol. Int. 1994; 92: 87–105
  • Hiratsuka A., Sebata N., Kawashima K., Okuda H., Ogura K., Watabe T., Satoh K., Hatayama I., Tsuchida S., Ishikawa T. A new class of rat glutathione S-transferase Yrs-Yrs inactivating reactive sulfate esters as metabolites of carcinogenic arylmethanols. J. Biol. Chem. 1990; 265: 11,973–11,981
  • Ogura K., Nishiyama T., Hiratsuka A., Watabe T., Watabe T. Isolation and characterization of the gene encoding rat class theta glutathione S-transferase subunit yrs. Biochem. Biophys. Res. Commun. 1994; 205: 1250–1256
  • Kamataki T., Neal R. A. Metabolism of diethyl p-nitrophenyl phosphorothionate (parathion) by a reconstituted mixed-function oxidase enzyme system: Studies of the covalent binding of the sulfur atom. Mol. Pharmacol. 1976; 12: 933–944
  • Kitada M., Kamataki T., Itahashi K., Rikihisa T., Kanakubo Y. P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, is the 16 alpha-hydroxylase of dehydroepiandrosterone 3-sulfate. J. Biol. Chem. 1987; 262: 13,534–13,537
  • Komori M., Nishio K., Ohi H., Kitada M., Kamataki T. Molecular cloning and sequence analysis of cDNA containing the entire coding region for human fetal liver cytochrome P-450. J. Biochem. 1989; 105: 161–163
  • Komori M., Nishio K., Kitada M., Shiramatsu K., Muroya K., Soma M., Nagashima K., Kamataki T. Fetus-specific expression of a form of cytochrome P-450 in human livers. Biochemistry 1990; 29: 4430–4433
  • Kitamura R., Sato K., Sawada M., Itoh S., Kitada M., Komori M., Kamataki T. Stable expression of cytochrome P450IIIA7 cDNA in human breast cancer cell line MCF-7 and its application to cytotoxicity testing. Arch. Biochem. Biophys. 1992; 292: 136–140
  • Hashimoto H., Nakagawa T., Yokoi T., Sawada M., Itoh S., Kamataki T. Fetus-specific CYP3A7 and adult-specific CYP3A4 expressed in Chinese hamster CHL cells have similar capacity to activate carcinogenic mycotoxins. Cancer Res. 1995; 55: 787–791
  • Kitada M., Kato T., Ohmori S., Kamataki T., Itahashi K., Guengerich F. P., Rikihisa T., Kanakubo Y. Immunochemical characterization and toxicological significance of P-450HFLb purified from human fetal livers. Biochim. Biophys. Acta 1992; 1117: 301–305
  • Hashimoto H., Yanagawa Y., Sawada M., Itoh S., Deguchi T., Kamataki T. Simultaneous expression of human CYP3A7 and N-acetyltransferase in Chinese hamster CHL cells results in high cytotoxicity for carcinogenic heterocyclic amines. Arch. Biochem. Biophys. 1995; 320: 323–329
  • Li Y., Yokoi T., Kitamura R., Sasaki M., Gunji M., Katsuki M., Kamataki T. Establishment of transgenic mice carrying human fetus-specific CYP3A7. Arch. Biochem. Biophys. 1996; 329: 235–240
  • Itoh S., Yanagimoto T., Tagawa S., Hashimoto H., Kitamura R., Nakajima Y., Okochi T., Fujimoto S., Uchino J., Kamataki T. Genomic organization of human fetal specific P-450IIIA7 (cytochrome P-450HFLa)-related gene(s) and interaction of transcriptional regulatory factor with its DNA element in the 5′ flanking region. Biochim. Biophys. Acta 1992; 1130: 133–138
  • Hashimoto H., Toide K., Kitamura R., Fujita M., Tagawa S., Itoh S., Kamataki T. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control. Eur. J. Biochem. 1993; 218: 585–595
  • Yanagawa Y., Sawada M., Deguchi T., Gonzalez F. J., Kamataki T. Stable expression of human CYP1A2 and N-acetyltransferases in Chinese hamster CHL cells: Mutagenic activation of 2-amino-3-methylimidazo[4,5-f]quinoline and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline. Cancer Res. 1994; 54: 3422–3427
  • Nakajima M., Yokoi T., Mizutani M., Shin S., Kadlubar F. F., Kamataki T. Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: Absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol. Biomark. Prevent. 1994; 3: 413–421
  • Itoh S., Satoh M., Abe Y., Hashimoto H., Yanagimoto T., Kamataki T. A novel form of mouse cytochrome P450 3A (Cyp3a-16). Its cDNA cloning and expression in fetal liver. Eur. J. Biochem. 1994; 226: 877–882
  • Sakuma T., Masaki K., Itoh S., Yokoi T., Kamataki T. Sex-related difference in the expression of cytochrome P450 in hamsters: cDNA cloning and examination for the expression of three distinct CYP2C cDNAs. Mol. Pharmacol. 1993; 45: 228–236
  • Uchida T., Komori M., Kitada M., Kamataki T. Isolation of cDNAs coding for three different forms of liver microsomal cytochrome P-450 from polychlorinated biphenyl-treated beagle dogs. Mol. Pharmacol. 1990; 38: 644–651
  • Komori M., Kikuchi O., Kitada M., Kamataki T. Molecular cloning of monkey P450 1A1 cDNA and expression in yeast. Biochim. Biophys. Acta 1992; 1131: 23–29
  • Komori M., Kikuchi O., Sakuma T., Funaki J., Kitada M., Kamataki T. Molecular cloning of monkey liver cytochrome P-450 cDNAs: Similarity of the primary sequences to human cytochromes P-450. Biochim. Biophys. Acta 1992; 1171: 141–146
  • Nakura H., Itoh S., Kusano H., Ishizone H., Deguchi T., Kamataki T. Evidence for the lack of hepatic N-acetyltransferase in suncus (Suncus murinus). Biochem. Pharmacol. 1995; 50: 1165–1170
  • Yokoi T., Kosaka Y., Chiba M., Chiba K., Nakamura H., Ishizaki T., Kinishita M., Sato K., Gonzalez F. J. A new CYP2D6 allele with a nine base insertion in exon 9 in a Japanese population associated with poor metabolizer phenotype. Pharmacogenetics 1996; 6: 395–401
  • Nunoya K., Yokoi Y., Kimura K., Kodama T., Funayama M., Inoue K., Nagashima K., Funae Y., Shimada N., Green C., Kamataki T. (+)-Cis-3,5-dimethyl-2-(3-pyridyl)-thiazolidin-4-one hydrochloride (SM-12502) as a novel substrate for cytochrome P450 2A6 in human liver microsomes. J. Pharmacol. Exp. Ther. 1996; 277: 768–774
  • Yamamoto I., Watanabe K., Narimatsu S., Yoshimura H. Recent advances in the metabolism of cannabinoids. Int. J. Biochem. Cell Biol. 1995; 27: 741–746
  • Watanabe K., Yamamoto I., Oguri K., Yoshimura H. Comparison in mice of pharmacological effects of delta 8-tetrahydrocannabinol and its metabolites oxidized at 11-position. Eur. J. Pharmacol. 1980; 63: 1–6
  • Narimatsu S., Yamamoto I., Yoshimura H. Stereospecific hydrolysis of 8α, 9α- and 8β, 9β-epoxyhexahydrocannabinols in the mouse in vivo and in vitro. Xenobiotica 1985; 15: 227–235
  • Narimatsu S., Matsubara K., Shimonishi T., Watanabe K., Yamamoto I., Yoshimura H. Enzymatic oxidation of 7-hydroxylated delta 8-tetrahydrocannabinol to 7-oxo-delta 8-tetrahydrocannabinol by hepatic microsomes of the guinea pig. Drug Metab. Dispos. 1988; 16: 156–161
  • Yamamoto I., Gohda H., Narimatsu S., Watanabe K., Yoshimura H. Cannabielsoin as a new metabolite of cannabidiol in mammals. Pharmacol. Biochem. Behav. 1991; 40: 541–546
  • Watanabe K., Narimatsu S., Yamamoto I., Yoshimura H. Oxygenation mechanism in conversion of aldehyde to carboxylic acid catalyzed by a cytochrome P-450 isozyme. J. Biol. Chem. 1991; 266: 2709–2711
  • Matsunaga T., Iwawaki Y., Watanabe K., Yamamoto I., Kageyama T., Yoshimura H. Metabolism of delta 9-tetrahydrocannabinol by cytochrome P450 isozymes purified from hepatic microsomes of monkeys. Life Sci. 1995; 56: 2089–2095
  • Matsunaga T., Watanabe K., Yamamoto I., Negishi M., Gonzalez F. J., Yoshimura H. cDNA cloning and sequence of CYP2C29 encoding P-450 MUT-2, a microsomal aldehyde oxygenase. Biochim. Biophys. Acta 1994; 1184: 299–301
  • Narimatsu S., Watanabe K., Yamamoto I., Yoshimura H. Mechanism for inhibitory effect of cannabidiol on microsomal testosterone oxidation in male rat liver. Drug Metab. Dispos. 1988; 16: 880–889
  • Watanabe K., Kayano Y., Matsunaga T., Yamamoto I., Yoshimura H. Purification and characterization of a novel 46.5-kilodalton esterase from mouse hepatic microsomes. Biochem, Mol. Biol. Int. 1993; 31: 25–30
  • Kotake A. N., Funae Y. High-performance liquid chromatography technique for resolving multiple forms of hepatic membrane-bound cytochrome P-450. Proc. Natl. Acad. Sci. USA 1980; 77: 6473–6475
  • Funae Y., Imaoka S. Simultaneous purification of multiple forms of rat liver microsomal cytochrome P-450 by high-performance liquid chromatography. Biochim. Biophys. Acta 1985; 842: 119–132
  • Funae Y., Imaoka S. Cytochrome P450 in Rodents. Handbook of Experimental Pharmacology, J. B. Schenkman, R. Greim. Springer-Verlag, Heidelberg 1993; 105, 221–238
  • Shimojo N., Ishizaki T., Imaoka S., Funae Y., Fujii S., Okuda K. Changes in amounts of cytochrome P450 isozymes and levels of catalytic activities in hepatic and renal microsomes of rats with streptozocin-induced diabetes. Biochem. Pharmacol. 1993; 46: 621–627
  • Imaoka S., Terano Y., Funae Y. Changes in the amount of cytochrome P450s in rat hepatic microsomes with starvation. Arch. Biochem. Biophys. 1990; 278: 168–178
  • Imaoka S., Fujita S., Funae Y. Age-dependent expression of cytochrome P-450s in rat liver. Biochim. Biophys. Acta 1991; 1097: 187–192
  • Imaoka S., Yamada T., Hiroi T., Hayashi K., Sakaki T., Yabusaki Y., Funae Y. Multiple forms of human P450 expressed in Saccharomyces cerevisiae: Systematic characterization and comparison with those of the rat. Biochem. Pharmacol. 1996; 51: 1041–1050
  • Imaoka S., Hiroi T., Tamura Y., Yamazaki H., Shimada T., Komori M., Degawa M., Funae Y. Mutagenic activation of 3-methoxy-4-aminoazobenzene by mouse renal cytochrome P450 CYP4B1: Cloning and characterization of mouse CYP4B1. Arch. Biochem. Biophys. 1995; 321: 255–262
  • Shimada T., Misono K. S., Guengerich F. P. Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction. J. Biol. Chem. 1986; 261: 909–921
  • Shimada T., Guengerich F. P. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. USA 1989; 86: 462–465
  • Shimada T., Iwasaki M., Martin M. V., Guengerich F. P. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002. Cancer Res. 1989; 49: 3218–3228
  • Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F. P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 1994; 270: 414–423
  • Yamazaki H., Inui Y., Wrighton S. A., Guengerich F. P., Shimada T. Procarcinogen activation by cytochrome P450 3A4 and 3A5 expressed in Escherichia coli and by human liver microsomes. Carcinogenesis 1995; 16: 2167–2170
  • Yamazaki H., Nakano M., Imai Y., Ueng Y. F., Guengerich F. P., Shimada T. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Arch. Biochem. Biophys. 1996; 325: 174–182
  • Yamazaki H., Guo Z., Persmark M., Mimura M., Inoue K., Guengerich F. P., Shimada T. Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes. Mol. Pharmacol. 1994; 46: 568–577
  • Shimada T., Yamazaki H., Oda Y., Hiratsuka A., Watabe T., Guengerich F. T. Activation and inactivation of carcinogenic dehaloalkanes and other compounds by glutathione S-transferase 5-5 in Salmonella typhimurium tester strain NM5004. Chem. Res. Toxicol. 1996; 9: 333–340
  • Ishizaki T., Horai Y., Koya G., Matsuyama K., Iguchi S. Acetylator phenotype and metabolic disposition of isoniazid in Japanese patients with systemic lupus erythematosus. Arthritis Rheum. 1981; 24: 1245–1254
  • Horai Y., Fujita K., Ishizaki T. Genetically determined N-acetylation and oxidation capacities in Japanese patients with non-occupational urinary bladder cancer. Eur. J. Clin. Pharmacol. 1989; 37: 581–587
  • Tsujimoto G., Horai Y., Ishizaki T., Itoh K. Hydralazine-induced peripheral neuropathy seen in a Japanese slow acetylator patient. Br. J. Clin. Pharmacol. 1981; 11: 622–625
  • Horai Y., Zhou H. H., Zhang L. M., Ishizaki T. N-Acetylation phenotyping with dapsone in a mainland Chinese population. Br. J. Clin. Pharmacol. 1988; 25: 81–87
  • Horai Y., Ishizaki T. N-Acetylation polymorphism of dapsone in a Japanese population. Br. J. Clin. Pharmacol. 1988; 25: 487–494
  • Setiabudy R., Kusaka M., Chiba K., Darmansjah I., Ishizaki T. Dapsone N-acetylation, metoprolol alpha-hydroxylation, and S-mephenytoin 4-hydroxylation polymorphisms in an Indonesian population: A cocktail and extended phenotyping assessment trial. Clin. Pharmacol. Ther. 1994; 56: 142–153
  • Horai Y., Nakano M., Ishizaki T., Ishikawa K., Zhou H. H., Zhou B. I., Liao C. L., Zhang L. M. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin. Pharmacol. Ther. 1989; 46: 198–207
  • Sohn D. R., Shin S. G. Ishizaki T. S-Mephenytoin pharmacogenetics and its clinical implications in Asian ethnic populations. Asian Pacific J. Pharmacol. 1994; 9: 287–301
  • Satoh T., Moroi K. Species and age differences in the study of isocarboxazid hydrolyzing enzyme. Arch. Int. Pharmacodyn. Ther. 1971; 192: 128
  • Moroi K., Satoh T. Modification of procaine metabolism in rat liver after administration of phenobarbital or ethyl-p-nitrophenyl phenylphosphonothioate. Biochem. Pharmacol. 1975; 24: 1435
  • Satoh T. Role of carboxylesterases in xenobiotic metabolism. Rev. Biochem. Toxicol. 1987; 8: 155–181
  • Hosokawa M., Maki T., Satoh T. Multiplicity and regulation of hepatic microsomal carboxylesterases in rat. Mol. Pharmacol. 1987; 31: 579–584
  • Hosokawa M., Maki T., Satoh T. Characterization of molecular species of liver microsomal carboxylesterases of several animal species and humans. Arch. Biochem. Biophys. 1990; 277: 219–227
  • Satoh T., Hosokawa M. Molecular aspects of carboxylesterase isoforms in comparison with other esterases. Toxicol. Lett. 1995; 82/83: 439–445
  • *This paper was refereed by Dr. Ronald Estabrook W. University of Texas South-western Medical Center, Dallas, TX, and by Dr. James R. Gillette NIH, Bethesda, MD.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.